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Abstract:		
The ability to recognize the actions of others from visual input is essential to humans’ daily lives. 

The neural computations underlying action recognition, however, are still poorly understood. We 

use magnetoencephalography (MEG) decoding and a computational model to study action 

recognition from a novel dataset of well-controlled, naturalistic videos of five actions (run, walk, 

jump, eat, drink) performed by five actors at five viewpoints. We show for the first time that 

actor- and view-invariant representations for action arise in the human brain as early as 200 ms. 

We next extend a class of biologically inspired hierarchical computational models of object 

recognition to recognize actions from videos and explain the computations underlying our MEG 

findings. This model achieves 3D viewpoint-invariance by the same biologically inspired 

computational mechanism it uses to build invariance to position and scale. These results 

suggest that robustness to complex transformations, such as 3D viewpoint invariance, does not 

require special neural architectures, and further provide a mechanistic explanation of the 

computations driving invariant action recognition.		
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Significance Statement 

Humans	 quickly	 recognize	 other’s	 actions	 under	 many	 conditions,	 such	 as	 different	

viewpoints	and	actors.	We	investigate	how	the	the	recognition	of	actions	is	implemented	in	

the	 brain.	 We	 record	 subjects’	 brain	 activity,	 using	 magnetoencephalography,	 a	

neuroimaging	tool,	while	 they	watch	videos	of	people	performing	different	actions.	Using	

machine	learning	we	can	decode	what	action	the	participants	viewed	based	solely	on	200	

milliseconds	of	brain	activity.	This	decoding	 is	 robust	 to	 changes	 in	viewpoint	and	actor.	

We	used	our	findings	to	build	a	computational	action	recognition	model.	We	showed	that	

no	 special	 circuitry	 is	 required	 to	 process	 videos	 (versus	 images)	 or	 complex	

transformations	 like	 viewpoint	 (versus	 simple	 ones	 like	 translation),	 providing	 a	

computational	account	of	action	recognition	in	the	brain.	

 

Abstract 

The ability to recognize the actions of others from visual input is essential to humans’ daily lives. 

The neural computations underlying action recognition, however, are still poorly understood. We 

use magnetoencephalography (MEG) decoding and a computational model to study action 

recognition from a novel dataset of well-controlled, naturalistic videos of five actions (run, walk, 

jump, eat, drink) performed by five actors at five viewpoints. We show for the first time that 

actor- and view-invariant representations for action arise in the human brain as early as 200 ms. 

We next extend a class of biologically inspired hierarchical computational models of object 

recognition to recognize actions from videos and explain the computations underlying our MEG 

findings. This model achieves 3D viewpoint-invariance by the same biologically inspired 

computational mechanism it uses to build invariance to position and scale. These results 

suggest that robustness to complex transformations, such as 3D viewpoint invariance, does not 
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require special neural architectures, and further provide a mechanistic explanation of the 

computations driving invariant action recognition. 

Introduction 
As a social species, humans rely on the ability to recognize the actions of others in their 

everyday lives. We can quickly and effortlessly extract action information from rich dynamic 

stimuli, despite variation in the appearance of these actions due to transformations such as 

changes in size, viewpoint, actor gait and dynamics (e.g. is this person running or walking 

towards me, regardless of which direction they are coming from). This ability is paramount to 

humans’ social interactions and even survival. The computations driving this process, however, 

are poorly understood, as evidence by the fact that humans still drastically outperform state of 

the art computer vision algorithms on action recognition tasks (1, 2).  

 

Several studies have attempted to define actions and examine which regions in the brain are 

involved in processing actions and biological motion. In this work we use the taxonomy and 

definition for actions from (3). Actions are the middle ground between action primitives (e.g. 

raise the left foot and move it forward) and activities (e.g. playing basketball). Actions are thus 

possibly cyclical sequences of temporally isolated primitives. In humans and nonhuman 

primates, the extrastriate body area (EBA) has been implicated in recognizing human form and 

action (4–6), and the superior temporal sulcus (STS) has been implicated in recognizing 

biological motion and action (7–9). In humans, the posterior portion of the STS (pSTS) in 

particular has been found to be involved in recognizing biological motion (10–14). fMRI BOLD 

responses in this region are selective for particular types of biological motion data in a mirror-

symmetric (15) or viewpoint invariant (16) manner. It is behaviorally important to not only 

recognize actions, but also recognize the actors performing them; recent electrophysiology 

studies have shown that neurons in macaque STS encode both the identity of an actor invariant 

to the action they are performing as well as the action being performed invariant to the actor 

performing it (17). Beyond visual cortex, action representations have been found in human 

parietal and premotor cortex for performing and viewing certain actions, particularly hand 

grasping and goal-directed behavior (analogous to monkey “mirror neuron” system) (18). These 

representations also demonstrate some degree of view tolerance (19), however, recent work 

suggests that these regions do not code the same abstract concept of action that is found in 

occipitotemporal regions (20). 
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Despite progress mapping where in the brain actions are represented, only coarse information 

about the timing of the neural processes, and the underlying computations across the brain is 

available. Here we will, look at responses to natural movies, we will investigate the dynamics of 

neural processing to help elucidate the underlying neural computations, and finally, we will 

implement these insights into a biologically-inspired computational model that performs action 

recognition from naturalistic videos. Specifically, we use magnetoencephalography (MEG) 

decoding analysis and a computational model of the visual cortex, to understand when and how 

different computations are carried out to perform actor and view invariant action recognition in 

the visual system. 

 

We showed with MEG decoding that the brain computes a representation for actions very 

quickly (in under 200 ms after the video onset) and that this early representation is invariant to 

non-affine transformations (view and actor). We next used these insights to extend a 

computational and theoretical framework for invariant object recognition in still images to 

recognize actions from videos in a manner that is also invariant to actor and viewpoint on the 

same dataset. Finally we also show, using behavioral data, MEG, and the model, that both form 

and motion are crucial for action recognition and that different computational processes are 

recruited to make sense of form-depleted or motion-depleted stimuli. 

 

Results 

 

Novel invariant action recognition dataset 

To study the effect of changes in view and actor on action recognition, we filmed a dataset of 

five actors performing five different actions (drink, eat, jump, run and walk) on a treadmill from 

five different views (0, 45, 90, 135, and 180 degrees from the front of the actor/treadmill; the 

treadmill rather than the camera was rotated in place to acquire from different viewpoints) 

[Figure 1]. The dataset was filmed on a fixed, constant background. To avoid low-level 

object/action confounds (e.g. the action “drink” being classified as the only videos with water 

bottle in the scene) the actors held the same objects (an apple and a water bottle) in each 

video, regardless of the action they performed. This ensures that the main variations between 

videos are the action, actor, and view, and allows controlled testing of different hypotheses 

concerning when and how invariant recognition arises in the human visual system. Each action-

actor-view combination was filmed for at least 52-seconds. The videos were cut into two-second 

clips that each included at least one cycle of each action, and started at random points in the 
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cycle (for example, a jump may start mid air or on the ground). The dataset includes 26 two-

second clips for each actor, action, and view, for a total of 3250 video clips. This dataset allows 

testing of actor and view invariant action recognition, with few low-level confounds. A motion 

energy model (C1 layer of the model described below) cannot distinguish action invariant to 

view [Supplemental Figure 1]. 

 
Figure 1 

 

 
Figure 1: Novel action recognition dataset. The dataset consists of five actors, performing 

five actions (drink, eat, jump, run and walk), at a fixed position in the visual field (while on a 

treadmill) and on a fixed background across five different views (0, 45, 90, 135, and 180 

degrees). To avoid low-level confounds, the actors held the same objects in each hand (a water 

bottle and an apple), regardless of the action performed. 

 

Readout of actions from MEG data is early and invariant 
Eight subjects viewed two views (0 and 90 degrees) from the above dataset and were instructed 

to recognize which of the five actions was performed in each video clip while their neural activity 

was recorded in a MEG scanner. We use decoding analysis, which applies a linear machine 

learning classifier to discriminate stimuli based on the neural response they elicit, to analyze the 

MEG signals. By repeating the decoding procedure at each 10 ms time step, we can see when 
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different types of stimulus information are present in the brain. Action can be read out from the 

subjects’ MEG data as early as 200 ms after the video starts (after only about 6 frames of each 

two-second video) [Figure 2]. This is surprising, given that 200 ms was much less than a cycle 

of most actions, suggesting that the brain can compute a representation for these actions from 

different partial sequences of each. 

 

We can test if these MEG signals are invariant to view by training the classifier on data from 

subjects viewing actions performed at one view and testing the classifier on a second held out 

view. We decoded by training only on one view (0 degrees or 90 degrees), and testing on a 

second view (0 degrees or 90 degrees). There is no difference in the latency between the ‘within 

view’ case (train and test at 0, or train and test at 90) and the ‘across view’ case (train on 0 and 

test 90, or train on 90 and test on 0) [Figure 2], suggesting that the MEG signals can generalize 

across views within 200 ms. Actor-invariant signals can be similarly read out at 200ms 

[Supplemental Figure 2], and subjects’ eye movements cannot account for this decoding 

[Supplemental Figure 3]. These experiment show that the human visual system computes a 

representation for actions that we are able to read out from their MEG signals. This 

representation is computed very quickly (200ms) and is immediately invariant to changes in 

actor and 3D rotation. 
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Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Decoding action from MEG data. We can decode action by training and testing on 
the same view (‘within-view’ condition), or, to test viewpoint invariance, training on one view (0 
degrees or 90 degrees) and testing on second view (‘across view’ condition). Results are each 
from the average of eight different subjects. Error bars represent standard deviation. Horizontal 
line indicates chance decoding accuracy (see Supplementary Materials). Lines at the bottom of 
plot indicate significance with p<0.01 permutation test, with the thickness of the line indicating if 
the significance holds for 2-8 subjects. 
 
Recognizing actions with a biologically-inspired hierarchical model 

In order to provide a mechanistic explanation of how the brain quickly computes a 

representation for action that is invariant to viewpoint and actor we implemented a 

computational model that recognizes actions from videos. This model is a an extension of a 

class of computational models of visual cortex, convolutional neural networks, which have 

successfully explained object recognition from static images (21–23), to stimuli that extend in 

time. The model’s structure is hierarchical: the input video goes through a layer of computation 

and the output of this layer serves as input to the next layer, the sequence of layers is inspired 

by Hubel and Wiesel’s findings in primary visual cortex, and is constructed by alternating layers 
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of simple cells, which perform a template matching or convolution, and complex cells, which 

perform max pooling (24). The specific model that we present here consists of two simple-

complex layer pairs [Figure 3a]. Further, our model directly implements insights from the MEG 

timing data: it is completely feed-forward, to account for the fast MEG readout, and further it 

generalizes across 3-D viewpoint transformations at the same hierarchical layer and using the 

same computational mechanism it employs to generalize across changes in position and scale, 

to account for the fact that early MEG signals were invariant to 3-D viewpoint. 

  

Qualitatively, the model works by detecting the presence (or lack thereof) of a certain video 

segment (a template) in the input stimulus. The exact position in space and time of the detected 

template is discarded by the pooling mechanism and only the information about its presence is 

passed on to the next layer. Our model shares a basic architecture with deep convolutional 

neural networks. Notably, it is designed to closely mimic the biology of the visual system. It has 

few layers and hard coded S1 templates (moving Gabor-like stimuli, with both a spatial and 

temporal component, that model the receptive fields found in primate V1 and MT (25–27)). Our 

model offers an interpretable mechanism that explains the underlying computations [Figure 3a]. 

 

In order to produce a response that is invariant to rotation in depth, the model’s top complex cell 

units (C2) pool over all templates containing patches of videos of a single actor performing a 

specific action recorded at different viewpoints. This novel “pooling across channels” 

mechanism detects the presence of a certain template (e.g. the torso of someone running) 

regardless of its 3D pose. Many theories and experimental evidence have suggested how this 

wiring across views is learned in development (28–31). We compare this structured model to an 

unstructured control model, which contains the same templates, but where action is not taken 

into account in the pooling scheme and instead each C2 cell pools over a random, unstructured 

set of S2 cell templates [Figure 3b].  

 

We test the performance of our model by training and testing a machine learning classifier to 

recognize actions based on the model output. We show that the simple pooling mechanism just 

described is sufficient to account for viewpoint invariance. Both the model with structured 

connectivity pattern and the model with a unstructured connectivity can recognize action when 

training and testing of the machine learning classifier happens within one viewpoint (82+/-7% 

and 79+/-5% accuracy +/- standard deviation, respectively). However, the model with structured 

pooling provides significantly better accuracy on the view-invariant action recognition task (49 
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+/-5% vs. 36+/-5% accuracy) [Figure 4] when the machine learning classifier is trained on 

videos at one of two viewpoints, 0 or 90 degrees and tested at the opposite one. In addition, the 

classifier is always tested on model responses to videos from a held-out actor, so, like the MEG 

data, the model can also recognize actions invariant to actor.  
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Figure 3 

a) 
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b) 

 

 
Figure 3: Biologically inspired computational model for action recognition. (a) An input 
video is convolved with moving Gabor like templates at the S1 layer. At the C1 layer, a local 
max pooling is applied across position and time. At the S2 layer, previous layer’s outputs are 
convolved with templates sampled from a sample set of videos disjoint from the test set. Videos 
in the sample set go through the S1 and C1 layers before being used for sampling. At the final 
layer a global max across positions and views is computed. 
(b) Invariance is obtained by enforcing structure in the wiring between simple and complex cells 
at the S2-C2 pooling stage. C2 units pool over all S2 units whose templates come from videos 
containing a particular actor performing a particular action across different views. We compare 
this experimental model [top] to an unstructured control model [bottom], which contains the 
same S2 templates, but where each C2 cell pools over a random, unstructured set of S2 cell 
templates. 
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Figure 4 
 

Figure 4: Model view invariant action recognition. The model can recognize action when 
trained and tested on the same view (‘within-view’ condition), or trained on one view (0 degrees 
or 90 degrees) and tested on second view (‘across view’ condition). The Experimental model 
employs structured pooling as described in Figure 3b, top, and the Control model employs 
random C2 pooling as described in Figure 3b, bottom. Error bars indicated standard deviation 
across model runs [see supplementary information]. Horizontal line indicates chance 
performance (20%). Asterisk indicates a statistically significant difference with p<0.01. 
 
 
The roles of form and motion in invariant action recognition 

To test the effect of form and motion on action recognition, we used two limited stimulus sets. 

The first ‘Form’ stimulus set consisted of one static frame from each video (no motion 

information). The second ‘Motion’ stimulus set, consisted of point light figures that are 

comprised of dots on each actor’s head, arm joints, torso, and leg joints and move with the 

actor’s joints (limited form information) (32).  
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Eight different subjects viewed each of the form and motion datasets in the MEG. We could 

decode action within view in both datasets. Decoding performance across view, however, was 

significantly lower than the case of full movies [Figure 6a-b]. In addition, subjects’ behavioral 

performance dropped from 92 +/-4% correct with full movies to 76 +/-11% correct on the ‘Form’ 

dataset and 78 +/-18% on the ‘Motion’ dataset, suggesting that the lack of motion information 

hinders recognition and this recognition deficit is reflected particularly in the MEG results.  

 

We examined the effects of form and motion with our model by testing both stimulus sets on a 

model with templates sampled from full videos. While it is still possible to classify correctly which 

action was performed, performance was significantly lower than in the case where full videos 

were used. The experimental model (with S2 to C2 pooling over templates that are rotated in 

depth) outperforms the control model (where the wiring is randomized in classifying actions from 

static frames) [Figure 6c]. Both the experimental model with a structured pooling pattern and the 

control model are completely unable to generalize across viewpoint on form-depleted stimuli. 

Both models, however, are able to generalize across actors if trained and tested on the same 

view [Figure 6d]. The MEG and model results suggest that form and motion are both critical in 

recognizing actions, particularly in a view invariant manner. 
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Figure 5 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
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c) 

 
 
d) 



	
	
	

15	
	

Figure 5: The effects of form and motion on invariant action recognition (a) Action can 

also be decoded invariantly to view from static images. (b) Action can be decoded from 

biological motion only (point light walker stimuli). Results are each from the average of eight 

different subjects. Error bars represent standard deviation.  Horizontal line indicates chance 

decoding (20%). Lines at bottom of plot indicate significance with p<0.01 permutation test, with 

the thickness of the line indicating if the significance holds for 2-8 subjects. (c) The model can 

recognize action from static frames, but the performance is much lower than with full videos. 

The model with structured connectivity employs the pooling pattern across views shown in 

[Figure 3b, top], and the model unstructured connectivity employs random C2 pooling as 

described in [Figure 3b, bottom]. Error bars indicated standard deviation across model runs [see 

supplementary information]. Horizontal line indicates chance performance (20%). Asterisk 

indicates a statistically significant difference with p<0.01. (d) The model can recognize actions 

from form-depleted stimuli. The classification accuracy is significantly lower than what can be 

obtained with full videos. The model is unable to generalize across views with motion 

information. 
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Discussion 

We analyzed the dynamics of invariant action recognition in the human brain to find that action 

recognition occurs as early as 200 ms after a video begins. This early neural representation is 

invariant to changes in actor and 3-D viewpoint. These timing results provide compelling 

evidence that the bulk of these computations are performed in feedforward manner, and 

interestingly that invariant representations for action are computed at same time as non-

invariant representations. This seems to be in contrast to object recognition where invariance 

increases at subsequent layers in the ventral stream (33–35) causing a delay in decoding 

accuracy (36).  

 

Action recognition occurs on a similarly fast time scale to, but slightly later than, the previously 

documented timing of object recognition in the human brain (60 ms for non-invariant object 

recognition and 100-150 ms for size and position object recognition) (36–40). The slightly later 

timing of action recognition relative to object recognition and the fact that invariant and non-

invariant action representations have the same latency suggest higher level visual features 

(requiring the integration of both form and motion cues) are recruited for even basic action 

recognition, in contrast to simple object recognition (which is based on low-level features like 

lines and edges). This is consistent with our finding that early action representations (unlike 

previously reported early object signals (36)) are already invariant, as well as previous MEG 

decoding object recognition results showing that more abstract categorizations take more time 

(38, 39). 

 

We used these neural insights to develop a feedforward cortical model that recognizes action 

invariant to actor and view (non-affine transformations). Inspired by the MEG timing data, the 

computations underlying the model’s invariance to complex transformations are performed in 

the same model layer and using the same pooling mechanism as size and position (affine 

transformations). Our modeling results offer a computational explanation of the underlying 

neural mechanisms that lead to the fast and invariant action representations in visual cortex. In 

particular, our model showed that a simple-complex cell architecture (41), is sufficient to explain 

fast invariant action recognition across video stimuli with complex transformations, suggesting 

that no special neural circuitry is required to deal with non-affine transformations. The model 

architecture is inspired by prior work in modeling the recognition of biological motion (42) and 

unlike previous extensions of object recognition systems to actions in videos (43) is able to 

generalize across 3D rotation and actors in realistic, complex videos. The mechanism employed 
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to achieve invariance to non-affine transformations by pooling over them has been proposed for 

face 3D rotation in artificial stimuli (44), the work presented here extends that framework for the 

first time to natural stimuli that extend in both space and time. 

 

The highest performing computer vision systems on action recognition tasks are deep 

convolutional neural networks, which have a similar architecture to our model, but more layers 

and free parameters that are tuned for performance on a given classification task using 

backpropagation (1). Our model is designed to have biologically faithful parameters and mimic 

human visual development and prioritizes interpretability of its underlying computational 

mechanisms. This modeling effort is primarily concerned with understanding and modeling how 

the brain accomplishes action recognition, rather than creating an artificial system that 

maximizes performance through a non-biological method.  

 

We found that biological motion and form are each enough alone to recognize actions, however 

decoding and model performance for the viewpoint invariant task drops to almost chance when 

either form or motion information is removed. This is also reflected in a slight drop in behavioral 

performance. While form- or motion-depleted data sets afford more experiment control and have 

been the focus on much prior study, it is worth considering if they are the best way to 

understand the neural mechanisms underlying action recognition. Humans can indeed 

recognize action from diminished stimuli, but here we show it elicits different neural response 

than full video stimuli, particularly in the case of viewpoint invariant recognition. Moving toward 

more naturalistic stimuli, possibly in conjunction with controlled experiments with form or motion-

only data, is important to understand the full range of neural responses that support human 

action recognition. 

 

Conclusions 

This work shows that neural representations for actor and view invariant action recognition are 

computed remarkably quickly, within 200ms. These timing insights were directly used to 

influence the structure of a computational model, namely its feedforward architecture and 

pooling across viewpoint in same layer as affine transformations, to perform view invariant 

action recognition. This model provides a computational explanation of our MEG timing results, 

as well as an interpretable alternative to deep convolutional neural networks. Close interchange 

between artificial intelligence and neuroscience efforts will help move towards a deeper 
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understanding of realistic perception of humans’ actions and advance the design artificial 

systems that understand our actions and intentions. 
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Online Methods 

 

Action recognition dataset 

We filmed a dataset of five actors performing five actions (run, walk, jump, eat and drink) from 

five views (0, 45, 90, 135, and 180 degrees from the front) on a treadmill in front of a fixed 

background. By using a treadmill we avoided having actors move in and out of frame during the 

video. To avoid low-level object confounds, the actors held a water bottle and an apple in each 

hand, regardless of the action they performed. Each action was filmed for 52 seconds, and then 

cut into 26 two-second clips at 30 fps. 

 

For single frame dataset, single frames that were as unambiguous as possible for action identity 

were hand selected (special attention was paid to actions eat and drink and occluded views). 

For the motion point light dataset, the videos were put on Amazon Mechanical Turk and workers 

were asked to label 15 points in every single frame: center of head, shoulders, elbows, hands, 

torso, hips, knees, and ankles. The spatial median of three independent labeling of each frame 

was used to increase the signal to noise ratio. The time series for each of the 15 points was 

independently low-passed to reduce the high frequency artifacts introduced by the single-frame 

labeling we used 

 

 

MEG experimental procedure 
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Twenty subjects age 18 or older with normal or corrected to normal vision took part in the 

experiment. The MIT Committee on the Use of Humans as Experimental Subjects approved the 

experimental protocol. Subjects provided informed written consent before the experiment. One 

subject (S5) was an author, and all others were unfamiliar with the experiment and its aims. 

 

In the first experiment, eight subjects were shown 50 two-second video clips (one for each of 

five actors, actions, and two views, 0 and 90 degrees), each presented 20 times. In the second 

experiment, eight subjects were shown 50 static images, which were single frames from the 

videos in Experiment 2, for 2 seconds presented 20 times each. In the third experiment, eight 

subjects were shown 10 two-second video clips, which consisted of point-light walkers traced 

along one actor’s videos in experiment two, presented 100 times each. 

 

In each experiment, subjects performed an action recognition task, where they were asked after 

a random subset of videos or images (twice for each of the fifty videos or images in each 

experiment) what action was portrayed in the previous image or video. The purpose of this 

behavioral task was to ensure subjects were attentive and assess behavioral performance on 

the various datasets. The button order for each action was randomized each trial to avoid 

systematic motor confounds in the decoding. 

 

The videos were presented using Psychtoolbox  to ensure accurate timing of stimulus onset. 

Each video had a duration of 2s and had a 2s ISI. The videos were shown in grayscale at 3 x 

5.4 degrees of visual angle on a projector with a 48 cm × 36 cm display, 140 cm away from the 

subject. 

 

MEG data acquisition and preprocessing 

The MEG data was collected using an Elekta Neuromag Triux scanner with 102 magnetometers 

at 204 planar gradiometers. The MEG data were sampled at 1,000 Hz. The signals were pre-

processed using and preprocessed using Brainstorm software(45). First the signals were filtered 

using temporal Signal Space Separation (tSSS) with Elekta Neuromag software. Next, Signal 

Space Projection (SSP) (46) was applied for movement and sensor contamination, and the 

signals were band-pass filtered from 0.1–100 Hz to remove external and irrelevant biological 

noise (47, 48). Finally the MEG data was divided into epochs from -500–3500 ms, relative to 

video onset. SSP, bandpass filtering and epoching were applied using Brainstorm software. 
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Eyetracking 

To verify that the subjects’ eye movement could not account for the action discrimination, eye 

tracking was performed during MEG recordings while five subjects viewed the entire 125 image 

dataset Supplemental Experiment 1 (subjects S1-S5 viewing five actors performing five actions 

at five views) with the Eyelink 1000 eye tracker from SR Research. A nine-point calibration was 

used at the beginning of each experiment. We then performed decoding using the position data 

for the left and right eye, and found that decoding performance was not significantly above 

chance for more than two consecutive 5ms time bins, much below the significance threshold 

outlined for decoding (Supplemental Figure 3). 

 

MEG decoding analysis methods 

MEG decoding analyses were performed with the Neural Decoding Toolbox (49), a Matlab 

package implementing neural population decoding methods. In this decoding procedure, a 

pattern classifier was trained to associate the patterns of MEG data with the identity of the 

action (or actor) in the presented image or video. The stimulus information in the MEG signal 

was evaluated by testing the accuracy of the classifier on a separate set of test data.  

 

The time series data of the magnetic field measure in each sensor (for both magnetometers and 

gradiometers) were used as classifier features. We averaged the data in each sensor into 100 

ms overlapping bins with a 10 ms step size. Decoding analysis was performed using cross 

validation, where the classifier was trained on a randomly selected subset of 80% of data for 

each stimulus and tested on the held out 20%, to assess the classifier’s decoding accuracy. 

 

To improve signal to noise, we averaged the different trials for each stimulus in a given cross 

validation split. We next Z-score normalized that data and performed sensor selection using the 

training data. We performed sensor selection by applying an ANOVA to each sensor separately 

using data from the training set only, to choose sensors selective for stimulus identity with 

p<0.05 significance based on F-test. Decoding analyses were performed using a maximum 

correlation coefficient classifier, which computes the correlation between each test vector and a 

mean training vector that is created from taking the mean of the training data from a given class. 

Each test point is assigned the label of the class of the training data with which it is maximally 

correlated.  
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We repeated the above decoding procedure over 50 cross validation splits, at each time bin to 

assess the decoding accuracy versus time. Decoding accuracy is reported as the average 

percent correct of the test set data across all cross validation splits.  

 

We assessed decoding significance using a permutation test. To perform this test, we 

generated a null distribution by the performing the above decoding procedure for 100 time bins 

using data with randomly shuffled labels. Specifically, the five action labels within each 

viewpoint were shuffled, and thus exchangeable under the null hypothesis, and the shuffling 

was performed once and fixed for all cross-validation runs at each time bin. We recorded the 

peak decoding accuracy for each time bin, and used the null distribution of peak accuracies to 

select a threshold where decoding results performing above all points in the null distribution for 

the corresponding time point were deemed significant with P < 0.01 (1/100). The first time 

decoding reached significantly above chance (“significant time”) was defined as the point when 

accuracy was significant for five consecutive time bins. This significance criterion was selected 

such that no spurious correlations in the baseline period were deemed significant. We 

compared the onset latencies of the within and across view time courses for decoding actions 

from full videos by examining the single subject onset latency difference (within-view minus 

across-view latency) and modeling subject as a fixed effect.  

 

See Isik et al. 2014 for more decoding methods details (36). 

 

Model 

The model was written using the CNS: Cortical Network Simulator (23) and is composed of 4 

layers. The input video is scaled down, preserving the aspect ratio, with the largest spatial 

dimension being 128px. A total of three scaled replicas of each video are run through the model 

in parallel; the scaling is by a factor of 1/2. The first layer is composed of a grid of simple cells 

placed 1px apart (no sub-sampling), the templates for these units are Gabor receptive fields that 

move in space while they change phase (as described in previous studies on the receptive 

fields of V1 and MT cells (25, 27)). Cells have spatially square receptive field of size 7, 9 and 

11px, extend for 3, 4 and 5 frames and compute the dot product between the input and their 

template. The Gabor filters in each receptive field move exclusively in the direction orthogonal to 

the spatial modulation at 3 speeds, linearly distributed between 4/3 and 4 pixels per frame. The 

second layer (C1) is a grid of complex cells that compute the maximum of their afferent simple 

cells. Cells are placed 2 units apart in both spatial dimensions (spatial subsampling by a factor 
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of 2) and every unit in the time dimension (no time subsampling). Complex cells at the C1 level 

have spatial receptive fields of 4 simple cells and span 2 scales with one scale overlap, bringing 

the number of scaled replicas in the model from 3 to 2. The third layer (S2) is composed of a 

grid of simple cells that compute the dot product between their input and a stored template. The 

templates at this level are sampled randomly from a sample dataset that has no overlap with the 

test set; we sample 512 different templates, uniformly distributed across classes and across 

videos within each class. The cells span 9, 17 and 25 units in space and 3, 7 and 11 units in 

time. The fourth layer, C2, is composed of complex units that compute the maximum of their 

inputs; C2 cells pool across all positions and scales. The wiring between simple and complex 

cells at the C2 layer is described by a matrix with each column corresponding to a complex cell; 

each column is then a list of indices for the simple cells that the complex cells pools over. in the 

structured models each column indexes cells with templates samples from videos featuring a 

single actor performing a single action. In control models, the rows of this matrix are scrambled 

and therefore the columns (i.e. indices of simple cells pooled together by a single complex cell) 

have no semantic common thread. S2 template sizes are always pooled independently from 

one another. The output of the C2 layers is concatenated over time and cells and serves as 

input to a supervised machine learning classifier. 

 

Video pre-processing and classification 

We used non-causal temporal median filtering background subtraction for all videos (50). All 

classification experiments for the model were carried out using the Gaussian Kernel 

Regularized Least Squares classification pipeline available in the GURLS package (51). Both 

the kernel bandwidth and the regularization parameter were chosen using leave-one-out cross 

validation. 

 

Model experiments 

 

Model experiments are divided in three steps: sampling templates from a sample set in order to 

populate the model’s S2 units, computing the model’s response to a set of training and test 

videos and lastly training and testing a classifier on these responses to report its accuracy. For 

each of the experiments reported the computer vision model was an instance of the general 

architecture outlined above and the sample, training and test set were a subset of the dataset 

described in the main text. A few details were modified for each task in the S2 and C2 layers to 

make sure the model tested the hypothesis we set forward in that particular experiment and to 
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avoid having S2 templates sampled from the test set. For the same reasons, we used different 

set of videos for each experiment. Here we describe these slight modifications.  

 

For the action recognition task [Figure 4], templates were sampled from a sample set containing 

videos of four out of the five actors performing all five actions and at all five views. In the 

experimental model, all S2 cells of the same size, with templates sampled from videos of the 

same actor-action pair (regardless of viewpoint) were wired to the same C2 cell yielding a C2 

layer composed of 60 complex cells. In the control model we scrambled the association 

between templates and videos of origin (after sampling). The training set for this experiment 

was composed of 600 videos of four of the five actors performing all five actions at either the 

frontal or side viewpoints. The test set was composed of 150 videos of the fifth actor performing 

all five actions at either the frontal or side viewpoint. We only used either one of the viewpoints 

to train or test so as to verify the ability of the model to recognize actions within the same view 

and to generalize across views. This sample/train/test split was repeated five times, using each 

actor for testing once and re-sampling the S2 templates each time.  

 

For the actor recognition experiment [Figure 5b], templates were sampled from a sample set 

containing videos of three of the five actors performing all five actions at all five views. In the 

experimental model, all S2 cells of the same size, with templates from the videos of the same 

actor-viewpoint pair (regardless of action), were wired to the same C2 cell yielding a C2 layer 

composed of 45 complex cells. The training set for this experiment was composed of 600 videos 

of the two held out actors performing four of the five actions at all viewpoints. The test set was 

composed of 150 videos of the two left out actors performing the fifth action at all five 

viewpoints. The experiment was repeated five times changing the two actors that were left out 

for identification and the action used for testing, the S2 templates were re-sampled each time.  

 

The form only classification experiment [Figure 6c] was conducted using the method described 

above for the action recognition experiment with the only difference that the test set was 

composed of videos that only featured one frame repeated for the entire duration of the clip. The 

motion only classification experiment was also conducted using the method described above for 

the action recognition experiment with the only differences being that only 100 form depleted 

videos of the held out actor were used for testing and that only 40 from depleted videos were 

used for training. Furthermore the experiment was not repeated using different actors for the 

test phase due to the prohibitive cost of acquiring human annotation for joint location in each 
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frame (see Dataset methods above), however the experiment was repeated using three distinct 

instances of our model for each of which the S2 templates were independently sampled. 
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Supplemental figures 
 
Supplemental Figure 1 

 
Supplemental Figure 1: C1 performance on dataset. The output of the C1 layer of the model 
(analogous to V1-like model) cannot classify action invariant to viewpoint (‘Across’ condition). 
Error bars indicated standard deviation across model runs. Horizontal line indicates chance 
performance (20%). 
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Supplemental Figure 2 - MEG decoding from all five views and five actors in dataset. (a) 
Action can be decoded from subject’s MEG data as early as 200 ms after stimulus onset (time 
0). (b) Action can be decoded invariant to actor (train classifier on four actors, test on fifth held-
out actor), or view (train classifier on four views, test on fifth held-out view). Results are each 
from the average of five different subjects. Error bars represent standard deviation.  Horizontal 
line indicates chance decoding (20%). Lines at bottom of plot indicate significance with p<0.01 
permutation test, and thickness of the line indicates if the significance held for 3, 4, or all 5 
subjects. 
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Supplemental Figure 3 
 
 
 
 
 

Supplemental Figure 3: Decoding with eye tracking movement. We train a classifier on the 
output of eyetracking data for five subjects as they view five actors perform five actions from five 
views. Results are from the average of five subjects. Error bars represent standard deviation.  
Horizontal line indicates chance decoding (20%). Lines at bottom of plot indicate significance 
with p<0.01 permutation test. We cannot decoding significantly above chance for five or more 
consecutive 5ms time bins in any subject, suggesting that the subjects eye movements cannot 
account for the above decoding performance. 
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