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Abstract

To facilitate the browsing of long videos, automatic video
summarization provides an excerpt that represents its con-
tent. In the case of egocentric and consumer videos, due
to their personal nature, adapting the summary to specific
user’s preferences is desirable. Current approaches to cus-
tomizable video summarization obtain the user’s preferences
prior to the summarization process. As a result, the user needs
to manually modify the summary to further meet the pref-
erences. In this paper, we introduce Active Video Summa-
rization (AVS), an interactive approach to gather the user’s
preferences while creating the summary. AVS asks questions
about the summary to update it on-line until the user is sat-
isfied. To minimize the interaction, the best segment to in-
quire next is inferred from the previous feedback. We eval-
uate AVS in the commonly used UTEgo dataset. We also
introduce a new dataset for customized video summariza-
tion (CSumm) recorded with a Google Glass. The results
show that AVS achieves an excellent compromise between
usability and quality. In 41% of the videos, AVS is considered
the best over all tested baselines, including summaries manu-
ally generated. Also, when looking for specific events in the
video, AVS provides an average level of satisfaction higher
than those of all other baselines after only six questions to the
user.

1 Introduction

The emergence of compact and portable cameras in the con-
sumer market has created the need for automatic and cus-
tomizable summarization tools. Videos recorded with smart-
phones and wearable cameras are flooding social networks,
and our lives are being recorded in a hands-free and non-
intrusive way. As a result, video summarization tools will
play a key role to facilitate sharing consumer videos in the
near future, as these tools can save a considerable amount of
resources to the user, e.g. time to create the summary, cost
of sharing and keeping long videos, etc.

Many state-of-the-art summarization tools select video
segments to include in the summary by optimizing a pre-
defined criteria. Such criteria frequently relates to story co-
herence such as diversity and representativity (Dang and
Radha 2014; Zhao and Xing 2014); interestingness from
visual aesthetics, attention, importance to external human
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judges, etc. (Ma et al. 2005; Jiang, Cotton, and Loui 2011;
Gygli et al. 2014; Potapov et al. 2014; Lin, Morariu, and Hsu
2015; Zhang et al. 2016; Chu, Song, and Jaimes 2015; Yao,
Mei, and Rui 2016); or both (Ngo, Ma, and Zhang 2005;
Lu and Grauman 2013; Gygli, Grabner, and Van Gool 2015).

Recently, however, several authors stressed the need to
take into account the user’s preferences, as the usability of
video summarization can be significantly improved if cus-
tomizing the summary. Furthermore, the data show that sum-
maries generated by different people are not consistent be-
tween each other (Gygli et al. 2014). Thus, customization
might be crucial to effectively summarize consumer videos,
as these videos are inherently personal.

Previous work to customize video summaries obtains the
user’s preferences passively, by analyzing data that the user
provided previously to the summarization. Several methods
create a customized summary given a text query from the
user (Yang et al. 2003; Varini, Serra, and Cucchiara 2015;
Sharghi, Gong, and Shah 2016) or a set of video segments
that match a set of user’s preferences (Tseng and Smith
2003; Han, Hamm, and Sim 2011). Another strand of meth-
ods assesses each segment’s interest from the user’s behav-
ior while watching that video (Peng et al. 2011), or similar
videos (Masumitsu and Echigo 2000; Yoshitaka and Sawada
2012).

In this paper, we introduce Active Video Summarization
(AVS), which enriches the set of user’s preferences while
creating the summary. AVS improves the usability of the
aforementioned passive approaches, as these approaches are
constrained by the initial feedback the user provided. A
probabilistic model is used to infer both the customized sum-
mary and the next question to ask, which reduces the time
the user needs to produce a summary.

We evaluate AVS on two challenging datasets for video
summarization: UTEgo (Lee, Ghosh, and Grauman 2012),
which is a commonly used egocentric video dataset, and
CSumm, a new dataset for customizable video summariza-
tion that we introduce. CSumm contains single-shot uncon-
strained videos of long duration recorded with a Google
Glass, which depict a varied range of events and daily life ac-
tivities. The results show that the summaries generated with
AVS exploit better the user’s preferences than the state-of-
the-art video summarization algorithms. Namely, AVS sig-
nificantly reduces the time spent by the users to generate



their preferred summary. With just six questions to the user,
the average level of satisfaction for AVS is higher than those
of all other tested algorithms. Also, in 41% of the tested
cases, the users consider the summary obtained with AVS
better than any other summary, including the summaries
generated with manual tools.

2 General Overview of Active Video
Summarization

The aim of AVS is to provide a customized summary with as
little effort as possible from the user side. The system first
asks for the user’s initial preferences, selected from a set
of items, i.e. the most frequent items in the original video.
Then, the user’s preferences are further refined through a
question-asking inference.

AVS asks the user specific questions about segments of
the video. It shows one selected segment, and asks the fol-
lowing two binary questions: Q1: Would you want this seg-
ment to be in the final summary?, and Q2: Would you want to
include similar segments? Additionally, the user can decide
at any time to go through the segments in the summary, and
give such feedback about them. Although AVS is not lim-
ited to these two questions, experiments show that they are
effective in practice, and they serve us as a proof of concept.
Note that the original video is not shown to the user, as the
segments shown during the interaction provide an accurate
idea of the video content in much less time.

Thus, AVS can be divided into two inference problems:
(i) infer the customized summary, and (ii) infer the next
segment to show (Alg. 1). We use a probabilistic approach
based on active inference in Conditional Random Fields
(CRFs) (Roig et al. 2013). to infer the most likely summary,
and to estimate the next question to ask. CRFs are sound
probabilistic models that have been successfully applied in
many computer vision and multimedia problems (Lafferty,
McCallum, and Pereira 2001). In the following, we intro-
duce CRFs to infer the customized summary, and then, the
algorithm that infers the segments to show.

3 Inference of the Customized Summary

Let s = {s;} be the set of random variables that represent
the summary of the video by indicating whether a segment
(or subshot) of the video appears in the summary. Thus, s; €
{0, 1}, where s; is equal to 1 when the segment is included
in the summary, and 0 otherwise. We denote P(s|0) as the
probability density distribution of how likely the summary
s is preferred by the user. We model this distribution with a
CREF, and 0 are the values of its parameters, that depend on
the input video and the user’s preferences.

A CRF models the probability density with a Gibbs dis-
tribution, c.f. (V. and Wainwright 2005). Therefore, P(s|6)
can be written as the normalized exponential of an energy
function, which is denoted as Fg(s). The energy function is
the sum of a set of potentials, which are functions that take as
input a subset of {s;}. The summary of the video, which is
denoted as s, is obtained by inferring the Maximum a Pos-
teriori (MAP), i.e. sj = arg maxs P(s|0), or equivalently,
maximizing the energy function Fy(s).

In the following, we first introduce the potentials of the
CREF, and then the algorithm to obtain the MAP summary.

3.1 CREF for Customized Summarization

We follow most methods in the literature, that select repre-
sentative and diverse segments with as little motion as pos-
sible. To do so, we define the energy function of the CRF

as
Eg(s) = A u(Si) + Siy55), (1)
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where the unary potentials enforce the selection of static seg-
ments, the pairwise potentials encourage segments with di-
verse semantic content, and A is a parameter that weights
the unary potentials with respect to the pairwise. There is a
unary potential for each segment of the video, and one pair-
wise potential for each pair of similar segments. The length
of the summary is controlled during the inference of the
MAP summary by adding additional constraints to the en-
ergy function that control the length of the summary, as we
show below.

Next, we introduce the potentials, and we make empha-

sis on the update of the potentials when new user’s prefer-
ences are known. Note that we omit the dependency of the
potentials on 6 for simplicity, and the parameters that we
introduce in the following should be considered as part of
6. Also, the values of the parameters of the potentials are
introduced in the implementation details in Sec. 5.2.
Unary Potentials. The unary potentials, {¢,(s;)}, encour-
age selecting segments that the user will probably like.
¢u(s;) is equal to Q;I[s; = 1] + LI[s; = 0], in which:
I[a] is an indicator function that is 1 if a is true and O oth-
erwise; (); is a function representing how well that segment
relates to the requirements individually; and L is a constant
offset that is set during the MAP inference of the summary
in order to adjust the summary length (Sec. 3.2).

During the on-line interaction phase, when the user rec-
ommends to include a segment s; (an affirmative response
to QI), Q; is increased by A to enforce the selection of that
segment; otherwise @); is decreased by A.

Pairwise Potentials. The pairwise potentials, {¢p(si, s;)},
are defined between each pair of similar segments, and en-
force selecting segments with diverse content.

Let d(w;, ;) be the Euclidean distance between the de-
scriptors of two segments (details in Sec. 5.2). The pair-
wise potential enforces that similar segments should not
be included in the summary. To do so, we define a po-
tential that is weighted by the distance between descrip-
tors, i.e. ¢p(si,85) = exp (—d(v;,1;)) b, (si, s5), in which
¢, (si,55) enforces that both segments should not be se-
lected at the same time, and the term exp (—d(t;,;)) re-
duces the effect of ¢},(s;, s;) when the segments are dissimi-
lar. In this way, only a representative segment among similar
segments is selected.

Specifically, ¢y, (s, s;) is defined as

Lo ifs;=s5;=0
d);(si,sj) = { —LB ifs;=s;=1 |, ()
Y lfSL 75 Sj



where 7y is the cost of selecting only one segment in the pair,
« and [ are the cost to discard or select both segments, re-
spectively, and L is a variable parameter that controls the
length of the summary. Note that when -, «, and /3 are pos-
itive, the negative sign of the case s; = s; = 1 implies that
selecting two similar segments is discouraged for big values
of 5.

When new user’s preferences are available, we update all
the pairwise terms in which the segment in question ap-
pears. When the user recommends selecting either the seg-
ment (Q7) or a similar segment (Q2), but not both,  is mul-
tiplied by a K > 1 to encourage that one of the two seg-
ments in the pair is selected. On the opposite case, if the
user recommends discarding or selecting both segments at
the same time, we multiply v by —K to penalize select-
ing one of them, i.e. it penalizes z; # x;. Additionally, if
the user recommends selecting both the segment and simi-
lar ones, (3 is enlarged by — K, to cancel the negative sign in
Eq. (2) and allow that multiple similar segments are selected.

3.2 MAP Inference of the Summary

There are many off-the-shelf algorithms to obtain the MAP
summary from the CRF with the energy function we intro-
duced in Eq. (1). We use the implementation of Belief Prop-
agation (BP) (Yedidia, Freeman, and Weiss 2005) imple-
mented by Boykov and Kolmogorov (2004), using a max-
imum of five iterations.

The summary is generated using a line search algorithm
that optimizes the values of L and A to yield the desired sum-
mary duration and balance between visual quality (unary po-
tentials) and diversity (pairwise potentials). Recall that the
parameter L encourages excluding segments from the sum-
mary when L > 1: s; = s; = 0 is further encouraged and
s; = s; = 1is further penalized (due to the negative sign).
Thus, when L is increased, the summary is shorter; other-
wise it is longer. Additionally, the parameter \ is increased
when the segments selected do not meet the minimum qual-
ity criteria or to better meet the initial requirements, and de-
creased to facilitate diverse content.

4 Inference on the Next Segment to Show

The formulation with the CRF that we have introduced in the
previous section yields the following flow of the algorithm.
Initially, the values of the CRF potentials are 8;, which
are estimated from the input video. Then, the summary sp,
(MAP summary) is shown to the user. The algorithm selects
a segment to query, and the values are updated, 85, to match
the user’s answer. Thus, after the ¢-th answer, the potential’s
values are 6;1.

We now introduce the inference on the next segment to
query. AVS ranks all possible questions with a score, and
asks for the one with the highest rank. Let Si be the score
used to rank the k-th candidate segment. Following the dy-
namic programming formulation (Bellman 1952), the score
is based on a reward function that evaluates the change pro-
duced in the summary given the answer of the user, i.e. it
compares sp, | 0 85, . Since the reward is obtained after an
answer of the user, the algorithm can only estimate the ex-

Alg. 1: Active Summarization

601 < initialization from the video
t=1

while user does not stop the loop do
> Compute customized summary:
Sp, = argmaxs Fg, (s)

Display sp,

> Compute the reward of asking about each candidate:
forall candidate segments do

‘ Sr=FEo,_, [R (ngl,sgt) | k-th candidate}
end

> Ask about the candidate with the highest Si.:
if users wants to review summary then

| Ask questions about segments in s,
else

‘ k* = arg maxy Sk

Ask about k*-th candidate

end
041 < adapt from user’s answer
t=t+1

end

pected reward to decide the candidate to query. Thus, the
score Sg, is obtained evaluating the expected reward for the
k-th candidate.

We use R(sg,,,,sp,) to denote the reward function, that
compares the future summary sgtﬂ to s, . Since we want to
prioritize the questions that may yield the largest changes in
the summary, we define R(-,-) as the Kendall 7 correlation
between s, and sj, (Deza and Deza 2009).

Also, we only evaluate the expected reward for the next
candidate by discarding the reward of future segment queries
that are not the next one. Thus, we define Sy, as

Sr=Ep,,, [R (sgt“,s};t) | k-th question} , 3

where the expectation is over all possible answers to query-
ing the k-th candidate, and sp, | is the MAP summary for

an user’s answer of the k-th candidate.

Note that to compute the expected value in Eq. 3 we
need an estimate of the probability of the user’s answers.
We can estimate this probability using BP (Sec. 3.2).
BP obtains the MAP summary by approximating the
marginals of the Gibbs distribution, i.e. BP approximates
{P(s;|0)} and {P(s;,s;|0)}, and then, it takes the s;’s
that maximizes P(s;|0), independently from the other seg-
ments, c¢.f. (Yedidia, Freeman, and Weiss 2005). Thus, we
can take the marginals estimated by BP to compute the prob-
ability of the user’s answers. Note that {P(s;|0)} is the
probability that the user recommends the ¢-th segment to be
included in the summary (an affirmative response to Q7).
Also, we can estimate the probability that the user will rec-
ommend to include similar segments (Q2) by averaging the
pairwise marginals, { P(s;, s,|0)}, that refer to the segments
similar to s;.



S Experiments

In this section, we report results both on a new dataset for
customized video summarization and UTEgo (Lee, Ghosh,
and Grauman 2012). After introducing the new dataset, and
implementation details, we report the results of AVS.

5.1 Datasets (CSumm and UTEgo)

Since current public datasets that provide annotations of the
summary contain 1 to 5 minutes videos (e.g. SumMe (Gygli
etal. 2014), MED (Potapov et al. 2014)), and video summa-
rization is of most use for longer videos, we have obtained
annotations for 10 shots of 15 to 30 minutes that we recorded
with a Google Glass (29 fps, with resolution of 720 x 1280
pixels). The videos include a large selection of activities,
such as practicing or watching sports, enjoying nature, hav-
ing dinner, etc.

The videos are unconstrained, and include a wide range of
viewpoints and motion, as they are first person view, and a
large amount of irrelevant moments alongside the recording.
This makes our dataset challenging for video summariza-
tion, which is supported by our results below. In the Suppl.
Material we show several summaries of CSumm.

Additionally, we report results on UTEgo (Lee, Ghosh,
and Grauman 2012), an egocentric video dataset commonly
used for the evaluation task. Recorded with a Looxcie cam-
era at 15fps and a resolution of 320 x 480 pixels, this dataset
contains four long videos (three to five hours) of daily activ-
ities such as cooking, shopping, eating and driving. We have
divided three of these videos into two parts, obtaining a total
of seven videos of two hours or longer.

5.2 Implementation Details

We now introduce the specifics of our implementation, and
the values of the different constants. These values have been
manually set during development, prior to the studies with
the subjects.

Video Segmentation The subshot boundaries used for the
summarization are estimated with the motion status and
changes on the environment. In CSumm, these are obtained
through the gyroscope from Google Glass to infer motion,
and the illumination sensor to identify abrupt changes in the
lighting condition. Each segment is set to be around 2.5 sec-
onds long, and its boundaries to match a change in illumi-
nation or motion pattern. In UTEgo, since the sensor data
is not available, segments are equally set to be around 2.5
seconds long, with its boundaries matching a change in the
image overall illumination, obtained from a quantization of
the image mean intensity.

Segment Descriptors The frame descriptors, p;, are
based on the output of a neural network for object recog-
nition, extracted for each frame. Specifically, we use the
last layer from AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012)) trained in Places dataset (Zhou et al. 2014) and
in ImageNet (Russakovsky et al. 2015). We concatenate the
output of the neural network for the categories of objects (in-
cluding animals) and places. Finally, we average the value
for each item along all the frames in the video segment.

Unary Potentials Recall that ; represents the quality of
the video segment for the user. Initially and by default, @Q;
depends on the motion and blur. @; is inversely proportional
to the amount of motion in the segment, which is estimated
from a blur detector in UTEgo, and from the gyroscope in
CSumm. @; is normalized to take values in [0, 1].

Additional passive preferences can be added by the user
beforehand. Such preferences are included in the model as
constraints for this potential. Before starting AVS, we show
the user the list of top ranked objects and places categories
in the video (i.e. the categories with higher accumulated ac-
tivation), and the user can select among them the relevant
items and the irrelevant ones. Then, (); is increased or de-
creased, respectively, depending on the activation value of
such items in segment 4. This is done by multiplying @); by
1 +Zj erelevant ¥i(J) =22 jeirelevant ¥i (7). in which ¢; (j)
is the output of the neural network for the category indexed
with j.

In the active interaction phase, (); is increased or de-
creased by A, which is set to 100 to ensure that the seg-
ments selected by the user appear in the summary, and the
discarded do not.

Pairwise Potentials To enforce representativeness of the
segments in the summary, we set « = 5, S = 1l and vy = 1.
We can observe by analyzing Eq. (2) that these parameters
penalize selecting both segments (3 = 1, and the negative
sign). Also, these parameters encourage that both segments
are discarded (o« = 5), or that only one of them is selected
(v = 1). Note that « is bigger than + because in most cases
the pair of segments in the pairwise potential should be dis-
carded, as only few segments should be selected in the final
summary. In the active interaction phase, the multiplier K is
set to 5.

To reduce the computational cost of the MAP inference
algorithm, we discard the pairwise potentials with smallest
influence. Specifically, we discard 30% of the pairwise po-
tentials that encode the largest distances between segments.

Duration of the Summary The duration is variable de-
pending on the length of the original video. It is set to be
around 0.1% of the video length, with a minimum of 10 sec-
onds.

Baselines We compare AVS to the following baselines:
e Uniform: Summary from uniformly sampled segments.

e VMMR: Video Maximal Marginal Relevance, a summa-
rization method which rewards diversity (Li and Merialdo
2010), executed using our deep features.

e Lee et al. : Summary extracted with the method presented
by Lee, Ghosh, and Grauman (2012). Since this approach
obtains a set of key-frames, we have mapped each key-
frame to its corresponding segment to obtain the video
summary. These summaries are available in UTEgo.

e Manual: In CSumm, where results by Lee, Ghosh, and
Grauman (2012) are not available, we have replaced such
baseline for a manual annotation of the best segments,
with a length constraint of 10 seconds. This was per-
formed by two independent subjects (who did not par-



ticipate in the rest of the user study), which were asked
to manually summarize the given video to their own lik-
ing. The annotation to use as baseline is chosen at random
among both.

Additionally, the efficiency of the inference on the segment
to query in AVS is compared to that of a random selection
of segments (referred as random).

5.3 Evaluation methodology

We analyze two scenarios in which AVS can be used in prac-
tice. In the first scenario, the user has to summarize a video
never seen before. The user has no knowledge of the video
essence, and thus does not know yet what are the relevant
parts. AVS allows the user to discover his or her own prefer-
ences while exploring the video content.

In the second scenario, the user already knows the con-
tent of the video (e.g. the user was the camera wearer), and
already knows his or her preferences. However, due to the
length of the original video, looking for such preferences in
the video is very time consuming. AVS allows for the user
to browse the video and find such events easier and faster. In
the following, we provide the details for the conducted user
study, related to both scenarios.

Scenario 1: Discovery Task We asked 30 independent
participants to summarize two videos they had never seen
before. They were given no constrains as to what had to be
seen in the summary, other than whatever they were inter-
ested in. Then, they were asked to rate how good was that
summary, by answering the question “Did the system man-
age to provide your ideal summary for that video?” with a
scale of 1 (“Not at all”) to 5 (“Absolutely”).

To validate their responses on a semi-blind setting, a week
after the experiment we asked them to compare the quality of
the different baseline summaries. For the two videos the sub-
ject has summarized, we showed the summaries generated
with the baselines, and the ones that the subject generated.
Then, the subject assessed the quality of the summaries by
ranking each of them using one of the following tags: best,
good, acceptable, bad, and worst. We asked them to rate at
least one as worst and one as best. The subjects did not know
the baseline corresponding to each summary, and the order
was randomized among trials. Note that more than one sum-
mary can be rated with the same label, so that there may be
more than one best or worst, if these seem to be equally good
or bad.

Scenario 2: Search Task To evaluate the efficiency of
AVS, the same participants were asked to find a set of events
in 2 videos. Such preferences are given in the form of key-
frames, extracted from the original video, and a text descrip-
tion of what needs to be included in the final summary (an
example can be seen in Fig. 1).

To do so, we asked three independent subjects (that do not
participate in the user study) to agree in the selection of four
frames from each original video. This set of four key-frames
is then used as guidance and scoring reference to summarize
the video. In the user study, each user is asked to generate a
summary which includes the four given events or items.

()

(b

Figure 1: Items to be found in Scenario 2 for an exam-
ple video. CSumm: (a) Gas station by the road. (b) Beach
viewed from the road. (c) Man lying at the shore. (d) Ele-
phants in the water. UTEgo: (e) Driving in highway. (f) Shoe
shopping. (g) Chopping vegetables. (h) Serving food.

CSumm UTEgo
‘ Unif. Annot. VMMR AVS ‘ Unif. CVPR VMMR AVS

Unif. - 28% 44% 25% - 29% 41% 24%
An./CV.| 66% - 78% 50% | 59% - % 41%
VMMR | 47% 19% - 19% | 47% 24% - 24%

AVS| 59% 34% 66% - 1% 53% 76% -

Table 1: Percentage of times each method on the left was
ranked better than the one on top for the Discovery task (sce-
nario 1). Note that symmetric elements may not add up to
100%, since two summaries can be ranked equally.

The subjects perform this task twice, one time with AVS
and the other with AVS with random questions. None of
them knew anything about AVS during the experiment. The
subjects also ignored whether they were using AVS, by ran-
domly changing the order of the algorithms.

At the end of each summarization, we asked the users to
rate how well the final summary represented the given con-
straints, on a scale from 1, none or only one of the events is
found, to 5, all the given constraints are perfectly included in
the summary. This experiment also allows obtaining an ob-
jective measurement from the amount of interaction needed
to reach the target summary. Once performed the summa-
rization task with both approaches, we asked the users to
rate the usability of one approach against the other.

Finally, to obtain a blind test against the baselines, the
user is also asked to rate the summary that another user gen-
erated, and the baseline summaries, using the same scale and
criteria as used in his or her summaries.

5.4 Results

The customization potential of AVS is evaluated through the
quality of the final summary and the usability of the system,
using the data and feedback obtained from the user study
(Sec. 5.3). Examples of the summaries can be found in the
supplementary material.

Quality of the Summary Table 1 describes the percent-
age of times that the subjects have ranked a summary better
than another summary in the discovery task (Scenario 1). We
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Figure 2: Evaluation of the summary after each question in the Search task (scenario 2). The score is given by the answer to
the question “Did the system manage to provide your ideal summary for that video?”, which accepted as responses “Not at
all” (1), “Not much’ (2), “So-so’ (3), “Pretty much’ (4) “Absolutely’ (5). (a) Legend. (b) Mean score of the summaries. (c)
Percentage of summaries for which the summary obtained a score greater or equal to 4. Figure best viewed in color.

can see that AVS is largely preferred over two of the tested
baselines, uniform and VMMR for both datasets. For half of
the summaries in our dataset, AVS is preferred or equally
preferred to manual annotation. In UTEgo, AVS is also pre-
ferred to the method by Lee, Ghosh, and Grauman (2012).

Note that the comparison between manual and uniform in
CSumm shows that in not all cases the subjects prefer the
manual summary over uniform. This shows that the sum-
marization of the videos in CSumm is highly subjective, as
a subject may prefer the uniform summary over a manual
annotation from another person (recall that the subject that
is assessing the manual summary is not the author of this
summary, but of the summary with AVS). This proves the
challenging nature of CSumm, and it gives more reassurance
that the inference of the user’s preferences is a key compo-
nent for video summarization.

When searching for specific events (Scenario 2), Fig. 2
reports the percentage of users satisfied after each question
answered. We observe that the AVS summary after two ques-
tions is rated better than any of the baselines for CSumm. For
the videos of UTEgo, the user needs 6 questions to reach this
level of satisfaction. Thus, with small interaction with the
user, AVS achieves better results than any of the baselines.

However, we observe that for UTEgo, AVS obtains only
slightly better performance than AVS with random ques-
tions. We investigated this, and we found that the perfor-
mance of AVS highly depends on the image quality of the
input data. UTEgo has a resolution of 320 x 480px (more
than four times inferior to the 720 x 1280px of CSumm,
recorded with a Google Glass). As a consequence, the de-
scriptors extracted with neural networks results in an almost
flat output vector, making it difficult for AVS to distinguish
among the different events.

Usability We compare the time needed to generate a cus-
tomized summary with AVS and manually (only in CSumm,
as we did not obtain the manual annotation for UTEgo) in
the discovery task (Scenario 1). In Table 2, we can see that
the users are 4 times faster creating the summary with AVS
than with the manual baseline. This is a significant improve-
ment of the usability of the manual annotation, since the

AVS Manual
5.89 £ 3.85 min. 21.66 & 6.59 min.

Table 2: Time to generate a summary in CSumm.

Much worse Worse Similar Better Much better

CSumm: 5.4% 162% 189% 43.2%  16.2%
UTEgo: 6.7% 13.3% 26.7% 40% 13.3%

Table 3: Subjective perception of the usability of AVS
against the random baseline: amount of summaries that ob-
tained each possible score.

quality of AVS is competitive with the quality of the manual
annotation as shown before.

Looking for specific events (Scenario 2), we can com-
pare AVS and AVS with random questioning under the same
search constraints. We show such subjective assessment in
Table 3. We can see that the majority of the subjects prefer
active inference over the random baseline in both datasets,
which is in accordance with Fig. 2. These results demon-
strate the usefulness of estimating the next questions to ask,
as opposing to selecting random segments.

6 Conclusions

We presented Active Video Summarization (AVS), which is
an approach to interact with the user to customize a video
summary based on Conditional Random Fields. To evaluate
our approach, we introduced a challenging dataset for cus-
tomizable summaries of consumer videos, which we called
CSumm. In a series of experiments, we have demonstrated
that AVS strikes a balance between usability and quality of
the summary.

In the future, the user’s previously generated summaries
will be used to learn his or her preferences. The summaries
will also be used to learn to better interact with the user.
A component we are investigating to further improve the



usability of AVS is a rich set of questions to ask the user
—including relations among the semantic content and the
human actions in the video.
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