
Learning Compositional Rules via Neural Program
Synthesis

Maxwell I. Nye∗
MIT

Armando Solar-Lezama
MIT

Joshua B. Tenenbaum
MIT

Brenden M. Lake
NYU

Facebook AI

Abstract

Many aspects of human reasoning, including language, require learning rules
from very little data. Humans can do this, often learning systematic rules from
very few examples, and combining these rules to form compositional rule-based
systems. Current neural architectures, on the other hand, often fail to generalize in
a compositional manner, especially when evaluated in ways that vary systematically
from training. In this work, we present a neuro-symbolic model which learns entire
rule systems from a small set of examples. Instead of directly predicting outputs
from inputs, we train our model to induce the explicit system of rules governing a
set of previously seen examples, drawing upon techniques from the neural program
synthesis literature. Our rule-synthesis approach outperforms neural meta-learning
techniques in three domains: an artificial instruction-learning domain used to
evaluate human learning, the SCAN challenge datasets, and learning rule-based
translations of number words into integers for a wide range of human languages.

1 Introduction

Humans have a remarkable ability to learn compositional rules from very little data. For example,
a person can learn a novel verb “to dax" from a few examples, and immediately understand what
it means to “dax twice" or “dax around the room quietly." When learning language, children must
learn many interrelated concepts simultaneously, including the meaning of both verbs and modifiers
(“twice", “quietly", etc.), and how they combine to form complex meanings. People can also
learn novel artificial languages and generalize systematically to new compositional meanings (see
Figure 3). Fodor and Marcus have argued that this systematic compositionality, while critical
to human language and thought, is incompatible with classic neural networks (i.e., eliminative
connectionism) [1, 2, 3]. Despite advances, recent work shows that contemporary neural architectures
still struggle to generalize in systematic ways when directly learning rule-like mappings between
input sequences and output sequences [4, 5]. Given these findings, Marcus continues to postulate
that hybrid neural-symbolic architectures (implementational connectionism) are needed to achieve
genuine compositional, human-like generalization [3, 6, 7].

An important goal of AI is to build systems which possess this sort of systematic rule-learning
ability, while retaining the speed and flexibility of neural inference. In this work, we present a
neural-symbolic framework for learning entire rule systems from examples. As illustrated in Figure
1B, our key idea is to leverage techniques from the program synthesis community [8], and frame
the problem as explicit rule-learning through fast neural proposals and rigorous symbolic checking.
Instead of training a model to predict the correct output given a novel input (Figure 1A), we train our
model to induce the explicit system of rules governing the behavior of all previously seen examples
(Figure 1B; Grammar proposals). Once inferred, this rule system can be used to predict the behavior
of any new example (Figure 1B; Symbolic application).

∗Correspondence to mnye@mit.edu. Code can be found here: github.com/mtensor/rulesynthesis

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

00
3.

05
56

2v
2

 [
cs

.A
I]

 2
2

O
ct

 2
02

0

mailto:mnye@mit.edu
https://github.com/mtensor/rulesynthesis

...

Grammar proposals:

G	=
run	->	RUN
look	->	LOOK
x	twice	->	[x][x][x]
x	thrice	->	[x][x]

G	=	
run	->	LOOK
look	->	RUN
x	twice	->	[x][x]
x	thrice	->	[x][x][x]
...	

G	=	
run	->	RUN
look	->	LOOK
x	twice	->	[x][x]
x	thrice	->	[x][x][x]

run	twice

RUN	RUN

look	thrice

LOOK	LOOK	LOOK

support examples

Neural Model

satisfies all
support
examples

Counterexample:
run	twice

RUN	RUN	RUN

Counterexample:
run	twice

LOOK	LOOK

...

run	twice

RUN	RUN

look	thrice

LOOK	LOOK	LOOK

support examples

Neural Memory
Embedding

look	twice

LOOK	LOOK

Neural
Translation

Neural inference on
query set

A. Previous Work (Lake, 2019):

B. This Paper:

Often fails on long &
complex inputs

G.apply(`look	twice`)
		=	LOOK	LOOK

Symbolic application
on query set

Figure 1: Illustration of our synthesis-based rule learner and comparison to previous work. A)
Previous work [9]: Support examples are encoded into an external neural memory. A query output
is predicted by conditioning on the query input sequence and interacting with the external memory
via attention. B) Our model: Given a support set of input-output examples, our model produces a
distribution over candidate grammars. We sample from this distribution, and symbolically check
consistency of each sampled grammar against the support set until a grammar is found which satisfies
the input-output examples in the support set. This approach allows much more effective search than
selecting the maximum likelihood grammar from the network.

This explicit rule-based approach confers several advantages compared to a pure input-output ap-
proach. Instead of learning a blackbox input-output mapping, and applying it to each new query item
for which we would like to predict an output (Figure 1A), we instead search for an explicit program
which we can check against previous examples (the support set). This allows us to propose and check
candidate programs, sampling programs from the neural model and only terminating search when the
proposed solution is consistent with prior data.

The program synthesis framing also allows immediate and automatic generalization: once the correct
rule system is learned, it can be correctly applied in novel scenarios which are a) arbitrarily complex
and b) outside the distribution of previously seen examples. We draw on work in the neural program
synthesis literature [10, 11] to solve complex rule-learning problems that pose difficulties for both
neural and traditional symbolic methods. Our neural synthesis approach is distinctive in its ability
to simultaneously and flexibly attend over a large number of input-output examples, allowing it to
integrate different kinds of information from varied support examples.

Our training scheme is inspired by meta-learning. Assuming a distribution of rule systems, or a
“meta-grammar," we train our model by sampling grammar-learning problems and training on these
sampled problems. We can interpret this as an approximate Bayesian grammar induction, where our
goal is to maximize the likelihood of a latent program which explains the data [12].

We demonstrate that, when trained on a general meta-grammar of rule-systems, our rule-synthesis
method can outperform neural meta-learning techniques. Concretely, our main contributions are:

• We present a neuro-symbolic program synthesis model which can learn novel rule systems
from few examples. Our model employs a symbolic program representation for compo-
sitional generalization and neural program synthesis for fast and flexible inference. This
allows us to leverage search in the space of programs, for a guess-and-check approach.

• We show that our model can learn to interpret artificial languages from few examples,
solving SCAN and outperforming 10 alternative models.

• Finally, we show that our model can outperform baselines in learning how to interpret
number words in unseen languages from few examples.

2

...

Synthesized grammar :

G	=
dax	->	RED
lug	->	BLUE
zup	->	YELLOW
wif	->	GREEN
u2	fep	->	[u2]	[u2]	[u2]
x2	kiki	x1	->	[x1]	[x2]
u1	blicket	u2	->	[u1]	[u2]	[u1]
u1	x1	->	[u1]	[x1]

dax	fep

RED	RED	RED

LSTM

LSTM
�

lug	fep

BLUE	BLUE	BLUE

LSTM

LSTM
�

su
pp

or
t e

xa
m

pl
es

...

Decoder LSTM

Symbolic application of grammar:

G.apply('zup	blicket	wif	kiki	dax	fep')

=	[dax	fep][zup	blicket	wif]

=	[dax][dax][dax][zup][wif][zup]

=	RED	RED	RED	YELLOW	GREEN	YELLOW

�

��

��

��

��

Figure 2: Illustration of our synthesis-based rule learner neural architecture and grammar application.
Support examples are encoded via BiLSTMs. The decoder LSTM attends over the resulting vectors
and decodes a grammar, which can be symbolically applied to held out query inputs. Middle: an
example of a fully synthesized grammar which solves the task in Figure 3.

2 Related Work

Figure 3: An example of few-shot learning of in-
structions. In [13], participants learned to execute
instructions in a novel language of nonce words
by producing sequences of colored circles. Hu-
man performance is shown next to each query in-
struction, as the percent correct across participants.
When conditioned on the support set, our model
can predict the correct output sequences on the
held out query instructions by synthesizing the
grammar in Figure 2.

Previous work on the SCAN challenge has em-
ployed data augmentation [14], meta-learning
[9], and syntactic attention [15]. Lake [9] uses
meta-learning to induce a seq-to-seq model for
predicting query input-output transformations,
from a small number of support examples (Fig-
ure 1A). They show significant improvements
over standard seq-to-seq methods, and demon-
strate that their model captures relevant human
biases. Using a similar training scheme, we in-
stead learn an explicit program which can be
applied to held out query items (Figure 1B).

Our approach builds on work in neural program
synthesis. We are inspired by work such as Ro-
bustFill [11], enumerative approaches [16], exe-
cution guided work [17, 18, 10, 19], and hybrid
models [20, 21]. A key difference in our work
is the number and diversity of input-output ex-
amples provided to the system. Previous neural
program synthesis systems, such as RobustFill
[11], are not able to handle the large number
of diverse of examples in our problems. Tech-
niques exist for selecting examples, but they are
expensive, requiring an additional outer loop of
meta-learning [22], or repeating search every time a new counterexample is found (as in CEGIS [23]).
Our approach uses neural attention to flexibly condition on many examples at once, without the need
for an additional outer search or learning loop. This is especially relevant for our domains, given the
diversity of examples, and the fact that different subsets of examples inform each rule. For a more
detailed discussion of the differences between our approach and RobustFill, see Section 4.1.

There is also related work from the programming languages community, such as Sketch [23], PROSE
[24], and a large class of synthesizers from the SyGuS competition [25]. However, our problems are
outside the scope of domains these systems can support (integer, bit-vector and FlashFill-style string
editing). Our problems are also outside the scope of functional synthesizers such as Lambda2 [26] or
Synquid [27]. We compare against alternative synthesis approaches in our experiments on SCAN.

3 Our Approach

Overview: Given a small support set of input-output examples, X = {(xi, yi)}i=1..n, our goal is to
produce the outputs corresponding to a query set of inputs {qi}i=1..m (see Figure 3). To do this, we
build a neural program synthesis model pθ(·|X) which accepts the given examples and synthesizes
a symbolic program G, which we can execute on query inputs to predict the desired query outputs,
ri = G(qi). Our symbolic program consists of an “interpretation grammar," which is a sequence
of rewrite rules, each of which represents a transformation of token sequences. The details of the

3

interpretation grammar are discussed below. At test time, we employ our neural program synthesis
model to drive a simple search process. This search process proposes candidate programs by sampling
from the program synthesis model and symbolically checks whether candidate programs satisfy the
support examples by executing them on the support inputs, i.e., checking that G(xi) = yi for all
i = 1..n. During each training episode, our model is given a support set X and is trained to infer an
underlying program G which explains the support and held-out query examples.

Model: A schematic of our architecture is shown in Figure 2. Our neural model pθ(G|X) is a
distribution over programs G given the support set X . Our implementation is quite simple and
consists of two components: an encoder Enc(·), which encodes each support example (xi, yi) into a
vector hi, and a decoder Dec(·), which decodes the program while attending to the support examples:

pθ(·|X) = Dec({hi}i=1..n),

where {hi}i=1..n = Enc(X)
Encoder: For each support example (xi, yi), the input sequence xi and output sequence yi are each
encoded into a vector by taking the final hidden state of an input BiLSTM encoder fI(xi) and an
output BiLSTM encoder fO(yi), respectively (Figure 2; left). These hidden states are then combined
via a single feedforward layer with weights W to produce one vector hi per support example:

hi = ReLU(W [fI(xi); fO(yi)])

Decoder: We use an LSTM for our decoder (Figure 2; center). The decoder hidden state u0 is
initialized with the sum of all of the support example vectors, u0 =

∑
i hi, and the decoder produces

the program token-by-token while attending to the support vectors hi via attention [28]. The decoder
outputs a tokenized program, which is then parsed into an interpretation grammar.

Interpretation Grammar: The programs in this work are instances of an interpretation grammar,
which is a form of term rewriting system [29]. The interpretation grammar used in this work consists
of an ordered list of rules. Each rule consists of a left hand side (LHS) and a right hand side (RHS).
The left hand side consists of the input words, string variables x (regexes that match entire strings),
and primitive variables u (regexes that match single words). Evaluation proceeds as follows: An
input sequence is checked against the rules in order of the rule priority. If the rule LHS matches the
input sequence, then the sequence is replaced with the RHS. If the RHS contains bracketed variables
(i.e., [x] or [u]), then the contents of these variables are evaluated recursively through the same
process. In Figure 2 (right), we observe grammar application on the input sequence zup blicket
wif kiki dax fep. The first matching rule is the kiki rule,2 so its RHS is applied, producing
[dax fep] [zup blicket wif], and the two bracketed strings are recursively evaluated using
the fep and blicket rules, respectively.

Search: At test time, we sample candidate programs from our neural program synthesis model. If
the new candidate program G satisfies the support set —i.e., if G(xi) = yi for all i = 1..n —then
search terminates and the candidate program G is returned as the solution. The program G is then
applied to the held-out query set to produce final query predictions ri = G(qi). During search, we
maintain the best program so far, defined as the program which satisfies the largest number of support
examples.3 If the search timeout is exceeded and no program has been found which solves all of the
support examples, then the best program so far is returned as the solution.

This search procedure confers major advantages compared to pure neural approaches. In a pure
neural induction model (Figure 1A), given a query input and corresponding output prediction, there
is no way to check consistency with the support set. Conversely, casting the problem as a search for
a satisfying program allows us to explicitly check each candidate program against the support set,
to ensure that it correctly maps support inputs to support outputs. The benefit of such an approach
is shown in Section 4.2, where we can achieve perfect accuracy on SCAN by increasing our search
budget and searching until a program is found which satisfies all of the support examples.

Training: We train our model in a similar manner to [9]. During each training episode, we randomly
sample an interpretation grammar G from a distribution over interpretation grammars, or “meta-
grammar"M. We then sample a set of input sequences consistent with the sampled interpretation
grammar, and apply the interpretation grammar to each input sequence to produce the corresponding

2Note that the fep rule is not applied first because u2 is a primitive variable, so it only matches when fep is
preceded by a single primitive word.

3Sequences which do not parse into a valid programs are simply discarded.

4

output sequence, giving us a support set of input-output examples XG. We train the parameters θ of
our network pθ via supervised learning to output the grammar G when conditioned on the support set
of input-output examples, maximizing E

(G,XG)∼M
[log pθ(G|XP)] by gradient descent.

4 Experiments

4.1 MiniSCAN

Figure 4: MiniSCAN generalization results. We train on random grammars with 3-4 primitives,
2-4 higher order rules, and 10-20 support examples. Left: At test time, we vary the number of
higher-order rules. The synthesis-based approach using search achieves near-perfect accuracy for
most test conditions. Right: Length generalization results. A key challenge for compositional learning
is generalization across lengths. We plot accuracy as a function of query output length for the “4
higher-order rules" test condition. The accuracy of our synthesis approach does not degrade as a
function of query output length, whereas the performance of baselines decreases.

Our first experimental domain is the paradigm introduced in [13], informally dubbed “MiniSCAN."
The goal of this domain is to learn compositional, language-like rules from a very limited number
of examples. In [13], human subjects were allowed to study the 14 example ‘support instructions’
in Figure 3. Participants were then tested on the 10 ‘query instructions’ in Figure 3, to determine
how well they had learned to execute instructions in this novel language. Our aim is to build a model
which learns this artificial language from few examples, similar to humans. We test our model on
MiniSCAN to determine how well it can induce such language-like rules systems, both when they are
similar to those seen during training, as well as when they vary systematically from training data.

Training details: We trained our model on a series of meta-training episodes. During each episode,
a grammar was sampled from the meta-grammar distribution, and our model was trained to recover
this grammar given a support set of example sequences. In our experiments, the meta-grammar
randomly sampled grammars with 3-4 primitive rules and 2-4 higher-order rules. Primitive rules map
a word to a color (e.g. dax -> RED), and higher order rules encode variable transformations given
by a word (e.g. x1 kiki x2 -> [x2] [x1]). (In a higher-order rule, the LHS can be one or two
variables and a word, and the RHS can be any sequence of bracketed forms of those variables.) For
each grammar, we trained with a support set of 10-20 randomly sampled examples. More details can
be found in Section A.1.1 of the supplement.

Alternate Models: In this experiment, we compare against two closely related alternatives. The
first is meta seq2seq [9]. This model is also trained on episodes of randomly sampled grammars.
However, instead of synthesizing a grammar, meta seq2seq conditions on support examples and
attempts to translate query inputs directly to query outputs in a seq-to-seq manner (Figure 1A). Meta
seq2seq therefore uses a learned representation, in contrast to our symbolic program representation.
The second alternate model is a lesioned version of our synthesis approach, dubbed the no search
baseline. This model does not perform guess-and-check search, and instead returns the grammar
produced by greedily decoding the most likely token at each step. This baseline allows us to determine
how much of our model’s performance is due to its ability to perform guess-and-check search.

Test Details: Our synthesis methods were tested by sampling from the network for the best grammar,
or until a candidate grammar was found which was consistent with all of the support examples, using
a timeout of 30 sec (on one GPU; compute details in supplemental Section A.1). We tested on 50
held-out grammars, each containing 10 query examples.

5

Results: To evaluate our rule-learning model and baselines, we test the models on a battery of
evaluation schemes. In general, we observe that the synthesis methods are much more accurate
than the pure neural meta seq2seq method, and only the search-based synthesis method is able to
consistently predict the correct query output sequence for all test conditions. Our main results varying
the number of higher order rules are shown in Figure 4, with additional results varying the number
of support examples and number of primitives in the supplement (Figure A.1 To determine how
well these models could generalize to grammars systematically different than those seen during
training. we varied the number of higher-order functions in the test grammars (Figure 4 left). For
these experiments, each support set contained 30 examples.

Both synthesis models are able to correctly translate query items with high accuracy (89% or above)
when tested on held-out grammars within the training distribution (3-4 higher order rules). However,
only the search-based synthesis model maintains high performance as the number of higher order
rules increases beyond the training distribution, indicating that the ability to search for a consistent
program plays a large role in out-of-sample generalization.

Furthermore, in instances where the synthesis-based methods have perfect accuracy because they
recover exactly the generating grammar (or some equivalent grammar), they would also be able to
trivially generalize to query examples of any size or complexity, as long as these examples followed
the same generating grammar. On the other hand, as reported in many previous studies [30, 4, 9],
approaches which attempt to neurally translate directly from inputs to outputs struggle to generate
sequences much longer than those seen during training. This is a clear conceptual advantage of the
synthesis approach; symbolic rules, if accurately inferred, necessarily allow correct translation in
every circumstance. To investigate this property, we plot the performance of our models as a function
of the query example length for the 4 higher-order rule test condition above (Figure 4 right). The
performance of the baselines decays as the length of the query examples increases, whereas the
search-based synthesis model experiences no such decrease in performance.

This indicates a key benefit of the program synthesis approach: When a correct program is found, it
trivially generalizes correctly to arbitrary query inputs, regardless of how out-of-distribution they
may be compared to the support inputs, as long as those query inputs follow the same rules as the
support inputs. The model’s ability to search the space of programs also plays a crucial role, as it
allows the system to find a grammar which satisfies the support examples, even if it is not the most
likely grammar under the neural network distribution.

We also note that our model is able to solve the task in Figure 3; we achieve a score of 98.75% on the
query set, which is higher than the average score for human participants in [13]. The no search and
meta seq2seq model are not able to solve the task, achieving scores of 37.5% and 25%, respectively.

Comparison to RobustFill: Previous neural I/O synthesis models, such as RobustFill, as well as
[18, 17, 10]—designed for a small, fixed number of examples—generally use a separate encoder-
decoder model (possibly with attention) for each example. Information from the separate examples is
only combined through a max-pool or vector concatenation bottleneck—there is no attention across
examples. This makes these models unsuitable for domains where it is necessary to integrate relevant
information across a large number of diverse examples. To confirm this, we tested a re-implementation
of the RobustFill model on MiniSCAN. Using standard hyperparameters (hidden size 512, embedding
size 128, learning rate 0.001), the RobustFill model only achieves 3%, 4%, 3%, 3.5% accuracy on
grammars with 3-6 higher-order rules, respectively. In contrast, our model encodes each I/O example
with an example encoder, and then a single decoder model attends over these example vectors while
decoding. By attending across examples, our approach can focus on the relevant examples at each
decoding step. This is particularly important for the domains studied in this work, because there are
many support examples, and only a subset are relevant at each decoding step (i.e., each rule).

4.2 SCAN Challenge

Our next experiments concern the SCAN dataset [4, 5]. The goal of SCAN is to test the compositional
abilities of neural networks when test data varies systematically from training data. We test our model
on SCAN to determine if our rule-learning approach can solve these compositional challenges.

SCAN consists of simple English commands paired with corresponding discrete actions (see Figure
5). The dataset has roughly 21,000 command-to-action examples, arranged in several test-train splits
to examine different aspects of compositionality. We focus on four splits: The simple split randomly

6

walk
WALK

walk left twice
LTURN WALK LTURN WALK

jump
JUMP

jump around left
LTURN JUMP LTURN JUMP LTURN JUMP LTURN JUMP

walk right
RTURN WALK

walk -> WALK jump -> JUMP
run -> RUN look -> LOOK
left -> LTURN right -> RTURN
turn -> EMPTY_STRING
u1 opposite u2 -> [u2] [u2] [u1]
u1 around u2 ->

[u2][u1][u2][u1][u2][u1][u2][u1]
x2 twice -> [x2] [x2]
x1 thrice -> [x1] [x1] [x1]
x2 after x1 -> [x1] [x2]
x1 and x2 -> [x1] [x2]
u1 u2 ->[u2] [u1]

Figure 5: Right: Example SCAN data. Each example consists of a synthetic language command (top)
paired with a discrete action sequence (bottom). Fig. adapted from [14]. Left: Induced grammar
which solves SCAN.

sorts data into the train and test sets. The length split places all examples with output length of up to
22 tokens into the train set, and all other examples (24 to 48 tokens long) into the test set. The add
jump split teaches the model how to ‘jump’ in isolation, along with the compositional uses of other
primitives, and then evaluates it on all compositional uses of jump, such as ‘jump twice’ or ‘jump
around to the right.’ The add around right split is similar to the ‘add jump’ split, except the phrase
‘around right’ is held out from the training set. The ‘add jump’ and ‘add around right’ splits test if a
model can learn to compositionally use words or phrases previously only seen in isolation.

Training Setup: Previous work on SCAN has used a variety of techniques [14, 9, 15]. Most related to
our approach, [9] trained a model to solve related problems via meta-learning. At test time, samples
from the SCAN train split were used as support items, and samples from the SCAN test split were used
as query items. However, in [9], the meta-training distribution consisted of different permutations
of assigning the SCAN primitive actions (‘run’, ‘jump’, ‘walk’, ‘look’) to their commands (‘RUN’,
‘JUMP’, ‘WALK’, ‘LOOK’), while maintaining the same SCAN task structure between meta-train
and meta-test. Therefore, in these experiments, the goal of the learner is to assign primitive actions to
commands within a known task structure, while the higher-order rules, such as ‘twice’, and ‘after’,
remain constant between meta-train and meta-test.

In contrast, we approach learning the entire SCAN grammar from few examples, by meta-training
on a general and broad meta-grammar for SCAN-like rule systems, similar to our approach above in
Section 4.1. Training details can be found in Section A.1.2 of the supplement.

Table 1: Accuracy on SCAN splits.

length simple jump right
Synth (Ours) 100 100 100 100
Synth (no search) 0.0 13.3 3.5 0.0
Meta Seq2Seq 0.04 0.88 0.51 0.03
MCMC 0.02 0.0 0.01 0.01
Sampling from prior 0.04 0.03 0.03 0.01
Enumeration 0.0 0.0 0.0 0.0
DeepCoder 0.0 0.03 0.0 0.0
GECA [14] – – 87 82
Meta Seq2Seq (perm) 16.64 – 99.95 98.71
Syntactic attention 15.2 – 78.4 28.9
Seq2Seq [4] 13.8 99.8 0.08 –

Testing Setup: We test our fully trained
model on each split of SCAN as if it were a
new few-shot test episode with support ex-
amples and a held out query set, as above.
For each SCAN split, we use the training
set as test-time support elements, and in-
put sequences from the SCAN test set are
used as query elements. The SCAN training
sets have thousands of examples, so it is
infeasible to attend over the entire training
set at test time. Therefore, at test time, we
randomly sample 100 examples from the
SCAN training set to use as the support set
for our network. We can then run program
inference, conditioned on just these 100 ex-
amples from the SCAN training set. The SCAN dataset is formed by enumerating all possible examples
from the SCAN grammar up to a fixed depth; our models were trained by sampling examples from the
target grammar. This causes a distributional mismatch which we rectify using heuristics to upsample
shorter examples at test time, while ensuring that all rules are demonstrated. Details can be found in
the supplement.

Because of the large number of training examples, we are also able to slightly modify our test-time
search algorithm to increase performance: We select 100 examples as the initial support set for our
network, and search for a grammar which perfectly satisfies them. If no satisfying grammar is found
within a set timeout of 20 seconds, we resample another 100 support examples and retry searching for
a grammar. We repeat this process until a satisfying grammar is found. This methodology, inspired

7

by RANSAC [31], allows us to utilize many examples in the training set without attending over
thousands of examples at once.

We compare our full model with 10 alternative models, both baselines and ablations. Because the
SCAN grammar lies within the support of the meta-grammar distribution, we test two probabilistic
inference baselines: MCMC and sampling directly from the meta-grammar. We also test two
program synthesis baselines: enumeration and DeepCoder [16]. The failure of these baselines
suggests that precise recognition models are needed to search effectively in this large space; it is not
enough to only predict which tokens are present in the program, as DeepCoder does. Baseline details
can be found in Section A.1.2 of the supplement.

Results: Table 1 shows the overall performance of our model compared to baselines. Using search,
our synthesis model is able to achieve perfect performance on each SCAN split. Without search, the
synthesis approach cannot solve SCAN, never achieving performance greater than 15%. Likewise,
meta seq2seq, using neither a program representation nor search, cannot solve SCAN when trained on
a very general meta-grammar, solving less than 1% of the test set.

One advantage of our approach is that we don’t need to retrain the model for each split. Once
meta-training has occurred, the model can be tested on each of the splits and is able to induce a
satisfying grammar for all four splits. In previous work, a separate meta-training set was used for
each SCAN split (99.95% for ‘jump’ and 98.71% for ‘right’ [9]). In contrast, we meta-train once, and
test on all 4 splits. Previous meta-learning approaches fail in this setting (0.51% and 0.03%).

Whereas previous approaches use the entire SCAN training set, our model requires less than 2% of the
training data to solve SCAN. Supplement Table A.3 reports how many examples and how much time
are required to find a grammar satisfying all support examples. Supplement Table A.4 reports running
our algorithm without swapping out support sets when no perfectly satisfying grammar is found.

4.3 Learning Number Words

 -> 1 x1 y1 -> [x1] * 10000 + [y1]
 -> 2 y1 -> 1000 * 1 + [y1]
 -> 3 x1 y1 -> [x1] * 1000 + [y1]

... y1 -> 100 * 1 + [y1]
 -> 10 x1 y1 -> [x1] * 100 + [y1]
 -> 100 y1 -> 10 * 1 + [y1]
 -> 1000 x1 y1 -> [x1] * 10 + [y1]

u1 x1 -> [u1] + [x1]

Figure 6: Induced grammar for Japanese
numbers. Given the words for necessary
numbers (1-10, 100, 1000, 10000), as
well as 30 random examples, our sys-
tem is able to recover an interpretable
symbolic grammar to convert Japanese
words to integers for any number up to
99,999,999.

Our final experimental domain is the problem of inferring
the integer meaning of a number word sequence from few
examples, which provides a real-world example of com-
positional rule learning. See Figure 6 for an example. Our
goal is to determine whether our model can learn, from few
examples, the systematic rules governing number words,
similar to adult human learners of a foreign language.

Setup: In this domain, each grammar G is an ordered list
of rules which defines a transformation from strings to inte-
gers (i.e, G(four thousand five hundred) → 4500,
orG(ciento treinta y siete)→ 137). We modified
our interpretation grammar to allow for the simple math-
ematics necessary to compute integer values. Using this
modified interpretation grammar, we designed a training
meta-grammar by examining the number systems for three languages: English, Spanish and Chinese.
More details can be found in Section A.1.3 in the supplement.

We designed the task to mimic how it might be encountered when learning a foreign language: When
presented with a core set of “primitive" words, such as the words for 1-20, 100, 1000, and a small
number of examples which show how to compose these primitives (e.g., forty five→ 45 shows
how to compose forty and five), an agent should be able to induce a system of rules for decoding
the integer meaning of any number word. Therefore, for each train and test episode, we condition each
model on a support set of primitive number words and several additional compositional examples.
The goal of the model is to learn the system of rules for composing the given primitive words.

Results: Our results are reported in Table 2. We test our model on the three languages used to build
the generative model, and test on six additional unseen languages, averaging over 5 evaluation runs
for each. For many languages, our model is able to achieve perfect generalization to the held out
query set. The no search baseline is able to perform comparably for several languages, however
for some (Spanish, French) it is not able to generalize at all to the query set because the generated
grammar is invalid and does not parse. Meta seq2seq is outperformed by the synthesis approaches.

8

Table 2: Accuracy on few-shot number-word learning, using a maximum timeout of 45 seconds.
English Spanish Chinese Japanese Italian Greek Korean French Viet.

Synth (Ours) 100 80.0 100 100 100 94.5 100 75.5 69.5
Synth (no search) 100 0.0 100 100 100 70.0 100 0.0 69.5
Meta Seq2Seq 68.6 64.4 63.6 46.1 73.7 89.0 45.8 40.0 36.6

5 Conclusion

We present a neuro-symbolic program synthesis model which can learn rule-based systems from
a small set of diverse examples. Our approach uses neural attention to flexibly condition on many
examples at once, integrating information from varied support examples. We demonstrate that
our model achieves human-level performance in a few-shot artificial language-learning domain,
dramatically improves upon existing benchmarks for the SCAN challenge, and successfully learns to
interpret number words across several natural languages. In all three domains, the use of a program
representation and explicit search provide strong out-of-sample generalization, improving upon
previous neural, symbolic, and neuro-symbolic approaches. We believe that explicit rule learning is a
key part of human intelligence, and is a necessary ingredient for building human-level and human-like
artificial intelligence.

Future work could explore learning the meta-grammar and interpretation grammar from data, allowing
our approach to be applied more broadly and with less supervision. Another important direction is to
build hybrid systems that jointly learn implicit neural rules and explicit symbolic rules, with the aim
of capturing the dual intuitive and deliberate characteristics of human thought [32].

Broader Impact

Our approach involves using program synthesis to learn explicit rule systems from just a few
examples. Compared to pure neural approaches, we expect that our approach has two main advantages:
robustness and interpretability. Because our approach combines a neural "proposer" and a symbolic
"checker", when neural inference fails, the symbolic checker can determine if the proposed program
satisfies the given examples. Because the representation produced by our model is a symbolic
program, it is also more interpretable than pure neural approaches; when mistakes are made, the
incorrect program can be analyzed in order to understand the error. We conjecture that, if systems
such as these are used in industrial or consumer settings, these interpretability and robustness features
could lead to better safety and security. We hesitate to speculate on the long-term effects of such a
research program, but we do not foresee certain groups of people being selectively advantaged.

Acknowledgments and Disclosure of Funding

The authors gratefully acknowledge Kevin Ellis, Yewen Pu, Luke Hewitt, Tuan Anh Le and Eric
Lu for productive conversations and helpful comments. We additionally thank Tuan Anh Le for
assistance using the pyprob probabilistic programming library. M. Nye is supported by an NSF
Graduate Fellowship and an MIT BCS Hilibrand Graduate Fellowship. Through B. Lake’s position
at NYU, this work was partially funded by NSF Award 1922658 NRT-HDR: FUTURE Foundations,
Translation, and Responsibility for Data Science.

References
[1] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical

analysis. Cognition, 28:3–71, 1988.

[2] Gary F Marcus. Rethinking Eliminative Connectionism. Cognitive Psychology, 282(37):243–
282, 1998.

[3] Gary F Marcus. The Algebraic Mind: Integrating Connectionism and Cognitive Science. MIT
Press, Cambridge, MA, 2003.

[4] Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In 35th International Conference on Machine

9

Learning, ICML 2018, pages 4487–4499. International Machine Learning Society (IMLS),
2018.

[5] Joao Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar: Testing composi-
tional generalization in recurrent networks. arXiv preprint arXiv:1807.07545, 2018.

[6] Gary Marcus. Deep Learning: A Critical Appraisal. arXiv preprint, 2018.

[7] G. Marcus and E. Davis. Rebooting AI: Building Artificial Intelligence We Can Trust. Knopf
Doubleday Publishing Group, 2019.

[8] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

[9] Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning.
In Advances in Neural Information Processing Systems, pages 9788–9798, 2019.

[10] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. arXiv preprint arXiv:1906.04604, 2019.

[11] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 990–998. JMLR.
org, 2017.

[12] Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation and universal
probabilistic programming. arXiv preprint arXiv:1610.09900, 2016.

[13] Brenden M Lake, Tal Linzen, and Marco Baroni. Human few-shot learning of compositional
instructions. Proceedings of the 41st Annual Conference of the Cognitive Science Society, 2019.

[14] Jacob Andreas. Good-enough compositional data augmentation. arXiv preprint
arXiv:1904.09545, 2019.

[15] Jake Russin, Jason Jo, Randall C. O’Reilly, and Yoshua Bengio. Compositional generalization
in a deep seq2seq model by separating syntax and semantics. arXiv preprint, 2019.

[16] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

[17] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. ICLR,
2018.

[18] Amit Zohar and Lior Wolf. Automatic program synthesis of long programs with a learned
garbage collector. In Advances in Neural Information Processing Systems, pages 2094–2103,
2018.

[19] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants.
arXiv preprint arXiv:1905.09381, 2019.

[20] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch learning
for conditional program generation. arXiv preprint arXiv:1703.05698, 2017.

[21] Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama. Learning to infer
program sketches. arXiv preprint arXiv:1902.06349, 2019.

[22] Yewen Pu, Zachery Miranda, Armando Solar-Lezama, and Leslie Kaelbling. Selecting repre-
sentative examples for program synthesis. In International Conference on Machine Learning,
pages 4161–4170, 2018.

[23] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat.
Combinatorial sketching for finite programs. ACM SIGARCH Computer Architecture News,
34(5):404, 2006.

10

[24] Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive program
synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 107–126, 2015.

[25] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In 2013 Formal Methods
in Computer-Aided Design, pages 1–8, 2013.

[26] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices, 50(6):229–239, 2015.

[27] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from polymor-
phic refinement types. ACM SIGPLAN Notices, 51(6):522–538, 2016.

[28] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[29] Angelika Kratzer and Irene Heim. Semantics in generative grammar, volume 1185. Blackwell
Oxford, 1998.

[30] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv preprint, 2014.

[31] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

[32] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

A Supplementary Material

A.1 Experimental and computational details

All models were implemented in PyTorch. All testing and training was performed on one Nvidia
GTX 1080 Ti GPU. For all models, we used LSTM embedding and hidden sizes of 200, and trained
using the Adam optimizer [33] with a learning rate of 1e-3. Training and testing runs used a batch
size of 128. For all experiments, we report standard error below.

A.1.1 Experimental details: MiniSCAN

Meta-grammar As discussed in the main text, each grammar contained 3-4 primitive rules and
2-4 higher-order rules. Primitive rules map a word to a color (e.g. dax -> RED), and higher order
rules encode variable transformations given by a word (e.g. x1 kiki x2 -> [x2] [x1]). In a
higher-order rule, the left hand side can be one or two variables and a word, and the right hand
side can be any sequence of bracketed forms of those variables. The last rule of every grammar
is a concatenation rule: u1 x1 -> [u1] [x1], which dictates how a sequence of tokens can be
concatenated. Figure A.2 shows several example training grammars sampled from the meta-grammar.
We trained our models for 12 hours.

Generating input-output examples To generate a set of support input-output sequences X from a
program G, we uniformly sample a set of input sequences from the CFG formed by the left hand side
of each rule in G. We then apply the program G to each input sequence xi to find the corresponding
output sequence yi = G(xi). This gives a set of examples {(xi, yi)}, which we can divide into
support examples and query examples.

Test details For each of our experiments, we used a sampling timeout of 30 sec, and tested on
50 held-out test grammars, each containing 10 query examples. The model samples approx. 35
prog/second, resulting in a maximum search budget of approx. 1000 candidate programs.

10 30 50 70
Number of support examples at test time

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Varying number of support examples

synthesis
synthesis, no search
meta seq2seq

3 4 5 6
Number of primitives at test time

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Varying number of primitives

synthesis
synthesis, no search
meta seq2seq

3 4 5 6
Number of higher-order rules at test time

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Varying number of higher-order rules

synthesis
synthesis, no search
meta seq2seq

Figure A.1: MiniSCAN generalization results. We train on random grammars with 3-4 primitives,
2-4 higher order rules, and 10-20 support examples. At test time, we vary the number of support
examples (left), primitive rules (center), and higher-order rules (right). The synthesis-based approach
using search achieves near-perfect accuracy for most test conditions.

Results Our results are shown in Figure A.1. We observed that, when the support set is too small,
there are often not enough examples to disambiguate between several grammars which all satisfy
the support set, but may not satisfy the query set. Thus, we varied the number of support examples
during test time and evaluated the accuracy of each model (Figure A.1 left). We observed that, when
we increased the number of support elements to 50 or more, the probability of failing any of the
query elements fell to less than 1% for our model. We also we varied the number of primitives in the
test grammars (Figure A.1 center), and the number of higher-order functions in the test grammars
(Figure A.1 right, also Figure 4 in the main text). For these experiments, each support set contained
30 examples.

We additionally extended the higher-order rules experiment, again training on 2-4 higher-order rules,
but testing on grammars with 7-13 higher-order rules. See Table A.1 for results. These results
demonstrate generalization and relatively graceful degradation on test grammars with up to 3x the
number of rules compared to those seen during training.

12

Table A.1: Accuracy on extended higher-order rules MiniSCAN experiment, with standard error.

Higher-order rules: 7 8 9 10 11 12 13
Synth (Ours) 96.0 (1.3) 93.6 (1.4) 92.0 (1.7) 90.5 (2.1) 83.5 (3.4) 78.5 (3.6) 77.5 (3.1)
Synth (no search) 59.5 (5.7) 62.0 (2.8) 62.5 (4.4) 56.0 (4.3) 59.5 (4.7) 48.5 (3.8) 52.5 (4.5)
Meta Seq2Seq 58.5 (3.6) 59.8 (2.3) 69.0 (4.5) 62.5 (3.9) 56.5 (4.2) 55.5 (3.7) 53.0 (4.3)

A.1.2 Experimental details: SCAN

Meta-grammar The meta-grammar used to train networks for SCAN is based on the meta-grammar
used in the MiniSCAN experiments above. Each grammar has between 4 and 9 primitives and 3 and 7
higher order rules, with random assignment of words to meanings. Examples of random grammars
are shown below. Models are trained on 30-50 support examples, and we train for 48 hours, viewing
approximately 9 million grammars.

This meta-grammar has two additional differences from the MiniSCAN meta-grammar, allowing it to
produce grammars which solve SCAN:

1. Primitives can rewrite to empty tokens, e.g., turn -> EMPTY_STRING.

2. The last rule for each grammar can either be the standard concatenation rule above, or, with
50% probability, a different concatenation rule: u1 u2 -> [u2] [u1], which acts only on
two adjacent single primitives. This is to ensure that the SCAN grammar, which does not
support general string concatenation, is within the support of the training meta-grammar,
while maintaining compatibility with MiniSCAN grammars.

Example training grammars sampled from the meta-grammar are shown in Figure A.3. At training
time, we use the same process as for MiniSCAN to sample input-output examples for the support and
query set.

Selecting support examples at test time The distribution of input-output example sequences in
each SCAN split is very different than the training distribution. Therefore, selecting a random subset
of 100 examples uniformly from the SCAN training set would lead to a support set very different from
support sets seen during training. We found that two methods of selecting support examples from
each SCAN training set allowed us to achieve good performance:

1. To ensure that support sets during testing matched the distribution of support sets during
training, we selected our test-time support examples to match the empirical distribution of
input sequence lengths seen at training time. We used rejection sampling to ensure consistent
sequence lengths at train and test time.

2. We found that results were improved when words associated with longer sequences were
seen in more examples in the test-time support set. Therefore, we upweighted the probability
of seeing the words ‘opposite’ and ‘around’ in the support set.

The implementation details of support example selection can be found in generate_episode.py.

Baselines Our probabilistic baselines were implemented in the pyprob probabilistic programming
language [12]. For both baselines, we allow a maximum timeout of 180 seconds. Both MCMC and
sampling evaluate more candidate programs than our baseline, achieving about 60 programs/sec,
compared to the synthesis model, which evaluates about 35 programs/sec.

For our enumeration and DeepCoder baselines, we used an optimization, inspired by CEGIS [23], to
increase enumeration speed. When checking candidate grammars against the support set examples,
we randomly selected 4 examples from the support set, and only checked the grammar against
those 4 examples. We only checked the grammar against the other support set examples if any of
the original 4 examples were satisfied. Using this optimization, our enumeration and DeepCoder
baselines enumerated approximately 1000 programs/sec. For the enumerative baselines, we also
allow a maximum timeout of 180 seconds.

13

Table A.2: Accuracy on SCAN splits with standard error.

length simple jump right
Synth (Ours) 100 100 100 100
Synth (no search) 0.0 13.3 (3.3) 3.5 (0.7) 0.0
Meta Seq2Seq 0.04 (0.02) 0.88 (0.13) 0.51 (0.06) 0.03 (0.03)
MCMC 0.02 (0.01) 0.0 0.01 (0.01) 0.01 (0.01)
Sample from prior 0.04 (0.02) 0.03 (0.03) 0.03 (0.02) 0.01 (0.01)
Enumeration 0.0 0.0 0.0 0.0
DeepCoder 0.0 0.03 (0.02) 0.0 0.0

Table A.3: Required search budget for our synthesis model on SCAN, with standard error.

length simple jump right
Search time (sec) 39.1 (11.9) 33.7 (10.0) 74.6 (48.5) 36.1 (13.4)
Number of prog. seen 1516 (547) 1296 (358.2) 2993 (1990.1) 1466 (541)
Number of ex. used 149.4 (28.9) 144.8 (24.7) 209.2 (91.3) 143.8 (28.6)
Frac of ex. used 0.88% 0.86% 1.6% 0.94%

Results Table A.2 and shows the numerical results for the SCAN experiments in the main paper,
reported with standard error. Table A.3 reports how many examples and how much time are required
to find a grammar satisfying all support examples. Table A.4 shows the fixed example budget results,
averaged over 20 evaluation runs. Under this test condition, we achieve perfect performance on the
length and simple splits within 180 seconds, and nearly perfect performance on the add around right
split (98.4%). The add jump split is more difficult; we achieve 43.3% (±10%) accuracy.

We also ran an experiment to further investigate the distributional mismatch between training and
testing examples. As discussed in the main text, the SCAN splits were formed by enumerating
examples from the SCAN grammar up to a fixed depth, whereas our models were trained by sampling
examples from the target training grammar. At test time, we used example-selection heuristics
to rectify this distributional mismatch. In this additional experiment, we test whether our model
can synthesize the SCAN grammar without these heuristics, provided the distributional mismatch is
controlled for. We constructed a new SCAN corpus by re-generating data by sampling examples from
the SCAN grammar instead of enumerating, and randomly assigning sampled examples to the train
or test set.4 We observe that our model is able to solve this corpus without the example-selection
heuristics described above. Following the methodology in Table A.3, we find that, to achieve perfect
accuracy on this “sampled" SCAN corpus, we require a search budget of 69.2 seconds (± 16.1), 2146
programs (± 515), and 255.8 examples (± 39.0).

A.1.3 Experimental details: Number Words

Meta-grammar We designed a meta-grammar for the number domain, relying on knowledge
of English, Spanish, and Chinese. The meta-grammar includes features common to these three
languages, including regular and irregular words for powers of 10 and their multiples, exception
words, and features such as zeros or conjunctive words. We assume a base 10 number system, where
powers of 10 can have “regular" words (e.g., “one hundred", “two hundred", “three hundred") or
“irregular" words (“ten", “twenty", “thirty"). Additional features include exceptions to regularity,

4This corpus is therefore analgous to the “Simple” split.

Table A.4: Accuracy on SCAN splits, using a fixed budget of 100 examples.

Model length simple jump right
Synth (180 s) 100 100 43.3 (10.0) 98.4 (1.6)
Synth (120 s) 100 98.4 (1.6) 53.9 (10.3) 94.2 (2.9)
Synth (60 s) 92.2 (3.8) 97.5 (1.3) 44.3 (9.6) 80.75 (6.8)
Synth (30 s) 85.6 (4.6) 95.6 (2.3) 24.2 (8.6) 60.0 (8.7)

14

Table A.5: Accuracy on few-shot number-word learning, using a maximum timeout of 45 seconds.
Results shown with standard error over 5 evaluation runs.

Model English Spanish Chinese Japanese Italian Greek Korean French Viet
Synth (Ours) 100 80.0 (17.9) 100 100 100 94.5 (4.9) 100 75.5 (2.4) 69.5 (2.3)
Synth (no search) 100 0.0 100 100 100 70.0 (10.2) 100 0.0 69.5 (2.3)
Meta Seq2Seq 68.6 (10.0) 64.4 (3.2) 63.6 (4.0) 46.1 (3.5) 73.7 (3.2) 89.0 (2.5) 45.8 (3.7) 40.0 (5.3) 36.6 (6.2)

conjunctive words (e.g., “y" in Spanish), and words for zero. The full model can be found in
pyro_num_distribution.py, and example training grammars are shown in Figure A.4.

Training We trained our model on programs sampled from the constructed meta-grammar. For
each training program, we sampled 60-100 string-integer pairs to use as support examples, and
sampled 10 more pairs as held-out query set. We train and test on numbers up to 99,999,999. We
trained all models for 12 hours.

Test Setup To test our trained model on real languages, we used the PHP international number
conversion tool to gather data for several number systems. On the input side, the neural model is
trained on a large set of input tokens labeled by ID; at test time, we arbitrarily assign each word in
the test language to a specific token ID. Character-level variation, such as elision, omission of final
letters, and tone shifts were ignored. For integer outputs, we tokenized integers by digit. For testing,
we conditioned on a core set of primitive examples, plus 30 additional compositional examples. At
test time, we increased the preference for longer compositional examples compared to the training
time distribution, in order to test generalization.

Generating input-output examples For each grammar, example pairs (xi, yi) come in two cate-
gories: a core set of “necessary" primitive words, and a set of compositional examples.

1. Necessary words: The core set of "necessary words" are analogous to the primitives for the
MiniSCAN and SCAN domains. This set comprises examples with only one token as well as
examples for powers of 10. For both training and testing, we produce an example for every
necessary word in the language. For the synthesis models, we automatically convert the core
primitive examples into rules.

2. Compositional examples: At test time, to provide random compositional examples for each
language, we sample numbers from a distribution over integers and convert them to words
using the NumberFormatter class (see convertNum.php). To ensure a similar process
during training time, to produce compositional example pairs (xi, yi) for a training grammar
G, we sample numbers yi from a distribution over integers. We then construct the inverse
grammar G−1, which transforms integers to words, and use this to find the input sequence
examples xi = G−1(yi). At test time, the compositional example distribution is slightly
modified to encourage longer compositional examples. The sampling distribution can be
found in test_langs.py. At training time, we produce between 60 and 100 compositional
examples for the support set, and 10 for the held out query set. At test time, we produce 30
compositional examples for the support set and 30-70 examples for the held out query set.

Results Table A.5 shows the results in the number word domain with standard error, averaged over
5 evaluation runs for each language.

15

G =
mup -> BLACK
kleek -> WHITE
wif -> PINK
u2 dax u1 -> [u1] [u1] [u2]
u1 lug -> [u1]
x1 gazzer -> [x1]
u2 dox x1 -> [x1] [u2]
u1 x1 -> [u1] [x1]

G =
tufa -> PINK
zup -> RED
gazzer -> YELLOW
kleek -> PURPLE
u2 mup x2 -> [u2] [x2]
x2 dax -> [x2]
u2 lug x2 -> [u2] [x2]
u1 dox -> [u1] [u1] [u1]
u1 x1 -> [u1] [x1]

G =
gazzer -> PURPLE
wif -> BLACK
lug -> GREEN
x2 kiki -> [x2] [x2]
x1 dax x2 -> [x2] [x1]
x1 mup x2 -> [x2] [x1] [x2] [x1] [x1]
u1 x1 -> [u1] [x1]

Figure A.2: Samples from the training meta-grammar for MiniSCAN.

16

G =
turn -> GREEN
left -> BLUE
right -> WALK
thrice -> RUN
blicket -> RED
u2 and x1 -> [x1] [x1] [x1] [u2] [u2] [u2] [x1]
u1 after x2 -> [u1] [u1] [x2] [x2] [u1] [x2] [x2]
u2 opposite -> [u2] [u2]
u1 lug x2 -> [u1] [x2]
u1 x1 -> [u1] [x1]

G =
and -> JUMP
kiki -> LTURN
blicket -> BLUE
walk -> LOOK
thrice -> RED
run -> GREEN
dax -> RUN
after -> RTURN
x2 twice u1 -> [u1] [x2] [x2] [x2] [x2]
u2 right x1 -> [x1] [u2] [u2]
u1 look x2 -> [u1] [x2] [x2]
u1 jump -> [u1] [u1]
u2 turn u1 -> [u2] [u1]
u1 lug -> [u1] [u1]
x2 left u1 -> [x2] [u1]
u1 x1 -> [u1] [x1]

G =
twice -> WALK
jump -> RTURN
turn -> JUMP
walk ->
blicket -> GREEN
kiki -> RUN
right -> RED
run -> BLUE
x2 left -> [x2] [x2] [x2] [x2] [x2]
x1 dax u1 -> [u1] [x1] [u1]
u1 thrice x2 -> [u1] [x2] [x2] [u1] [u1]
x1 look u2 -> [x1] [x1] [u2] [x1]
x2 around -> [x2]
u1 u2 -> [u2] [u1]

G =
twice -> WALK
jump -> RTURN
turn -> JUMP
walk ->
blicket -> GREEN
kiki -> RUN
right -> RED
run -> BLUE
x2 left -> [x2] [x2] [x2] [x2] [x2]
x1 dax u1 -> [u1] [x1] [u1]
u1 thrice x2 -> [u1] [x2] [x2] [u1] [u1]
x1 look u2 -> [x1] [x1] [u2] [x1]
x2 around -> [x2]
u1 u2 -> [u2] [u1]

Figure A.3: Samples from the training meta-grammar for SCAN.

17

G =
token14 -> 1
token16 -> 2
token50 -> 3
token31 -> 4
token49 -> 5
token28 -> 6
token17 -> 7
token03 -> 8
token06 -> 9
token14 token10 -> 10
token13 -> 100
token14 token36 -> 1000
token01 -> 1000000
token08 y1 -> 1000000* 1 + [y1]
token05 token01 y1 -> 1000000* 9 + [y1]
x1 token01 y1 -> [x1]*1000000 + [y1]
x1 token36 y1 -> [x1]*1000 + [y1]
token32 y1 -> 100* 1 + [y1]
x1 token13 y1 -> [x1]*100 + [y1]
x1 token10 y1 -> [x1]*10 + [y1]
u1 token09 x1 -> [u1] + [x1]
u1 x1 -> [u1] + [x1]

G =
token20 -> 1
token22 -> 2
token37 -> 3
token14 -> 4
token01 -> 5
token13 -> 6
token48 -> 7
token05 -> 8
token16 -> 9
token47 -> 10
token07 -> 20
token08 -> 30
token35 -> 40
token02 -> 50
token40 -> 60
token31 -> 70
token43 -> 80
token29 -> 90
token20 token38 -> 100
token20 token18 -> 1000
token20 token33 -> 10000
token28 token33 y1 -> 10000* 7 + [y1]
x1 token33 y1 -> [x1]*10000 + [y1]
x1 token18 y1 -> [x1]*1000 + [y1]
x1 token38 y1 -> [x1]*100 + [y1]
u1 x1 -> [u1] + [x1]

Figure A.4: Samples from the training meta-grammar for number word learning. Note that the model
is trained on a large set of generic input tokens labeled by ID. At test time, we arbitrarily assign each
word in the test language to a specific token ID.

18

	1 Introduction
	2 Related Work
	3 Our Approach
	4 Experiments
	4.1 Miniscan
	4.2 scan Challenge
	4.3 Learning Number Words

	5 Conclusion
	A Supplementary Material
	A.1 Experimental and computational details
	A.1.1 Experimental details: Miniscan
	A.1.2 Experimental details: scan
	A.1.3 Experimental details: Number Words

