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SUMMARY

Grid cells in the entorhinal cortex demonstrate spatially periodic firing, thought to provide a spatial map on
behaviorally relevant length scales. Whether such periodicity exists for behaviorally relevant time scales in
the human brain remains unclear. We investigate neuronal firing during a temporally continuous experience
by presenting 14 neurosurgical patients with a video while recording neuronal activity from multiple brain re-
gions. We report on neurons that modulate their activity in a periodic manner across different time scales—
from seconds to many minutes, most prevalently in the entorhinal cortex. These neurons remap their
dominant periodicity to shorter time scales during a subsequent recognition memory task. When the video
is presented at two different speeds, a significant percentage of these temporally periodic cells (TPCs)
maintain their time scales, suggesting a degree of invariance. The TPCs’ temporal periodicity might comple-
ment the spatial periodicity of grid cells and together provide scalable spatiotemporal metrics for human
experience.

INTRODUCTION

Integrating the content of human experience in space and

time constitutes the basis for our remarkable ability for

episodic memory and mental time travel.1–4 In rodents,

several temporal coding schemes involving the hippocam-

pal-entorhinal circuitry have been reported,5–14 including (a)

‘‘time cells’’ in the hippocampus and medial entorhinal cortex

(MEC) firing at specific points in time during a short timed in-

terval5–7; (b) ‘‘ramping cells’’ in the lateral entorhinal cortex

(LEC) whose ramping firing activity enables extraction of

time for distinct experiences during the task14; (c) ‘‘event-spe-

cific’’ cells in the hippocampus coding for temporal order of

events12; and (d) degradation in the population of place cells’

activity over hours and days.8–11 Together, the firing proper-

ties of these cells—i.e., their sequential activation or their

activity decay at different time scales—with respect to exper-

imental temporal boundaries are thought to provide time-

stamps of episodic memory.

Considering the temporal representation in the human hippo-

campal-entorhinal system, time can be regarded as an addi-

tional dimension to space. Grid cells in the entorhinal cortex pro-

vide a scalable map with spatial periodicity15,16 when animals

forage freely for food in an open environment. To reveal an anal-

ogous temporal periodicity would require more naturalistic sce-

narios where time is studied at multiple time scales over pro-

longed periods spanning seconds to many minutes. Many

perception and episodic memory experiments are dominated

by a controlled stimulus-response methodology, requiring inter-

mittent sensory input and subject response, and, therefore, dis-

rupting the natural temporal continuity of behavior. If such tem-

poral periodicity existed, one would expect that spatial grid

properties—such as rate remapping with environmental

changes and distinct grid modules with different spatial

scales—would translate into the time domain. Indeed, this hy-

pothesis is consistent with recent accounts on the role of rodent

MEC in interval timing and the idea of ‘‘navigating through

time.’’17–19

Although temporal periodicity has been observed inmany as-

pects of biological systems, for example cardio-respiratory sig-

nals in the seconds scale and neural oscillations in the subsec-

ond range (e.g., theta, beta, and gamma oscillations), the

presence of neural representations on longer time scales

deserves investigation. Here, we sought to investigate the exis-

tence of temporal periodicity in time scales that are relevant for

human experience and behavior. We created a realistic immer-

sive flow of information along extended temporal scales—by

using a paradigm with uninterrupted audiovisual sequence—

while we recorded units’ activity in multiple brain regions in

humans.
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RESULTS

Behavioral task
Participants were 14 neurosurgical patients (age = 31 ± 9 years,

mean ± STD; 9 female) with intractable epilepsy who were im-

planted with intracranial depth electrodes to identify the seizure

focus for potential subsequent surgical cure. First, we recorded

spiking activity from microwires while 9 of the 14 participants

watched a 42-min movie (first episode, season six of ‘‘24’’ TV se-

ries) (Figure 1A)20 and performed a recognition memory test af-

terward. During the memory test, they were presented with brief

movie shots and were asked whether they had seen the clip

before. The target movie shots were randomly interleaved with

an equal number of foil movie shots (chosen from the second

episode of ‘‘24’’ that the patient had not seen) (Figures 1A and

1B) (for further detail see STAR Methods, Behavioral tasks).

Units showed periodic modulation of firing in time
We identified 382 units with a minimum firing rate of 0.05 Hz (me-

dian, [25th, 75th] = 1.55, [0.46, 3.67] Hz) using previously described

methods21–24 (STARMethods, Data acquisition). To localize these

units for each participant, a high-resolution post-operative

computed tomography (CT) scanwasco-registered toapre-oper-

ativewholebrain andhigh-resolutionmagnetic resonance imaging

(MRI) and the location of themicrowireswere determined for each

depth electrode (Figure 1C) (STAR Methods, Electrode localiza-

tion). These units were thus localized to 11 unique regions

(Table S1), with almost one-half of the units recorded frommedial

temporal lobe regions (Table S2). To display the firing rate of each

unit, we binned the spikes into 100-ms segments and applied a

Gaussian smoothing kernel with 500-ms width, followed by divi-

sion by the duration of the time bin (Figure 2A) (STAR Methods,

Electrophysiological analyses). Visual examination of the firing

rates revealed that some units exhibited striking periodicity in their

firing over the course of the movie, and the time scale of this peri-

odicity varied from unit to unit, ranging from tens of seconds to

several minutes (Figure 2A). This periodicity was further demon-

strated by the peaks observed in the autocorrelogram of each

unit’s firing rate in time (Figure 2B) (STARMethods, Electrophysio-

logical analyses). Additionally, we used generalized linear models

(GLMs) to capture the time-varyingfiring rateasaPoissonprocess

using basis functions that were periodic in time and inspected the

model fit, as well as the basis functions that were significant in ex-

plaining the rate (Figures 2A andS2) (STARMethods, Electrophys-

iological analyses). The firing rate of these cells oscillated with a

periodicity centered around one or more characteristic fre-

quencies. We refer to these cells as temporally periodic cells

(TPCs), given that their firing rate seems to be periodic in time.

Figure 1. Task structure and electrophysiological recordings

(A) Participants watched an episode of the ‘‘24’’ TV series (approximately 42 min in duration) and afterward they were tested for recognition memory where they

were shown short clips and asked whether they had previously seen them.

(B) The memory test included target clips (taken from the same episode they had watched, left column) and foil clips (taken from the next episode they had never

seen before, right column). Images are adapted and modified from a previous publication.20

(C) Depth electrodes were localized by co-registering high-resolution post-operative computed tomography scans with high-resolution preoperative magnetic

resonance imaging. Red cross-hair indicates the location of a microwire in the left entorhinal cortex (coronal view). For additional localization images, see

Figure S1.
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Figure 2. TPCs exhibited significant periodic firing during movie viewing

(A) Seven example TPCs firing activity. These units were recorded from ventromedial prefrontal cortex (vm-PFC), entorhinal cortex (EC), EC, anterior cingulate,

EC, EC, and parahippocampal gyrus respectively. The gray line indicates the firing rate (smoothed spike train divided by the 100-ms time bin). The red line

indicates the GLM-fitted firing rate (see STAR Methods).

(B) Each row is the normalized autocorrelation of the smoothed firing rate of the unit shown in (A). Note the local peaks in the autocorrelograms (showing a

periodicity in the unit firing), as well as the different time scales for each unit (x axis limits are adjusted according to the unit’s time scale). The autocorrelations are

smoothed only for visualization purposes.

(C)Within each recording region, the percentages of TPCs duringmovie viewing are shown in green bars and the error bars indicate the CIs of a binomial test (for a

full list of the number of recorded units and significant TPCs per region, see Table S2). The EC region had the largest percentage of TPCs and the regions marked

in light green did not have a significant percentage of TPCs (the CIs of the binomial test included the 5% chance level). The percentage of TPCs in regions other

than EC are not within the CIs of the EC region.

(D) Z-scored autocorrelations of all the TPCs’ firing rates (colormap; n = 80) were sorted by the dominant periodicity (light green line) (see STARMethods) for each

unit (each row). Note the visible diverging lines parallel to the dominant period, corresponding to periodicity in the signal. The dominant periodicity of the units

shown in (A) are as follows: 546.14, 409.60, 273.10, 273.10, 182.04, 56.50, and 34.86 s.
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To quantitatively assess the extent to which neurons fired in

a periodic fashion, we computed the autocorrelation of the

firing rate for each unit and compared it against the null hy-

pothesis constructed using shuffled data (specifically, the au-

tocorrelations computed over the shuffled firing rates of the

same unit; for details see STAR Methods, Electrophysiological

analyses). A unit with an autocorrelation value outside the

[2.5%, 97.5%] of the shuffled data was identified as a putative

TPC. Furthermore, we used a cluster-based permutation test

to correct for multiple comparisons in identifying these units

and found a total of 80 TPCs (Figure S3A; more examples of

TPCs are shown in Figures S3 and S4). We then quantified

the percentage of TPCs within each region and found that mul-

tiple regions contained a significant fraction of these units, with

the entorhinal cortex holding the largest population of TPCs

(30 out of 80 total entorhinal units; 37.50%, [26.92%–

49.04%], 95% confidence intervals [CI] from binomial test), fol-

lowed by the anterior cingulate region (13 out of 51 total units;

25.49%, [14.33%–39.63%], 95% CI from binomial test) (Fig-

ure 2C; Table S2).

TPCs’ periodicities span multiple time scales
We next asked how the periodicity of TPCs varied across units.

We calculated the dominant period for each unit as follows: (1)

the firing rate autocorrelation was Z-scored with respect to the

shuffled data for each unit; (2) an fast Fourier transform was per-

formed on the Z-scored autocorrelation values; and (3) the

period at which the largest power was contained was deter-

mined to be the dominant period for that unit (Figure S3) (STAR

Methods, Electrophysiological analyses). This approach allowed

us to examine the periodicity scale of all TPCs. The population

activity of these units spanned temporal scales ranging from

tens of seconds to several minutes (Figure 2D). It is worth noting

that such large temporal scales are beyond the temporal

response patterns of traditional time cells, previously observed

in the hippocampus andMEC of rodents, which involved tempo-

ral scales on the order of a few seconds.6,7 The time scales of

TPCs are more similar to those of the ramping time cells discov-

ered in the rodent LEC.14

The population of TPCs exhibited multiple time scales even

within each participant (Figure 3A; Table S3), as well as within

different regions (Figure 3B). At the population level, the distri-

bution of the TPCs’ dominant periods revealed a non-uniform

distribution (p < 10�5; single sample Kolmogorov-Smirnov

test against uniform distribution) and some time scales ap-

peared to be more pronounced (e.g., dominant periodicities

at 62.5s, 112.5s, 180s, 290s, and 400s) (Figure 3C). Although

thus far the results focused on the dominant periodicity (the

oscillation with the highest power), some units had periodic

firing at additional temporal scales. To determine other promi-

nent oscillations, we calculated the relative power of the Z-

scored firing rate autocorrelation with respect to the power at

the dominant period and found the peaks with at least 75% of

the maximum power (Figure 3D). Indeed, 35% of the units

showed periodic firing at one or more frequencies in addition

to their dominant periodicity (Figure 3E). These additional fre-

quencies were not simply multiples of each other. Few units

had more than two additional frequencies.

Time could be decoded from the population activity of
TPCs
Given that TPCs exhibit periodicities at different time scales, it

should be possible to decode time fromTPCs’ population activity,

akin to a Fourier decomposition using periodic basis functions. To

test this, we first partitioned the duration of the movie into equally

sized epochs (bin durations for the epochs ranged from 1 to 90 s).

We used linear discriminant analysis with a holdout approach to

predict the time epoch within the movie using the firing rate of

the TPCs as input features (STAR Methods, Electrophysiological

analyses). We found that for bin durations longer than 6s, we

were able to successfully decode time from the movie onset

and the accuracy of the model, applied on an independent test

set, was significantly above chance level (decoding time from

shuffled TPCs’ firing rates) (Figure 4). The ability to extract precise,

localized, temporal information from the population of TPCs, but

not the shuffled data, shows that the periodic activity of the

TPCs constitutes a viable mechanism to encode time. How the

hippocampusmay integrate such temporal information and incor-

porate it into encoding and retrieval of episodic memories de-

serves further investigation.25–27

TPCs’ periodicities showed invariance with respect to
narrative content
Can the presence of periodicity in the firing activity of the neu-

rons be explained by the particular events and structure of this

movie? First, we asked whether the cuts in the movie—defined

as consecutive frames between sharp transitions20—were

responsible for eliciting the TPCs’ periodic firing. However, the

cut durations were markedly shorter (median, [25th, 75th] =

2.31, [1.37, 3.10] s) than the TPCs’ dominant periodicities. Sec-

ond, it seems unlikely that the TPCs’ time scales follow the con-

tent of the episode (e.g., the presence of specific characters in

the movie was sparsely distributed; see Figure S6 in Tang

et al.20). Further, the participants had not previously watched

the episode and, therefore, could not predict the upcoming con-

tent that could, in return, dictate increase or decrease of firing

activity. Last, if the TPCs’ periodicity was modulated by the con-

tent, one would expect that the activity of TPCs with similar

dominant periodicities would be similar and, thus, highly corre-

lated in time. This was not the case in our data, and the distribu-

tion of correlation coefficients between adjacent TPCs’ firing

(defined as TPCs with dominant periodicities within a certain

time interval, e.g., 5, 10, of 20 s) was not significantly different

from zero (p > 0.05 for all intervals, signed rank test). However,

one cannot fully rule out the possibility that the neuronal firing

was partly modulated by nested event boundaries of the narra-

tive content.28

To further assess the extent to which the TPCs’ periodic firing

was modulated by external stimuli, we recorded data from five

additional participants who watched the same episode, but

each half of the episode was presented to them at different

speeds. For three of the participants, the first and second halves

of the episode were played at regular and 1.53 speed, respec-

tively. In the other two participants, the order of the two speeds

was reversed. Of the 285 recorded units (Table S1), we identified

80 units that exhibited TPC-like behavior during both conditions

(regular and faster speeds) using the methods described earlier

4 Cell Reports 42, 113271, November 28, 2023

Article
ll

OPEN ACCESS



(STAR Methods, Electrophysiological analyses). Of the 53 units

recorded from the entorhinal cortex, 19 (35.85%) were TPCs—

a percentage similar to that observed in the nine participants

described previously (34.43%).

If the periodicities of TPCs were merely determined by the

content of the narrative, one would expect the periodicities to

change in concert with the different rates of information in the

two conditions. In contrast, several TPCs maintained the domi-

nant periodicity of their firing rate during regular- and faster-

speed movie viewing (Figure 5A). These units exhibited stable

periodic behavior across the two conditions (Figure 5B), sug-

gesting that their periodicity was independent of the narrative

content. Overall, a significant fraction of the recorded TPCs (20

of 80 total; 25.00%, [15.99%–35.94%], 95% CI from binomial

Figure 3. Distributions of the TPCs’ time scales

(A) Distributions within subjects. Z-scored autocorrelation of the TPCs’ firing rates (colormap) for two example participants sorted by the dominant periodicity

(light green line) for each unit (each row).

(B) Dominant periods of TPCs are shown within each region and for each participant (different colored/sized circles). Note that none of the four units in participant

5 were TPCs (Table S2).

(C) The distribution of the dominant periodicity of all TPCs was not uniform (n = 80, p < 10–5; single sample Kolmogorov-Smirnov test against uniform distribution).

Because of the non-uniform bins, the percentage of units in each bin is normalized by the duration of the time bin. Note the pronounced peaks at 62.5, 112.5, 180,

290, and 400 s (marked with dashed lines).

(D) To determine prominent oscillations at periods other than the dominant periodicity, we examined relative power of the Z-scored auto-correlogram (with

respect to the maximum power at the dominant periodicity) for each unit (row) sorted by the dominant period. Light green circles indicate periods at which power

was at least 75% of the maximum power (corresponding with the dominant period).

(E) Using the method in (D), we found the number of prominent periods (including the dominant period) for each unit. Shown is the distribution of the number of

periods per unit and 35% of the units had prominent periodic activity in addition to their dominant periodicity.
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test) maintained their time scales between the two conditions

(Figure 5C). Despite this significant fraction of invariant TPCs,

the majority of the cells remapped (Figure S5), suggesting that

invariant periodicity may not be the dominant feature.

TPCs’ dominant periodicities remapped during memory
test
Last, we askedwhether the periodic activity related to the forma-

tion of episodic memories. We evaluated the periodic properties

of TPCs during the memory test after viewing the movie (Fig-

ure 1B). We used the methodology described earlier to assess

the significance of periodicity, as well as the dominant periods

of the TPCs when participants were shown short clips and

were tested for recognition memory (STAR Methods, Behavioral

tasks). The majority (96.25%) of the TPCs maintained significant

periodicity during the memory test, albeit at shorter time scales

(Figures 6A and S6). Although some units maintained their domi-

nant periods during the memory test (Figure 6B, bottom), most

units (74.03%) remapped their periodicity to shorter time scales

(Figures 6B [top] and 6C). The TPCs’ shorter periodicities during

the memory test was not merely a response to the clip onsets as

the time between clips (median, [25th, 75th] = 4.40, [3.38, 5.44] s)

(Figure 6C, right) was much shorter than the dominant periods

observed in the TPCs (Figure 6C, left). Overall, the TPCs’ domi-

nant periodicities were significantly shorter during the memory

test compared with movie viewing, both on a population level

(Figure 6C) (p = 4.86 3 10�7, Wilcoxon rank-sum test), as well

as on the same cell basis (Figure 6D) (p = 2.41 3 10�5, signed

rank test). It is worth noting that, although most units reduced

their dominant periods during the memory test, few TPCs within

the entorhinal cortex maintained or increased their dominant pe-

riods (24.14%, [10.30%-43.54%], 95% CI from binomial test)

(Figure 6E). Whether the compression of the TPCs’ time scales

during the memory test is relevant for individual behavioral per-

formance and memory remains to be explored in future investi-

gations and will likely require technologies enabling sampling

of a much greater number of neurons in humans.

DISCUSSION

Recent studies in rodents have identified several cell types with

time-dependent firing rates,5–14, notably hippocampal ‘‘time

cells’’6,7 and lateral entorhinal ‘‘ramping cells.’’14 There have

been similar quests in primate electrophysiology to discover

neurons with time-coding properties. The activity of temporal

context cells in the monkey entorhinal cortex29 aligns primarily

with the rodent lateral entorhinal ramping cells. Recent human

studies using learning of sequences of word or picture stimuli

described cells resembling the time and ramping cell types.30,31

It seems that time cells and ramping cells might contribute to two

distinct types of temporal information: the sequential activity of

time cells can map the delays with respect to a salient event

along the time axis, whereas the gradual change of activity of

ramp cells in response to a salient event, which occurs at

different time constants, may serve as a Laplace transformation

of the elapsed time.32

The time-dependent cellular machinery that we describe here

is different altogether from those two cell types. It consists of a

unique population of neurons with periodic modulation of activity

acrossmultiple time scales from tens of seconds tominutes. The

reason that these cells so strikingly declared themselves is likely

because of the continuous uninterrupted flow of information

Figure 4. Decoding time from the population activity of the TPCs

(A) Example confusion matrix (of the test set) from the time decoding analysis. Here, the time within the movie, and thus the activity of the TPCs (n = 80), was

divided into 1-min-long epochs and used as the input feature, while the output vector corresponded to the time bin numbers. Shown are the correctly classified

time bins in green (the diagonal) and incorrectly classified time bins in pink (off diagonal).

(B) Decoding accuracy of the model on the test set was Z-scored with respect to the shuffled data (decoding accuracy on shuffled TPCs’ firing rates) for different

decoding bin sizes. For epochs larger than 6 s in duration, decoding accuracy was significantly above chance level (Z = 5; red dashed line).
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characterizing the current study. The key property of these cells

was their periodicity over nearly one hour of relatively stable

context, yet with enormous variability in sensory input. This sta-

bility of temporal periodicity was further demonstrated by the

fact that a subset of TPCs maintained their dominant periodicity,

despite the change in the video playback speed. This invariance

to sensory input is required from an elementary neuronal clock

where temporal information can be extracted from a population

of neurons that together span a rich range of temporal scales

from seconds to many minutes. In fact, previous models had

proposed mechanisms that involved the extraction of time

from a subset of neurons with periodic properties.25,26

Although the periodicity of the TPCs is observed in time and it

is possible to decode time from the population activity of these

cells, they may be responding to other time-varying signals

rendering time representation a byproduct of this process. This

argument may indeed hold true even for other types of time-cod-

ing cells and raises philosophical issues on whether time exists

beyond ‘‘change’’ and the occurrence of events. Furthermore,

the passage of time may be decoded from many other bio-

signals—whether the brain in fact uses TPCs temporal informa-

tion cannot be explored in the current study. Thus, perhaps the

main significance of these findings is the presence of such tem-

poral periodicity at the single neuron level at multiple time scales

reaching many minutes and their primary presence in the human

entorhinal cortex.

The remapping of TPCs’ periodicities seen in the memory task

after movie viewing may be related to multiple factors including

memory, change in the temporal structure of the task, and

change in context. It might also explain why such large-scale

temporal periodicity has not been reported, given that the recog-

nition portion of the task more closely resembles the traditional

stimulus-response task structure often employed in the field of

human electrophysiology. If the shortening of periodicity is

related to memory performance, these cells may play a role

in temporal compression of experience required for memory

retrieval.32,33

Of note,most of the entorhinal TPCswere in the anterior part of

the entorhinal cortex. In humans, a recent functional MRI (fMRI)

study demonstrated that the activity of the anterolateral part of

Figure 5. Maintained periodicity of TPCs during movie viewing at altered playback speeds

(A) (Left) Example unit’s firing rate (gray) during the first one-half of the episode played at regular speed overlaidwith theGLM-fitted firing rate (blue). (Middle) Firing

rate of the same unit during the second half of the episode played at 1.53 speed overlaid with GLM-fitted rate (red). Right). Zoomed in views of the unit’s firing rate

during the time intervals marked with black rectangles (Left and Middle). Note the same periodicity during movie viewing at regular speed (top) and accelerated

speed (bottom).

(B) Z-scored firing rate autocorrelations of the units that exhibited the same periodicity during regular speed movie viewing (top) and faster speed movie viewing

(bottom). Note that the neuron number is shared between the two panels and the colored lines represent the dominant periodicity of each unit.

(C) (Left) For each unit, the ratio of the dominant periodicity between regular-speed movie viewing and faster-speed movie viewing was computed. Shown is the

distribution of this ratio across all identified TPCs (n = 80). Of these TPCs, a significant percentage (25.00%, [15.99%–35.94%], 95% CI from binomial test)

maintained their periodicity between the different speed conditions (defined as a <10% change in their dominant periodicity across conditions). Dashed and

dotted vertical lines indicate 1 and 1.53 playback speeds, respectively. (Right) Dominant periods of the units in the two playback speeds. Darker lines indicate

units that did not change their dominant periodicity (<10% change) between the two conditions. Note that the majority of TPCs showed faster periodicity during

the faster playback speed.
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the entorhinal cortex is implicated in a temporal judgment mem-

ory task.34 Comparative anatomical studies of the human and ro-

dent entorhinal cortex suggest that, in fact, the rodent LEC cor-

responds with the anterolateral portion of the entorhinal cortex

and is, by nature, more multisensory compared with the

MEC.35 Hence, it is possible that the TPCs might provide an

additional temporal dimension to the incoming multisensory in-

puts to the entorhinal cortex.

The temporal periodicity of the TPCs begs comparison with

the spatial periodicity of grid cells. If a regular grid is a tessellation

of n-dimensional Euclidean space, TPCs may be viewed then as

one-dimensional temporal grid-like cells. Just like grid cells pro-

vide a multiscale map of a two-dimensional spatial environment,

TPCs in humans may provide a multiscale map of the one-

dimensional temporal environment. Akin to remapping of grid

cells with change in size of the spatial environment,15,36 TPCs

Figure 6. Periodic properties of TPCs during the memory test

(A) (Left) Z-scored autocorrelation of the TPCs’ firing rate (colormap) during movie viewing sorted by the dominant periodicity (light green line) for each unit (each

row) (same as Figure 2D reproduced here for comparison purposes). (Right) Same as left but for the memory test. Of the 80 TPCs recorded during movie viewing,

77 (96.25%) remained as TPCs.

(B) Two example TPCs’ firing rate during movie viewing (left) and the memory test (right) recorded from the entorhinal and cingulate cortex, respectively.

The gray line indicates the smoothed firing rate and the red line indicates the GLM-fitted firing rate. The value tau is the dominant period of the unit in each

condition.

(C) (Left) The dominant periods of the units were significantly shorter (p = 4.86 3 10–7, Wilcoxon rank-sum test) during memory test (n = 77, purple distribution)

compared with movie viewing (n = 80; green histogram). Because of the non-uniform time bins, the number of units per bin is normalized by the duration of the

time bin. (Right) The distribution of the inter-clip intervals during the memory test. Note that even the shortest dominant periods are longer than the inter-clip

intervals shown here.

(D) For the same unit, the dominant period was shorter during the memory test compared with movie viewing (n = 77; p = 2.413 10–5, signed rank test). The red

dashed line indicates the diagonal.

(E) For the TPCs recorded from the entorhinal cortex, shown are the dominant periods of the same cell during movie viewing (green circles) and memory test

(purple circles). Gray (black) lines correspondwith the units that decreased (increased ormaintained) their dominant periods. A significant percentage of the TPCs

within the entorhinal cortex maintained or increased their dominant periods during thememory test compared to movie viewing as indicated by asterisk (24.14%,

[10.30%-43.54%], 95% CI from binomial test).
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exhibited remapping when the temporal structure of the task

changed. If TPCs were indeed temporal counterparts of grid

cells, one would expect that TPCs from different ‘‘modules’’ or

anatomical locationsmay act differently under temporal changes

(i.e., may show different degrees of invariance versus remap-

ping); in our data, remapping seemed to be the dominant feature,

although there was a significant percentage of temporally

invariant TPCs. Furthermore, these cells were by far most prev-

alent in the entorhinal cortex, but they were also found in approx-

imately 25% of anterior cingulate cells. Curiously, both entorhi-

nal cortex and anterior cingulate were the brain regions where

we had previously identified neurons with grid-like properties

during human spatial navigation.37 Further, the entorhinal and

anterior cingulate cortices were both implicated in retrospective

duration estimations during encoding of long narratives.38 How-

ever, we acknowledge that there are additional factors that may

differentiate TPCs and grid cells. The latter show stationary oscil-

lating spatial patterns and are anchored to external borders of

the environment, and thus can be used to measure distance in

space. In TPCs, it is not clear how stationary the oscillations

are and if there is any anchoring to external temporal boundaries.

Whether the periodicity of TPCs is stationary warrants further

investigation.

It is possible that the periodic activity of TPCs may be related

to the infra-slow (<0.1 Hz) fluctuations (ISF), previously

described in the fMRI blood-oxygen-level-dependent (BOLD)

signals, LFPs, as well as single unit activity.39–43 These infra-

slow oscillations are remarkable in multiple ways: (1) BOLD

ISFs are correlated between different brain regions (thus

affecting functional connectivity); (2) BOLD and electrophysio-

logical ISFs are correlated, in particular in their amplitudes; and

(3) ISFs may be related to behavioral performance. The reported

ISFs were predominantly observed in sensory and association

cortices, whereas the majority of the TPCs were recorded from

the entorhinal cortex. It is possible that entorhinal cortex that re-

ceives convergent inputs from these areas35 may integrate such

infra-slow inputs into amore robust periodic time signal, one that

is relevant for behavior.

Limitations of the study
It should be borne in mind that there might be other interpreta-

tions for our findings. First, these TPCswere observed in patients

with epilepsy and, thus, it cannot be ruled out that periodicity is

affected by epileptogenicity. However, the majority (95%) of the

TPCs in the current study were recorded from regions outside

the focus of seizure onset. Second, the periodic activity of the

TPCs may subserve a range of behaviors, unrelated to time pro-

cessing (e.g., chunking of experience at multiple time scales or

efficient dynamics for neural communication). Third, our analysis

to determine whether themovie content was periodic was exten-

sive, but not exhaustive. As such, we cannot fully rule out the

possibility that individual cells could be segmenting putative reg-

ular events in themovie narrative that are not within our extensive

annotations. Fourth, in the current study we did not explore any

potential relationships between the periodicity of TPCs and

recognition memory, which may limit further interpretations of

the results. Last, it is likely that TPCs have conjunctive represen-

tations along dimensions other than time—a property that, if

true, bears a resemblance to the conjunctive representation of

navigational variables in the entorhinal grid cells.44

In light of the current findings, future studies are needed to

examine whether temporal periodicity exists under different con-

ditions and in other species, and determine the extent—as well

as strength—of invariance to external stimuli. Importantly, estab-

lishing relationships between the periodicity of TPCs and

behavior, in particular memory, can shed light on whether and

how TPCs are used in cognition. The potential synergy of grid

cells and TPCs in providing spatiotemporal metrics of experi-

ence, and how their input may be incorporated in the hippocam-

puswarrant further investigations, novel paradigms, and techno-

logical developments enabling concurrent recordings from large

populations of cells in the human brain.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Itzhak Fried (IFried@

mednet.ucla.edu)

Materials availability
This study did not generate any new reagents.

Data and code availability
d Data: Data collection for this specific study was often over 10 years ago, when the patients’ consent form did not include a

statement about data sharing. As such, researchers interested in the data are encouraged to write a short proposal on what

they intend to do with the data and then request the data from the corresponding author. This request, after review by the au-

thors, will be submitted for an IRB approval (commonly done as an amendment). We do not anticipate this to be a lengthy pro-

cedure as amendments often involve a much shorter IRB process. Lastly, the data will be available for academic use, and not

available for commercial research.

d Code: A standalone notebook that generates synthetic data and contains code for the main analyses and figures of the paper

can be found in the following GitHub repository: https://github.com/Zahra-M-Aghajan/temporally_periodic_cells

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Participants were 14 patients with epilepsy (age = 31 ± 9 years, mean ± STD; 9 female), implanted with intracranial depth electrodes

for seizure monitoring. Informed consent as obtained prior to the surgery and experiments were done in accordance with the Insti-

tutional Review Board at UCLA.

METHOD DETAILS

Behavioral Tasks
The behavioral task (programmed in PsychToolbox, MATLAB) consisted of participants watching an episode of the TV series 24 (sea-

son 6, episode 1, duration �42 min) on a laptop. Afterward, they were presented with short clips (duration = 1.91 ± 0.72 s) and were

asked to make a choice on whether they had seen the clip or not (response time duration = 2.39 ± 1.66 s), using the keyboard. The

clips were divided into targets (clips chosen from episode 1 that they had just watched) and foils (clips chosen from episode 2 that

they had never seen). The episodes of this series happen in consecutive hours of the day and, therefore, the characters’ appearances

are very similar in the target and foil clips. Performance accuracy for each participant was computed as follows: (TP + TN)/(TP + TN +

FP + FN), where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative respectively. We also

computed an alternative behavioral performance measure, specifically d’ (d-prime) using the hit rate and false alarm rate values.

These twomeasures of behavior (accuracy and d’) were highly correlated (r = 0.974, p = 4.20x10�5, Pearson correlation). The number

of presented clips, and hence the duration of the memory test, varied from participant to participant.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB R2017A The MathWorks https://www.mathworks.com/products/matlab.html

Python Google Colaboratory https://colab.research.google.com/

TPC analysis This paper https://doi.org/10.5281/zenodo.8350692
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Five additional participants performed an alternative version of the task. They watched the same episode of the TV series 24 but

each half of the episode was presented at different playback speeds. In participants 1,3, and 5, the first half was presented at regular

speed and the second half was presented at 1.5x speed. In participants 2 and 4, this order was reversed.

Data Acquisition
Electrophysiological data were recorded from implanted electrodes that terminated in a set of nine 40 micro-m Platinum-Iridium mi-

crowires.45,46 The number of electrode bundles, aswell as their locations, were different for each participant and determined solely by

clinical criteria. Wide-band local field potentials were recorded from eight microwires (the 9th microwire was used for referencing)

using a 128-channel (or 256-channel) Neuroport recording system (Blackrock Microsystems, Utah, USA) sampled at 30 kHz.

Electrode Localization
A high-resolution post-operative CT image was obtained and co-registered to a pre-operative whole brain and high-resolution MRI

for each participant using previous methods (Figure 1C; Table S1). The locations of the microelectrodes were determined by exam-

ining the location of the electrode artifact on the co-registered images. For further details, see ref. 21.

QUANTIFICATION AND STATISTICAL ANALYSIS

Electrophysiological Analyses
Data were analyzed offline using custom code as well as functions and toolboxes in MATLAB and Python. The type of statistical tests

used together with the number of samples (N) are specified within the text and figure legends when necessary.

Spike detection and sorting

Spike detection and sorting was done using previousmethods21–24. Briefly, we applied a bandpass filter to the broadband data in the

300-3000Hz to detect spikes that were subsequently sorted using the Wave_clus toolbox. Furthermore, the automatically-detected

clusters were manually inspected for: 1) spike waveforms; 2) presence of refractory spikes; as well as 3) the ISI distribution for each

cluster and the quality of the clusters were assessed based on spike shape, variance, and the presence of a refractory period for

units.24,47 Clusters with firing rates below 0.05 Hz were discarded from further analysis. The movie viewing and recognition memory

test phases were recorded within a single session and, thus, spike detection and sorting was performed over the entire session. The

activity of each unit was then separated for each phase (viewing/memory) of the experiment.

Firing rates and their autocorrelations

A time vector with a bin size of 100ms was constructed and, for each unit, the number of spikes within each time bin was computed.

This raw spike train was used for the GLM analyses (next section). The smoothed spike trains were computed using a 0.5s Gaussian

smoothing kernel on the raw spike histograms, which were then converted to firing rates after division by the duration of the time bin

(Figures 2A, 5A, 6B, and S3–S6). To inspect the presence of putative oscillations in the spiking activity, normalized autocorrelations

were computed over the smoothed firing rate.

Determining significant temporally periodic cells (TPCs)

To determine whether the periodicity in the spiking activity, as demonstrated by the autocorrelation of the firing rates, was statistically

significant, we used a shuffling procedure. For each unit: 1) we chunked the firing rate into 1-second-long segments and randomly

shuffled the segments in time (x 250); 2) the previous step was repeated for 2-second-long segments. This procedure yielded 500

shuffled firing rates for which an autocorrelogram was calculated. Next, we compared the autocorrelation of the true firing rate

against the autocorrelation of the shuffled firing rates. Units with true autocorrelations that had values beyond the 2.5% and

97.5% of the shuffled data were identified. Further, we used a cluster-based permutation test48 to correct for multiple comparisons

(given the large number of lags that were being tested). Specifically, we used the function permutation_cluster_test fromMNEPython

package49 and units with significant clusters were deemed to be TPCs. The different steps of this procedure are demonstrated in

Figure S3.

Generalized Linear Models (GLMs)

The time-varying firing rate of each unit wasmodeled as an inhomogeneous Poisson process50 using basis functions that are periodic

in time:

lðtÞ = ebtimeHtime :
eb0

Tbin

Htime =
X

i

cos
ð2ptÞ
Ti

Ti ˛ ½2 : 20;30 : 10 : 300; 320 : 20 : 500�
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Here, Tbin is the bin size in time (0.1 s), H refers to the design matrix associated with the temporal covariates, in this case cosine

functions with different periods (Ti), and betas are the parameters associated with the designmatrix in time and a constant term. Note

that the exponentiation is done element wise in this case. This allowed us to determine the periods (Ti) that significantly contributed to

the firing activity of the units (p < 0.001). Oftentimes, units had more than one significant term. The distribution of these periods is

shown in Figure S2.

Dominant periodicity

To determine the strongest oscillation periodicity in the firing rate of the TPCs, we z-scored the autocorrelation of the smoothed firing

rates (described in b) with respect to the shuffled data (described in c), referred to as z-scored autocorrelation for simplicity (Fig-

ure 2D). Next, we performed FFT analysis on the z-scored autocorrelation values for each unit and the period with the maximum po-

wer was chosen as the dominant period of the unit (Figure S3). To assess the strength of other potential periodicities, the power was

normalized with respect to the strongest peak (corresponding to the dominant periodicity) and peaks with 75% of the maximum po-

wer were considered as secondary, tertiary, etc. periodicities (Figure 3).

Decoding time from TPCs’ population activity

Decoding analysis was done using Linear Discriminant Analysis as a classification method. We divided the data into equally sized

time epochs and we performed this analysis for different bin sizes of [1:10, 15, 30, 45, 60, 90] seconds. The epoch number was

used as the output of the classification model and the activity of the TPCs within each epoch was used as the input to the model.

Further, we used a hold-out method, i.e., the model was trained on randomized 75% of the data and an independent 25% of the

data were left aside for testing and themodel performancewas evaluated on the test dataset (Figure 4). Additionally, the performance

of the model was compared against shuffled data: the same classification method was applied on the temporally shuffled activity of

the TPCs. For each unit, we chunked the firing rate into 1-second-long segments and randomly shuffled them in time. We then

concatenated the shuffled firing rates of all TPCs and obtained a surrogate input. We applied the same classification method on

the shuffle data and computed model accuracy. We repeated this shuffling procedure 250 times.
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