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Abstract. We show that deep networks are better than shallow networks

at approximating functions that can be expressed as a composition of func-

tions described by a directed acyclic graph, because the deep networks can be
designed to have the same compositional structure, while a shallow network

cannot exploit this knowledge. Thus, the blessing of compositionality miti-

gates the curse of dimensionality. On the other hand, a theorem called good
propagation of errors allows to “lift” theorems about shallow networks to those

about deep networks with an appropriate choice of norms, smoothness, etc. We
illustrate this in three contexts where each channel in the deep network cal-

culates a spherical polynomial, a non-smooth ReLU network, or another zonal

function network related closely with the ReLU network.

1. Introduction. As is well known, deep networks are playing an increasingly
important role in artificial intelligence, industry, and many aspects of modern life
ranging from homeland security to automated cars. A topic of great recent interest
is to examine the expressive power of deep networks to explain their remarkable
success in comparison with classical shallow networks. There are many efforts in
this direction, depending upon what one defines to be the expressive power [14, 18,
19, 20, 5, 13].

The fundamental problem of machine learning is the following. Given an integer
q ≥ 1, and data of the form {(xi, yi)}Mi=1 ⊂ Rq × R, drawn randomly from a
probability distribution µ, find a model P such that P (xi) ≈ yi. In theory, one
assumes an underlying function f on the unknown support of the distribution µ∗

from which the xi’s are sampled, so that yi = f(xi)+εi, i = 1, · · · ,M , and εi are zero
mean random variables. Equivalently, f(x) = Eµ(y|x). An important aspect of the
problem of machine learning is thus viewed as a problem of function approximation.
A goal of this paper is to standardize the notion of expressive power in term of the
ability of the network to approximate functions measured in a manner utilized in
approximation theory for more than 100 years. Our main thesis is that the ability
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of deep networks to do a better approximation than shallow networks stems from
their ability to mimic any compositional structure inherent in the target function;
an ability that shallow networks cannot have. On the other hand, a theorem called
“good propagation of errors” allows us to lift results from shallow networks to
those for deep networks, highlighting the importance of compositionality. It will
be pointed out that there is no natural way to define a probability measure that
can take advantage of the very important compositionality with respect to which
one can define generalization error as in classical machine learning. In particular,
the bias-variance split does not hold, and a new theory is required. This paper
summarizes some of our recent results in this direction, in particular, for deep non-
smooth ReLU networks.

We will describe the central problems of approximation theory in Section 2 and
illustrate them using the example of approximation of a function on the Euclidean
(hyper-)sphere by spherical polynomials. In Section 3, we will establish the termi-
nology for describing deep networks. A theorem called good propagation of errors
is proved and discussed in Section 4. Applications to approximation by non-smooth
ReLU networks and networks with another related activation function are discussed
in Section 5. The relationship of our results with some others in the literature is
discussed in Section 6.

2. Basic ideas in approximation theory. A central problem in approximation
theory is to investigate the quality of approximation of an unknown function given
finite amount of information about the function. In order to do so, one assumes
that the target function f is in some Banach space X with norm ‖ · ‖. The function
needs to be approximated by models coming from a nested sequence of sets V0 ⊂
· · · ⊂ Vn ⊂ Vn+1 ⊂ · · · so that ∪∞n=0Vn is dense in X. One of the most important
quantities in approximation theory is the degree of approximation, defined by

dist(X; f, Vn) = inf
P∈Vn

‖f − P‖. (2.1)

The assumption that ∪∞n=0Vn is dense in X means that limn→∞ dn(X; f, Vn) = 0.
The rate of this convergence clearly depends upon further assumptions on f , called
prior in machine learning parlance, and smoothness class in approximation theory.
Typically, this class is defined in terms of a smoothness parameter γ as a subspace
Wγ of X.

Constructing the minimizer in (2.1) is generally not of any interest. Such a
minimizer can be hard to obtain computationally, and does not have many desirable
properties; e.g., it is generally not sensitive to the local properties of f . Instead,
the central themes of approximation theory are:

Direct theorem This states that if f ∈Wγ ,

dist(X; f, Vn) = O(n−s) (2.2)

for some s depending upon γ and other parameters, e.g., the number of input
variables to f .

Construction, aka training Give a method to construct P ∈ Vn from the
given information on f such that ‖f − P‖ = O(n−s), and study the connection
between the amount of information available and n for which such a construction
is possible.

Width theorem This states that if we can only assume that f ∈ K ⊂ Wγ for
a compact subset K, and n pieces of information are allowed on f (in the form
of a continuous mapping S : K → Rn), then no matter how one constructs an
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approximation to f from this information, i.e., A(S(f)) ∈ X, the worst case error
under the assumption that f ∈ K is Ω(n−s). This asserts merely the existence of
f ∈ K for which the lower estimate holds.

Converse theorem This states that the estimate (2.2) implies that f ∈ Wγ .
This is a statement about individual functions, not about the whole class of func-
tions. Also, while the width estimate involves only continuous parameter selection,
a converse theorem does not stipulate this.

We discuss an example in connection with approximation on a Euclidean sphere
of Rq+1 for some integer q ≥ 1:

Sq = {x = (x1, · · · , xq+1) ∈ Rq+1 : x21 + · · ·+ x2q+1 = 1}.

We will be interested in approximating continuous functions on Sq, so that the
Banach space is C(Sq) equipped with the uniform norm ‖ · ‖Sq . The restriction of
an algebraic polynomial in q+1 real variables of total degree n to Sq is called a
spherical polynomial of degree n. The space of all spherical polynomials of degree
< n is denoted by Πq

n. Thus, Vn=Πq
n. We will denote dist(C(Sq);f,Πq

n) by Eq;n(f).
The smoothness class is defined as follows. If ∆ is the negative Laplace-Beltrami

operator on Sq, a K-functional on the space C(Sq) is defined by

Kr(f, δ) = inf{‖f − g‖Sq + δr‖(I + ∆)r/2g‖Sq}, δ > 0, (2.3)

where r is an even integer, and the infimum is taken over all g for which (I+∆)r/2g ∈
C(Sq). The class Wq;γ is defined by

Wq;γ =

{
f ∈ C(Sq) : ‖f‖Wq;γ

= ‖f‖Sq + sup
δ∈(0,1)

δ−γKr(f, δ) <∞
}

(2.4)

for an even integer r > 2γ. The following estimate (2.5) shows that the class Wq;γ

(although not the norm ‖f‖Wq;γ ) is independent of the choice of r.
It is proved in [15, 8] that there exist positive constants c1, c2 depending only on

q, γ, r such that

c1‖f‖Wq;γ
≤ ‖f‖Sq + sup

n≥1
nγEq;n(f) ≤ c2‖f‖Wq;γ

. (2.5)

The second inequality gives an estimate on the degree of approximation in terms of
the smoothness class, and represents the direct theorem. The first inequality asserts
that the rate at which the degree of approximation converges to 0 determines the
smoothness class to which the target function belongs; i.e., a converse theorem. The
converse theorem in particular is stronger than the width theorem.

A construction of a polynomial approximation that yields the bounds is given in
[8] in the case when spectral information is available, and in [7] in the case when
noisy values of the function are given at arbitrary points on the sphere.

We note that the dimension of Πq
n ∼ nq. Therefore, in terms of the number of

parameters M involved in the approximation, the rate in (2.5) is ∼ M−γ/q. This
exponential dependence on q is called curse of dimensionality ; the quantity q/γ is
called the effective dimension of Wq;γ .

3. Deep networks and compositional functions. A commonly used definition
of a deep network is the following. Let φ : R→ R be an activation function; applied
to a vector x = (x1, · · · , xq), φ(x) = (φ(x1), · · · , φ(xq)). Let L ≥ 2 be an integer,
for ` = 0, · · · , L, let q` ≥ 1 be an integer (q0 = q), T` : Rq` → Rq`+1 be an affine
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transform, where qL+1 = 1. A deep network with L− 1 hidden layers is defined as
the compositional function

x 7→ TL(φ(TL−1(φ(TL−2 · · ·φ(T0(x)) · · · ).

There are several shortcomings for this definition. First, a function may have more
than one compositional representation, so that the affine transforms and L are not
determined uniquely by the function itself. Second, this notion does not capture
the connection between the nature of the target function and its approximation.
Third, the affine transforms T` define a special directed acyclic graph (DAG). It is
difficult to describe notions of weight sharing, convolutions, sparsity, etc. in terms
of these transforms.

Therefore, we follow [13] and fix a DAG to represent both the target function
and its approximation. Let G be a DAG, with the set of nodes V ∪ S, where S is
the set of source nodes, and V that of non-source nodes. We assume that there is
only one sink node, v∗. A G-function is defined as follows. The in-edges to each
node in V represents an input real variable. For each node v ∈ V ∪S, we denote its
in-degree by d(v). A node v ∈ V ∪S itself represents the evaluation of a real valued
function fv of the d(v) inputs. The out-edges fan out the result of this evaluation.
Each of the source node obtains an input from some Euclidean space. Other nodes
can also obtain such an input, but by introducing dummy nodes, it is convenient
to assume that only the source nodes obtain an input from the Euclidean space. In
summary, a G-function is actually a set of functions {fv : v ∈ V ∪S}, each of which
will be called a constituent function.

For example, the DAG G in Figure 1 ([13]) represents the compositional function

f∗(x1, · · · , x9)=h19(h17(h13(h10(x1,x2,x3,h16(h12(x6,x7,x8,x9))),h11(x4,x5)),

h14(h10, h11), h16), h18(h15(h11, h12), h16)). (3.1)

The G-function is {h10, · · · , h19 = f∗}; the source nodes S = {h10, h11, h12}, V =
{h13, · · · , h19}.

If v ∈ S, the (vector of) variables seen by v are those which are input to v. For
other v ∈ V , the variables seen by v are defined recursively as the vector of variables
obtained by concatenating the variables seen by each of the children of v in order.
In particular, there is a notation overload. The function fv is a function of d(v)
variables input to the vertex v. It is also a function of the variables seen by v. For
example, in the DAG of Figure 1, h11 sees the variables (x4, x5), h13 is a function
of two variables, namely, the outputs of h10 and h11, but it is also a function of
the variables (x1, · · · , x5) which are seen by h13. We will explain what meaning is
intended if we find it warranted.

In the remainder of this paper, we will assume G to be a fixed DAG.

4. Good propagation of errors. The following Theorem 4.1 is the main technical
tool that allows us to reduce the problem of approximation by deep networks to a
series of approximations by shallow networks. In this theorem, for integer d ≥ 1,
let ρd be a metric on Rd.

Theorem 4.1. Let {fv} be a G-function satisfying the following Lipschitz condition:
there exists a constant L > 0 such that for (x1, · · · , xdv ), (y1, · · · , ydv ) ∈ Rd(v),

|fv(x1, · · · , xdv )− fv(y1, · · · , ydv )| ≤ Lρd(v)((x1, · · · , xdv ), (y1, · · · , ydv )). (4.1)
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Figure 1. This figure from [13] shows an example of a G–function
(f∗ given in (3.1)). The vertices V ∪ S of the DAG G are denoted
by red dots. The black dots represent the inputs; the input to the
various nodes as indicated by the in–edges of the red nodes. The
blue dot indicates the output value of the G–function, f∗ in this
example.

Let {gv} be a G-function. Let w ∈ V , {u1, · · · , us} ⊂ V be the children of w, and
xu1

, · · · ,xus be the variables seen by u1, · · · , us respectively. Then

|fv(xu1 , · · · ,xus)− gv(xu1 , · · · ,xus)|
= |fv(fu1(xu1), · · · , fus(xus))− gv(gu1(xu1), · · · , gus(xus))|
≤ sup

y∈Rd(v)
|fv(y)− gv(y)|+ Lρd(v)((fu1(xu1), · · · , fus(xus)),

(gu1(xu1), · · · , gus(xus)). (4.2)

Proof. By triangle inequality followed by (4.1), we get

|fv(fu1
(xu1

), · · · , fus(xus))− gv(gu1
(xu1

), · · · , gus(xus))|
≤ |fv(gu1

(xu1
), · · · , gus(xus))− gv(gu1

(xu1
), · · · , gus(xus))|

+|fv(fu1
(xu1

), · · · , fus(xus))− fv(gu1
(xu1

), · · · , gus(xus))|
≤ sup

y∈Rd(v)
|fv(y)− gv(y)|+ Lρd(v)((fu1

(xu1
), · · · , fus(xus)),

(gu1
(xu1

), · · · , gus(xus))).

We illustrate Theorem 4.1 using the example of approximation by spherical poly-
nomials as in Section 2. We note first that the transformation

(x1, · · · , xd) 7→
(

x1√
|x|2 + 1

, · · · , xd√
|x|2 + 1

,
1√
|x|2 + 1

)
(4.3)

is a one-to-one correspondence between Rd and the open upper hemisphere Sd+. For

a function f : Rd → R vanishing at infinity, one can therefore associate in a one-to-
one manner an even function on Sd which shares all the smoothness properties of f .
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In the notation of Theorem 4.1, if we assume that all the G-functions involved are
continuous, the points such as (fu1(xu1), · · · , fus(xus)) may thus be thought of as
points on a compact subset of Ss+. Therefore, with some simple modifications, we
may assume that the inputs to all the constituent functions are from the appropriate
spheres. Moreover, restricted to compact subsets of Rd, the usual Euclidean metric
on Rd is equivalent to the metric ρd on Rd induced by the geodesic distance %d on
Sd. Therefore, we may write (4.2) in the form

|fv(xu1 , · · · ,xus)−gv(xu1 , · · · ,xus)| ≤ ‖fv−gv‖Sd(v)+L
d(v)∑
k=1

‖fuk−guk‖Sd(uk) . (4.4)

Motivated by Theorem 4.1, we define the following notion. Let Wd be a class of
functions of d variables with norm (or semi-norm) ‖ · ‖Wd

. The class GW consists
of all G-functions {fv} such that each fv ∈Wd(v). We define

‖{fv}‖GW =
∑
v∈V
‖fv‖Wd(v)

; (4.5)

i.e., we use the tensor product norm on
∏
v∈V Wd(v). For example, GΠn is the class

of all G-functions of the form {Pv ∈ Π
d(v)
n },

‖{fv}‖GWγ
=
∑
v∈V
‖fv‖Wd(v);γ

, En(G, {fv}) =
∑
v∈V

Ed(v);n(fv).

We note that the fact that En(G, {fv}) = O(n−γ) is equivalent to the fact that
Ed(v);n(fv) = O(n−γ) for each v ∈ V . Together with (2.5), Theorem 4.1 leads to
the following

Theorem 4.2. Let {fv} be a G-function such that (4.1) is satisfied with ρd induced
by the geodesic metric on Sd. Then there exist positive constants c3, c4 independent
of the functions {fv} or n such that

c3‖{fv}‖GWγ
≤
∑
v∈V
‖fv‖Sd(v) + sup

n≥1
nγEn(G, {fv}) ≤ c4‖{fv}‖GWγ

. (4.6)

We end this section by pointing out another important feature of Theorem 4.1.
It is customary in machine learning to measure the generalization error between
a function and its approximation using an appropriate L2 norm. In (4.2), the
argument of fv is different (and in particular, differently distributed) from that of
gv. Thus, there is no natural measure with respect to which one can take the L2

norm while preserving the advantages of compositionality. Therefore, in the theory
of function approximation by deep networks, one has to use the uniform norm. In
turn, this means that the usual bias-variance split does not work anymore, and one
has to develop an entirely new paradigm.

5. Approximation by ReLU networks. A ReLU network has the form x 7→∑N
k=1 ak(x ·yk+ bk)+. Since |t| = t+ +(−t)+, t+ = (|t|+ t)/2, we find it convenient

to study instead networks of the form x 7→
∑N
k=1 ak|x · yk + bk|. Writing wk =

(|yk|2 + b2k)−1/2(yk, b) and recalling the transformation between Rq and Sq, the
problem of approximation of functions on Rq by networks of this form is equivalent
to that of approximation of functions on Sq by zonal function networks of the form

x 7→
∑N
k=1 ak|x ·wk|.

Next, we define a smoothness class for approximation by such networks [12, 13].
In this section, we denote the dimension of the space of the restrictions to the sphere
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of all homogeneous harmonic polynomials of degree ` by dq` , ` = 0, 1, · · · , and the set

of orthonormalized spherical harmonics on Sq by {Y`,k}
dq`
k=1. we recall the addition

formula
d∑̀
k=1

Y`,k(u)Y`,k(v) = ω−1q−1p`(1)p`(u · v), (5.1)

where p` is the degree ` ultraspherical polynomial with positive leading coefficient,
with the set {p`} satisfying∫ 1

−1
p`(t)pj(t)(1− t2)q/2−1dt = δj,`, j, ` = 0, 1, · · · . (5.2)

The function t→ |t| can be expressed in an expansion

|t| ∼ p0 −
∞∑
`=1

`− 1

`(2`− 1)(`+ q/2)
p2`(0)p2`(t), t ∈ [−1, 1], (5.3)

with the series converging on compact subsets of (−1, 1).
If f ∈ C(Sq), then we define

f̂(`, k) =

∫
Sq
f(u)Y`,k(u)dµ∗(u). (5.4)

We note that if f is an even function, then f̂(2`+ 1, k) = 0 for ` = 0, 1, · · · . In this
context, the place of the operator (I + ∆)1/2 is taken by the operator Dq;|·| defined
formally by

D̂q;|·|f(2`, k) =


f̂(0, 0), if ` = 0,

−`(2`− 1)(`+ q/2)p2`(1)

ωq−1(`− 1)p2`(0)
f̂(2`, k), if ` = 1, 2, · · · ,

(5.5)

and D̂q;|·|f(2`+ 1, k) = 0 otherwise. The space of all f ∈ C(Sq) for which Dq;|·|f ∈
C(Sq) is denoted by Yq. We set

‖f‖Yq = ‖f‖C(Sq) + ‖Dq;|·|f‖Sq .

It is proved in [12] that if f ∈ Yq, then there exists a network of the form

G(x) =

N∑
k=1

ak|x ·wk| (5.6)

such that

‖f −G‖Sq ≤
c4
N2/q

‖f‖Yq . (5.7)

The class of all networks of the form G is denoted Rq;N . Our result in [12] is in
fact a constructive result. Thus, we work with data of the form {(xj , f(xj))}Mj=1,
xj ∈ Sq. If the points {xj} are sufficiently dense on Sq, then we have shown that
a network G of the form (5.6) can be constructed with N ∼ M , the coefficients ak
can be chosen to be linear combinations of {f(xj)}’s with weights independent of
f , and the points wk can be chosen independently of the data. Thus, there is no
training involved in the classical sense.

Theorem 4.1 allows to “lift” this upper bound to the following corresponding
bound for deep ReLU networks.
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Theorem 5.1. Let {fv} be a G-function such that each fv satisfies (4.1) with ρd(v)
induced by the geodesic metric on Sd(v). In addition, let each fv ∈ Yd(v). Let
dG = maxv∈V d(v). Then there exists a deep network in GRN ; i.e., a G-function
{gv} such that every gv ∈ Rd(v);N such that∑

v∈V
‖fv − gv‖Sd(v) ≤

c5
N2/dG

‖{fv}‖GY . (5.8)

For example, if G is a binary tree with 1024 leaves, then a shallow network as
in (5.7) with N neurons yields a degree of approximation O(N−1/(512)), while a
deep network as in (5.8) yields a degree of approximation O(N−1); a substantial
improvement.

The “derivative” D|·| is very unusual in that instead of being a local function, it
is supported on equators perpendicular to the point in question. This is illustrated
by Figure 2 from [12].

Figure 2. On the left, with x0 = (1, 1, 1)/
√

3, the graph of f(x) =
[(x · x0 − 0.1)+]8 + [(−x · x0 − 0.1)+]8. On the right, the graph of
Dφγ (f). Courtesy: D. Batenkov.

Omitting the requirement that the mapping f 7→ (a1, · · · , aN ,w1, · · · ,wN ) be
continuous, we have proved in [11] that the estimate in (5.7) can be improved to
O(N−(q+3)/(2q)). Of course, the bounds in (5.8) are also improved accordingly. For
example, if q = 1024, and DAG structure is a full binary tree, then the improvement
in the estimate for deep network is only (up to a logarithmic term) O(N−1.25), while
the same for a shallow network is O(N−0.5015). With the requirement about the
network being trained with samples of f (i.e., a continuous parameter selection),
the improvement is (up to a logarithmic term) O(N−1) for deep networks, over
O(N−0.002) for shallow networks. Since a converse theorem does not stipulate
continuous parameter selection, a converse theorem is not possible in this context.
However, we conjecture that a width theorem is true.

In contrast to the ReLU networks, if we consider the spherical convolution func-
tion

φ(x · y) =

∫
Sq
|x · u||u · y|dµ∗(u), (5.9)

then a complete theory emerges by combining the results in [10] with Theorem 4.1.
An interesting feature of this theory is that the complexity of the network is not
measured in terms of the number of neurons but the minimal separation among the
neurons. If C ⊂ Sq is a finite subset, we define the minimal separation η(C) and
mesh norm δ(C) of C by

η(C) = min
x,y∈C,x6=y

%q(x,y), δ(C) = max
x∈Sq

min
y∈C

%q(x,y), (5.10)

where %q is the geodesic distance on Sq. By replacing C by a suitable subset, we
may assume that

δ(C) ≤ 2η(C) ≤ 4δ(C). (5.11)
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For a finite subset C ⊂ Sq, the set N (q; C) comprises networks of the form x 7→∑
y∈C ayφ(x · y). We note that the number of neurons in a network in N (q; C) is

O(η(C)−q), but given N , it easy to construct C with N elements for which η(C)−q �
N .

Omitting many nuances and using a different notation, [10, Theorem 3.3] (applied
to the sphere) can be restated in the following form.

Theorem 5.2. Let 0 < γ < 3 and f ∈Wq;γ . For any set C satisfying (5.11), there
exists G ∈ N (q; C) such that

‖f −G‖Sq ≤ c6η(C)γ‖f‖Wq;γ
. (5.12)

Conversely, let Cm be a nested sequence of sets satisfying (5.11), and for each integer
m ≥ 1, η(Cm) ≥ 1/m. If f ∈ C(Sq) and dist(C(Sq); f,N (q; Cm)) = O(m−γ), then
f ∈Wq;γ .

Using Theorem 4.1, this theorem can be lifted as before to the following theorem
for deep networks.

Theorem 5.3. (a) For each v ∈ V , let Cv ⊂ Sq be finite subsets satisfying (5.11).
Let η = max η(Cv). Let 0 < γ < 3, and {fv} ∈ GWγ . In addition, we assume that

each fv satisfies (4.1) with ρd(v) induced by the geodesic metric on Sd(v). Then there
exists a G-function {Gv} such that each Gv ∈ N (d(v); Cv) and∑

v∈V
‖fv −Gv‖Sd(v) ≤ c7ηγ

∑
v∈V
‖fv‖d(v);γ . (5.13)

(b) Conversely, for each v ∈ V , let Cm,v be a nested sequence of finite subsets of

Sd(v) satisfying (5.11) and η(Cm,v) ≥ 1/m. If {fv} is a G-function such that each

fv ∈ C(Sd(v)) and there exists a sequence of G-functions {Gm,v} such that each
Gm,v ∈ N (d(v), Cm,v) and∑

v∈V
‖fv −Gm,v‖Sd(v) = O(m−γ),

then each fv ∈Wd(v);γ .

6. Related works. There is a deluge of papers on the expressive power of deep
networks and their superiority over shallow networks. We cite a few of these. The
papers [14, 18] measure the expressive power by the number of linear pieces into
which the network partitions the domain space. This measurement overlooks the
fact that the optimal number of pieces ought to depend upon the function being
approximated. It is shown in [19] that deep networks are better when the complexity
is measured in terms of the rank of certain tensors. It is not clear how this criterion
relates to the problem of function approximation. The papers [20, 5] establish the
existence of functions which cannot be approximated well by neural networks with a
given graph structure. This anticipates the compositionality of the networks being
represented by a DAG structure, but does not address the compositional nature of
the target function itself. The papers [17, 3, 4] show that specific functions such as
the characteristic functions of balls and radial functions cannot be approximated
well by shallow ReLU networks. In [9], it is shown that by using the function
t 7→ (t+)2 as the activation function, one can synthesize any spline or polynomial
exactly with a network with sufficient depth. In particular, one can synthesize
any given partition of the Euclidean space into linear regions arbitrarily closely.
In [6] estimates on the degree of uniform approximation are given in terms of the
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modulus of continuity, where the number of neurons in each layer is fixed at 2q+ 1,
but the number of layers is inversely proportional to the modulus of continuity
and fixed width. The paper [1] obtains bounds on the degree of approximation
of Lipschitz continuous functions by ReLU networks. The idea of transforming
the problem from the Euclidean space to that on the sphere is used in this paper
as well. This paper also considers approximation by spherical convolutions as in
(5.9). Our estimates are under different assumptions, and are better. Lower bounds
for universal approximation of Lipschitz functions by ReLU networks are given in
[21, 22], and for twice differentiable functions in [16]. In particular, [22] gives a
detailed analysis, showing the order of magnitude of the degree of approximation of
Lipschitz continuous functions cannot be better than N−2/q, where N is the number
of neurons. The bound (5.7) clearly achieves this as an upper bound, but with a
different class of functions. We conjecture that the class of functions introduced
in this paper is the best possible, in the sense that the estimate (5.7) cannot be
improved in terms of nonlinear widths. However, a converse theorem is probably
not true. Finally, we note that explicit expressions for the kernels φ defined in (5.9)
are easy to deduce from those given in [2] where the function t 7→ max(t, 0) is used
in place of | ◦ |.

7. Conclusions. We have demonstrated several concepts in this paper. First, we
have shown that deep networks have a better approximation power than shallow
networks because they are capable of reflecting any compositional structure in the
target function, while shallow networks cannot. Second, we have pointed out an
important tool in this theory called good propagation of errors which enables us to
lift theorems on approximation power of shallow networks to those of deep networks
if all the constituent functions are Lipschitz continuous. Third, we have argued that
in order to use this tool, there is no natural measure at each step with respect to
which the error can be measured in the L2-norm as customary in machine learning.
In particular, the usual bias-variance split does not work anymore, and a new par-
adigm is necessary. Fourth, we obtained converse theorems for approximation by
certain kernels obtained from the ReLU functions which enable us to verify from the
observed degree of approximation the prior smoothness condition which the target
function must satisfy.

We note that the question of whether or not a given target function is composi-
tional is meaningless; e.g.,

f(x) = (x+ 1) cosh

(
log

(
2 +
√

3− 2x− x2
x+ 1

))
≡ 2, x ∈ [0, 1].

However, the direct and converse theorems show that if we know in advance that
the target function is not as smooth as the degree of approximation by the networks
indicates, then the blessing of compositionality must be playing some role.
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