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Abstract

Joint visual attention is characterized by two or more in-
dividuals looking at a common target at the same time.
The ability to identify joint attention in scenes, the peo-
ple involved, and their common target, is fundamen-
tal to the understanding of social interactions, includ-
ing others’ intentions and goals. In this work we deal
with the extraction of joint attention events, and the use
of such events for image descriptions. The work makes
two novel contributions. First, our extraction algorithm
is the first which identifies joint visual attention in single
static images. It computes 3-D gaze direction, identifies
the gaze-target by combining gaze-direction with a 3-D
depth map computed for the image, and identifies the
common gaze target. Second, we use a human study to
demonstrate the sensitivity of humans to joint attention,
suggesting that the detection of such a configuration in
an image can be useful for understanding the image, in-
cluding the goals of the agents and their joint activity,
and therefore can contribute to image captioning and re-
lated tasks.
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Introduction
Humans, among other social species, develop remark-
able capabilities for understanding social interactions
in their surroundings, including others’ intentions and
goals (Falck-Ytter, Gredebäck, & von Hofsten, 2006). In
many social interactions, two or more people are en-
gaged in joint visual attention, looking at a common
target at the same time. Discovering joint attention in
scenes, the people involved, and their joint target, is
therefore a fundamental ability to the understanding
of social interactions (Moore, Angelopoulos, & Bennett,
1997).

In this work, we first present a human survey, which
demonstrates humans’ sensitivity to the occurrence of
joint attention in images, by comparing the ranking of
image captions centred on joint-attention events, with
alternative captions generated by current captioning
schemes. In particular, we demonstrate the use of a
joint attention event, including the participating agents
and their common target, as a semantic descriptor of
the image, which is shown to be more meaningful for

Figure 1: Discovering joint visual attention. Our approach
is compositional in the sense that different components of the
process, including (A) face detection and 3-D gaze estimation,
(B) depth estimation, and (C) image segmentation, are trained
separately and then combined to perform the full task of de-
tecting a common gaze target (D).

observers, compared with alternative automatic image
captions.

Next, we study computationally the automatic dis-
covery of joint visual attention in images, namely, iden-
tifying the participating agents as well as the target of
joint attention. We show that deep neural networks fail
to discover joint attention directly from the input im-
ages and discuss possible causes for this failure. As
an alternative, we suggest a compositional approach in
the sense that different components of the process are
trained separately, and then combined to perform the
full task (Fig.1). In our approach, we first detect peo-
ple’s faces and estimate their direction of gaze. Sim-
ple 2-D projection of the direction of gaze on the image
plane is insufficient to identify gaze targets, since dif-
ferent objects at varying depths may lie along the 2-D
line of sight, when projected onto the image plane. We
therefore, use a 3-D gaze estimation model and com-
bine the 3-D gaze direction with scene depth estimation,
to identify object candidates for gaze-targets, judged
by their location and depth relative to the 3-D direc-
tion of gaze. Finally, joint attention is discovered when
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two or more detected faces have a common gaze target.
The method allows us to provide a full interpretation of
the joint attention configuration, namely, identify all the
participating agents as well as the target of joint atten-
tion.

The remaining of this paper is organized as follows.
Following a brief description of related work, we de-
scribe the human survey illustrating the sensitivity of
human observers to joint attention events. We then
describe our study on computational schemes for the
discovery and interpretation of joint attention events
in images, including models and experimental evalu-
ation. Finally, we summarize and discuss our conclu-
sions from this study.

Previous work
In the past decade, computational models of joint vi-
sual attention were introduced for a wide range of ap-
plications, from the facilitation of human-robot interac-
tions (Yucel et al., 2013), through the detection of social
interactions in videos (Fathi, Hodgins, & Rehg, 2012),
to the discovery of joint attention signatures in child-
caregiver interactions (Pusiol, Soriano, Fei-Fei, & Frank,
2014). Most of the models require the use of the scene’s
temporal dynamics, to infer gaze behavior and discover
targets of attention (Kera, 2016; Park & Shi, 2015; Pusiol
et al., 2014). For example, Fathi et al. (2012) use videos
of social interactions taken from a head-mount camera.
The 3-D time-varying location of the faces around the
camera wearer provides evidence for the type of social
interaction in the scene, as in the case where a group
of individuals look at a common location. The study
by Yucel et al. (2013) presents an image-based method
for establishing joint attention between an experimenter
and a robot using a video camera. A 3-D head model
is used to estimate the head pose, which is then used
to correct for gaze direction and object depth along the
head pose direction. The estimate is further refined by
a saliency-based selection to find attended objects in the
video sequence. To the best of our knowledge, our work
is the first to address the problem of joint attention in
static 2-D images, where the temporal dynamics and 3-
D information of the scene are not provided.

Human sensitivity to joint attention
To demonstrate the role of joint attention events in hu-
mans’ description of images, we conducted a human
survey using the Amazon Mechanical Turk platform.
The survey presented natural images, each with multi-
ple captions, and asked subjects to select their preferred
caption for each image.

Joint visual attention dataset
For the purpose of the survey and for the evaluation of
compuational models as discussed in the next sections,

Figure 2: Joint attention dataset. The dataset consists of
100 positive examples, where people look at a common tar-
get (row A), and 100 negative examples, where people attend
to different targets (row B).

we created a set of 200 images, extracted from the Gaze-
Follow dataset (Recasens, Khosla, Vondrick, & Torralba,
2015). The set includes 98 positive examples of scenes,
in which people look at a common target (Fig.2A), and
102 negative examples, in which people attend to dif-
ferent targets (Fig.2B).

Human study
A subset of 60 randomly selected images were used
to conduct our human survey. 53 images were posi-
tive examples of people engaged in joint visual atten-
tion. The additional 7 images were negative examples,
where there was no common target, and used as a con-
trol. For each image we generated brief image captions
describing the scene. One caption was an automatic
’free-style’ caption generated directly from the image
using a current image captioning deep neural network
model (Karpathy & Fei-Fei, 2014). A second caption
used joint attention, to generate a semantic descriptor
of the image. This caption followed the simple tem-
plate X people are looking at Y, where X and Y were sub-
stituted by the number of people engaged in joint at-
tention and the name of their common gaze target, re-
spectively. We used our suggested scheme, which has
the capability to provide a full interpretation of a joint
attention event, including the participating agents and
the common gaze target as described below, to generate
automatically the above template-based captions. Ob-
ject names were manually provided to detected targets
for use in the generated captions.

Images and captions were then presented to human
subjects using the Amazon Mechanical Turk platform
(25 subjects per image, 1500 total). The instructions
were: ”Below are several images of various scenes. For
each image, use the radio buttons to mark your preference



Figure 3: Use of joint attention in image captioning. Subjects were asked to select the best matching captions for scenes. Most
subjects (87%) preferred a template caption based on detected joint attention for scenes showing people having a common gaze
target (A), while the alternatives (free-style or ’none’) were preferred for scenes with people having different gaze targets (B).

from the list of proposed captions, that best describes the im-
age. If neither captions describe the image, select ’None’.”
The list of proposed captions consisted of three alter-
natives at randomized order: our template-based cap-
tion, the automatic ’free-style’ caption, or ’none’. The
results show that 87% of the subjects preferred the
template-based captions of our scheme, over the au-
tomatic caption of the direct scheme, for the joint at-
tention scenes (11% of the subjects selected ’none’ for
these scenes). In contrast, only 17% of the subjects pre-
ferred the template-based alternative for the control im-
ages, which did not present joint attention scenes (62%
of the subjects selected ’none’ for these scenes). Figure 3
presents some examples of the tested images along with
their preferred captions.

The results do not imply that the simplified joint-
attention template is by itself an adequate caption for
such images, however the strong preference over cur-
rent free-style captioning (or the ’none’ option) is strik-
ing. It suggests that joint attention events are highly
meaningful for humans. To extract the information
used in the joint-attention captions above, the joint at-
tention model should provide a full interpretation of a
joint attention event, including the participating agents
and the common gaze target. The next sections describe
a computational model with these capabilities.

Discovery of joint attention in images
Direct schemes
Deep convolutional neural networks provide a conve-
nient framework, which is capable of learning pow-
erful representations directly from the input data, for
many visual tasks, including image classification and
segmentation. For the purpose of discovering joint at-
tention in images, we considered two alternative tasks.
One was a simple binary classification, which aims to
classify whether or not images include joint attention
events. The second, more complex task, was to seg-

ment only common gaze target objects and not other
objects. We used two netwokrs for the tasks: the VGG-
16 network (Simonyan & Zisserman, 2015) was adapted
for the image classification task and the FCN network
(Long, Shelhamer, & Darrell, 2015) for the image seg-
mentation task, using the common practice in trans-
fer learning (Goodfellow, Bengio, Courville, & Bengio,
2016). Both networks accept a single RGB image at their
input. As will be shown in the evaluation section, the
direct schemes fail to provide the essential interpreta-
tion of joint attention, in particular the detection of the
common gaze target.

Compositional approach

An alternative to the direct schemes described above
is a compositiona approach in the sense that different
components of the process are trained separately, and
then combined to perform the full task. In that sense,
our method first detects gaze targets of people in an im-
age (similar to (Yucel et al., 2013)), and then determines
if multiple people share a common gaze target, i.e. are
engaged in joint attention. Gaze targets are detected as
image segments intersecting the estimated gaze direc-
tion vector at the correct depth.

Gaze estimation A key capability in our approach
is the estimation of gaze directions of human agents
showing in an input image. We define the direction
of gaze as a 3-D vector anchored at the center loca-
tion between the eyes and extending to a point in space
being looked at. Several studies addressed the prob-
lem of detecting the direction of gaze in natural and
unconstrained scenes, in which observed humans can
look freely at targets in different directions. In a study
by Recasens et al. (2015), a deep neural network was
trained on a large dataset to infer gaze target locations
in natural images directly from the input image, pro-
vided the face locations in the image. 2-D gaze direc-
tions are computed as the 2-D vectors connecting faces



with their corresponding gaze targets. The reported
performance of 24◦ mean angular error of predicted
gaze and a mean distance of 20% of the image width
from the correct targets, is insufficient for the discovery
of common gaze targets in joint attention events. In ad-
dition, 2-D gaze direction is insufficient to discriminate
between the gaze target and other objects at different
depths that may lie in the line of sight, when projected
onto the image plane. Other studies such as (Odobez
& Mora, 2013; Zhang, Sugano, Fritz, & Bulling, 2015,
2017) estimate 3-D gaze direction from face and eyes im-
ages. These studies report high performance on several
benchmark datasets. However, they all employ a nor-
malization process, in which the eyes are re-rendered to
obtain eye images as if the head was directly oriented
at the camera. This normalization procedure sets limita-
tions on the range of supported head poses, where large
yaw and pitch angles may introduce significant distor-
tions in the rectified eyes’ images. In addition, the im-
ages in the related benchmark datasets do not include
the gaze targets, which are needed to evaluate target
detection from the estimated 3-D gaze directions.

In this study we use a 3-D gaze estimation model
and a training dataset provided by (Harari, Gao, Kan-
wisher, Tenenbaum, & Ullman, 2016). Breifly, the
model, inspired by the human gaze perception mech-
anisms (Otsuka, Mareschal, Calder, & Clifford, 2014;
Calder et al., 2007; Langton, Watt, & Bruce, 2000), is de-
signed as a two-stage process, estimating the 3-D head
orientation first, and the 3-D gaze direction offset from
the head orientation in the second stage. In the model,
image representations of the face and eyes are stored
together with 3-D head orientation and 3-D gaze direc-
tion, and used later for gaze estimation using a nearest
neighbours approach, which provides an efficient and
convenient framework to condition the eyes’ appear-
ance of the second processing stage on the estimated
head orientation from the first processing stage. In this
manner, the head orientation is estimated by search-
ing for nearest neighbours from the entire training set,
while the gaze direction offset is estimated by searching
for nearest neighbours only from a subset of the training
set with similar head orientations. It should be noted
that in contrast with other models, this model is applied
to the original face and eyes, without any image trans-
formations that may distort their appearance.

Images of social interactions, and in particular of peo-
ple engaged in joint attention, typically include the par-
ticipants’ upper or full body and face, as well as target
objects being looked at. Such scenes in natural settings
pose two major challenges for the estimation of gaze di-
rection from the input images. First, faces, and in par-
ticular the eyes, often occupy a relatively small part of
the image, and therefore appear at a limited resolution.
Second, images of realistic scenes are characterized by

high variability in viewing angles and scene layouts, in-
cluding various face poses and target locations. Harari
et al. (2016) provide a training dataset which copes with
such challenges in the input, by showing people sitting
behind a table and looking freely and naturally at dif-
ferent target objects on and above the table at a wide
range of head orientations and gaze directions.

Common-gaze target detection The detection of a
common gaze target follows the detection of individual
gaze-targets. Given an input image, faces and their cor-
responding eyes are detected using a facial landmarks
detector (Baltrušaitis, Robinson, & Morency, 2013). 3-D
gaze directions are then estimated for each of the de-
tected faces using (Harari et al., 2016). These are 3-D
direction vectors whose origin are positioned at the cen-
ter location between the eyes of the corresponding face
(Fig.1A).

In general, gaze target candidates are objects which
lie in the 3-D line of sight. In an input image, we first
consider for each face, gaze target candidates as seg-
mented 2-D regions intersecting the 2-D projection of
the corresponding 3-D gaze vector. We use a segmenta-
tion model (Arbeláez, Pont-Tuset, Barron, Marques, &
Malik, 2014) to create the 2-D object proposals (Fig.1C).
To determine which of the 2-D object candidates inter-
sect the 3-D gaze direction, we use a current depth es-
timation model (Chakrabarti, Shao, & Shakhnarovich,
2016) to create a depth map of the scene (Fig.1B). From
the depth map we extract estimated depth for the face
as well as all corresponding candidate regions, as the
mean depth over all image locations in those regions
(depth units are in meters). Next, we locate the spatial
intersection points between candidate regions and 2-D
projection of the gaze direction. We estimate the depth
at these points along the 3-D gaze vector by using the
ratio between the X and Z components of the 3-D gaze
vector and the X coordinates of the intersection points.
We apply a pixel-to-meters conversion using the ratio
derived from the ear-to-ear pixel distance of the face in
the image and the width of an average face (0.15 me-
ters in our implementation). The gaze target is detected
as the nearest candidate region to the face, whose esti-
mated depth matches the depth along the 3-D gaze vec-
tor at the 2-D intersection point. Finally, joint attention
is identified in an input image, when there exist a com-
mon candidate region, which is validated as the gaze
target for multiple faces.

Experimental evaluation
Testing direct schemes
We first trained deep convolutional neural nets to dis-
cover joint attention directly from the input image.
Training and testing was done using our joint atten-
tion dataset, which contains 200 images. To provide
sufficient training examples, we augmented the original



images, applying translations in eight directions and a
horizontal flip, to yield an augmented set of 2000 im-
ages. We employ 10-fold cross validation to split the
data for training and testing.

For the detection of the essential common gaze tar-
get, we trained the FCN segmentation network (Long
et al., 2015), while providing annotated segmentation
maps with two alternative class labels: 1=Background,
2=Common gaze target. Negative image examples, which
do not have a common gaze target, are associated with
maps with a background class label only. We evaluate
the resulting segmentation in each test image by mea-
suring the intersection over union (IOU) for the com-
mon gaze target. The resulting mean IOU over the 200
test images was 11.8%. Given the limited results of the
direct scheme, we also evaluated separately the stage of
joint target detection, assuming that the individual di-
rections of gaze have been extracted correctly. For this
purpose, we retrained the network on images, where 2-
D red lines were overlaid on each image, each line start-
ing at a particular face and extends along the 2-D pro-
jection of the corresponding gaze direction. The rest of
the training and testing was identical to the procedure
described above for the original images. The resulting
mean IOU was 22.6%, which is double compared to the
above results using the original plain images. In sum-
mary, the above network performed poorly, even when
the additional information on the participating agents
and gaze direction was visually available in the input,
and therefore, cannot be used in an automatic system
for full interpretation of joint attention events.

While direct schemes fail to capture the full inter-
pretation of joint attention, they still may be capable
of learning discriminative representations that can be
used to discover and classify joint attention events. In
an additional experiment, we trained the VGG-16 net-
work (Simonyan & Zisserman, 2015) to classify images
as including joint attention events or not. Training and
testing was similar to the above procedure used for seg-
mentation, with the difference that a simple binary class
label was provided for each of the original images in-
stead of an annotated segmentation map. The classifi-
cation accuracy over the 200 test images was 67%. Such
simplified classification task (presence vs. absence of
joint attention) may be of use for some visual tasks, but
it does not identify the agents and gaze target obtained
by our model.

Testing the compositional scheme
We evaluated our compositional scheme on the 200
images of the joint attention dataset. As already
mentioned, the different components of the scheme
were trained separately on different datasets relevant
for each component. The facial landmarks detector
(Baltrušaitis et al., 2013) was pre-trained on the LFPW
dataset (Belhumeur, Jacobs, Kriegman, & Kumar, 2013).

The 3-D gaze estimation model was pre-trained on the
dataset provided by Harari et al. (2016). The segmenta-
tion model (Arbeláez et al., 2014) was pre-trained on the
BSDS500 dataset (Arbelaez, Maire, Fowlkes, & Malik,
2011). Finally, the depth estimation model (Chakrabarti
et al., 2016) was pre-trained on the NYU v2 dataset
(Silberman, Hoiem, Kohli, & Fergus, 2012).

We measured the performance of our scheme in in-
terpreting joint attention scenes, by means of segmenta-
tion accuracy of the common gaze target (IOU), and de-
tection accuracy of the participating agents. The later is
defined as the percentage of the total correct detections
of participating and non-participating agents out of the
total number of people in the image. We tested the full
scheme, which uses estimated 3D information of gaze
directions and scene depth, and a reduced variant of the
scheme, which does not use 3D information, but rather
uses 2-D projections of the estimated gaze directions.
The 3-D scheme yielded a mean accuracy of 67.8% for
the detection of agents engaged in joint attention, and
mean accuracy of 53.9% (IOU) for the segmentation of
the common gaze target, which is comparable to cur-
rent segmentation benchmarks (Arbelaez et al., 2011).
In comparison, the 2-D variant scheme yielded a mean
accuracy of 73.7% for the detection of agents engaged
in joint attention, but a much reduced mean accuracy of
33.1% (IOU) for the segmentation of the common gaze
target, demonstrating the use of 3D information in the
joint attention task.

Discussion

Joint visual attention is a meaningful event, which hu-
mans are sensitive to its occurrence in an image. In the
current work we studied two related aspects of joint at-
tention: its detection in a single static image, and its
contribution to image description, in particular, to au-
tomatic captioning. In terms of detection, the goal is
to detect joint attention events, together with the par-
ticipants in the events: the faces of the relevant people,
their directions of gaze, and their joint target. Our al-
gorithm is the first to produce such output based on
a single image. The algorithm which worked best in
our evaluations is compositional in the sense that it ex-
plicitly uses and combines several sub-components it
is trained on: computing 3-D gaze direction, identify-
ing gaze-target (by combining gaze-direction with a 3-
D depth map computed for the image), and identify-
ing the common gaze target. Our comparisons show
that the different sources of information, in particular
3D gaze direction, 3D scene layout, and object segmen-
tation, all contribute to the joint attention task. It is con-
ceivable that with more training, a single deep network
(possibly with recurrence) could be trained to extract
and use all the information use for the task, but see
(Shalev-Shwartz & Shashua, 2016) for possible advan-



tages of compositional schemes in particular tasks
The sensitivity of humans to joint attention suggests

that detecting such a configuration in an image can be
useful for understanding the image, including the goals
of the agents and their joint activity, and can therefore
contribute to image captioning and related tasks. Our
human study provides a partial test of this possibil-
ity. The fixed template used for generating the joint-
attention captions was highly simplified and should
be replaced by more detailed and informative descrip-
tions. However, even in this simplified form, humans
often find it adequate, preferring it over the alterna-
tive captions, and rejecting it (by selecting ’none’) in
only a small fraction of the images. More generally, the
results suggest that for automated image descriptions,
it will be useful to develop methods for automatically
annotating images with detected configurations which
humans find particularly meaningful (including, in the
use of gaze, joint attention to a target, two agents look-
ing at each other, and others), and use them for caption-
ing and related tasks.
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Baltrušaitis, T., Robinson, P., & Morency, L. P. (2013).
Constrained local neural fields for robust facial land-
mark detection in the wild. Proc of ICCV, 354–361.

Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J., & Ku-
mar, N. (2013). Localizing parts of faces using a con-
sensus of exemplars. IEEE TPAMI, 35(12), 2930–2940.

Calder, A. J., Beaver, J. D., Winston, J. S., Dolan, R. J.,
Jenkins, R., Eger, E., & Henson, R. N. a. (2007). Sepa-
rate coding of different gaze directions in the superior
temporal sulcus and inferior parietal lobule. Current
Biology, 17(1), 20–5.

Chakrabarti, A., Shao, J., & Shakhnarovich, G. (2016).
Depth from a Single Image by Harmonizing Over-
complete Local Network Predictions. arXiv preprint
arXiv:1605.07081.
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