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Abstract

We study the implicit bias of gradient based training methods to favor low-depth
solutions when training deep neural networks. Recent results in the literature
suggest that penultimate layer representations learned by a classifier over multiple
classes exhibit a clustering property, called neural collapse. We demonstrate
empirically that neural collapse extends beyond the penultimate layer and emerges
in intermediate layers as well. In this regards, we hypothesize and empirically
show that gradient based methods are implicitly biased towards selecting neural
networks of minimal depth for achieving this clustering property.

1 Introduction

Deep learning systems have steadily advanced the state of the art in a wide variety of benchmarks,
demonstrating impressive performance in tasks ranging from image classification [Taigman et al.,
2014, Zhai et al., 2021], language processing [Devlin et al., 2019, Brown et al., 2020], open-ended
environments [Silver et al., 2016, Arulkumaran et al., 2019], to coding [Chen et al., 2021].

A central aspect that enables the success of these systems is the ability to train deep models instead
of wide shallow ones [He et al., 2016]. Intuitively, a neural network is decomposed into hierarchical
representations from raw data to high-level, more abstract features. While training deeper neural
networks repetitively achieves superior performance against their shallow counterparts He et al.
[2015], Wang et al. [2022], an understanding of the role of depth in representation learning is still
lacking.

Multiple contributions Poggio et al. [2020], Safran et al. [2021], Eldan and Shamir [2016] studied the
role of depth from the view point of approximation theory and expressivity. These works suggest that
in certain cases it requires less parameters in order to approximate a given smooth target function
using deeper networks. While these papers demonstrate superior approximation guarantees for deeper
networks, it is typically possible to fit the training data (and test data) even by using a shallow
fully-connected network. In addition, these papers measure the success of neural networks as the best
approximation a given architecture provides for a given target function. Therefore, these papers do
not take into account on the specific functionalities captured by different layers of the trained model.

As an attempt to understand the training dynamics of neural networks, another line of work considers
the training dynamics of neural networks of very large widths [Jacot et al., 2018]. In [Lee et al.,
2019] they showed that under certain conditions, training wide shallow neural networks with gradient
decent converges to a solution of kernel regression with the neural tangent kernel (NTK). However,
this result makes several unrealistic assumptions that give rise to training dynamics that abstain from
learning representations. These assumptions include: large widths, incorporating a non-standard
initialization procedure and the absence of batch normalization layers [Jacot et al., 2019].
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Recently, Papyan et al. [2020] suggested a different perspective on understanding the representations
learned by neural networks in a standard setting (e.g., with batch normalization, standard initialization,
etc’) in the lens of neural collapse. Informally, neural collapse (NC) identifies training dynamics
of deep networks for standard classification tasks, where the features of the penultimate layer
associated with training samples belonging to the same class tend to concentrate around their means.
Specifically, Papyan et al. [2020] observed that the ratio of the within-class variances and the distances
between the class means tends to zero, especially at the terminal stage when training proceeds beyond
perfectly fitting the training labels. They also noticed that asymptotically the class-means (centered at
their global mean) are not only linearly separable, but are actually maximally distant and located on a
sphere centered at the origin up to scaling (they form a simplex equiangular tight frame). Furthermore,
it has also been observed that the features are nearest class-center separable, meaning that a nearest
class-center classifier on top of the features is able to perfectly distinguish between the classes. In
addition to that, it has been shown that the behavior of the last-layer classifier (operating on the
features) converges to that of the nearest class-center decision rule. Since neural collapse deals with a
setting in which the within-class variability of the penultimate layer is small, we can intuitively say
that the classification is essentially already done at the penultimate layer.

Contributions. In this work we suggest a new perspective on understanding the role of depth in
deep learning. We observe that SGD training of deep neural networks exhibits an implicit bias that
favors solutions of minimal depth for achieving nearest class-center classification.

The central contributions in this work are:

• We empirically show that in contrast to original predictions, neural collapse does not necessarily
happen at the stage of training when the network perfectly fits the data. Instead, we show that it
emerges only if the network is sufficiently deep.

• We characterize and study the effective depth of neural networks that measures the lowest layer’s
features that are NCC separable. We empirically show that when training a neural network, SGD
favors solutions of small effective depths. Specifically, the feature embeddings of layers above a
certain minimal depth of the neural network are NCC separable.

• We empirically show that the effective depth of neural networks increases when trained with
extended portions of corrupted labels and we prove its connection with generalization.

Organization. The rest of the paper is organized as follows: Some additional related work is
discussed in Section 1.1. The problem setting is introduced in Section 2. Neural collapse, the
effective depths of neural networks and their relation with generalization are presented in Section 3.
Experiments are presented in Section 4, and conclusions are drawn in Section 5.

1.1 Additional Related Work

Neural collapse and generalization. The relationship between neural collapse and generalization
has been addressed multiple times in the literature. In [Galanti et al., 2022] they theoretically and
empirically studied the conditions for neural collapse to generalize from train samples, to test samples
and new classes and its implications on transfer learning. For instance, they showed that in the
regime of neural collapse, if the number of training samples tends to infinity, we should expect to
encounter neural collapse on the test samples as well. Inspired by that demonstrated the possibility
of perfectly fitting random labels with neural networks despite their ability to generalize, Mixon et al.
[2020] provided empirical evidence that neural collapse emerges when training the network with
random labels. This raises the following question: does neural collapse indicate whether the network
generalizes?

In this work, we make the following observations. First, we observe that the degree of neural collapse
(on the training samples) generally improves when increasing the number of layers. Second, we
extend the experiment of Mixon et al. [2020] we observe that the degree of neural collapse when
training with the correct labels is lower than the neural collapse achieved when a subset of the labels
are corrupted. Furthermore, we show that the minimal NCC depth increases when training neural
networks with extended portions of corrupted labels. Therefore, we conclude that the presence of
neural collapse itself only weakly indicates whether the network generalizes or not. Instead, we
propose the minimal NCC depth as a stronger indicator whether generalization is evident or not.
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Neural collapse in intermediate layers. While the original motivation in Papyan et al. [2020]
was to study the variability collapse of the penultimate layer and the convergence of the network’s
last layer to a nearest class-center classifier, it is tempting to understand whether this behaviour
also extends below the network’s penultimate layer. For the purpose of studying the relationship
between neural collapse and transferability, Galanti et al. [2022] investigated the emergence of neural
collapse in intermediate layers. Specifically, they compared the degree of variability collapse in the
second-to-last embedding layer of a residual network with the variability collapse in the penultimate
layer. This paper observed that while we can see a similar clustering behaviour as in the penultimate
layer, the extent is lower. Following that Hui et al. [2022] conducted an experiment showing a similar
behaviour with MLPs. In Ben-Shaul and Dekel [2022] they consider the emergence of neural collapse
intermediate layers of neural networks by looking at the nearest class-center classification error of
various layers of the networks. However, none of these papers identified the minimal-depth principle
that we characterize and study in this work.

2 Problem Setup

We consider the problem of training a model for a standard multi-class classification. Formally, the
target task is defined by a distribution P over samples (x, y) ∈ X × YC , where X ⊂ Rd is the
instance space, and YC is a label space with cardinality C. To simplify the presentation, we use
one-hot encoding for the label space, that is, the labels are represented by the unit vectors in RC , and
YC = {ec : c = 1, . . . , C} where ec ∈ RC is the cth standard unit vector in RC ; with a slight abuse
of notation, sometimes we will also write y = c instead of y = ec. For a pair (x, y) distributed by P ,
we denote by Pc the class conditional distribution of x given y = c (i.e., Pc(·) = P[x ∈ · | y = c]).

A classifier hW : X → RC assigns a soft label to an input point x ∈ X , and its performance on the
distribution P is measured by the risk

LP (hW ) = E(x,y)∼P [`(hW (x), y)], (1)

where ` : RC × YC → [0,∞) is a non-negative loss function (e.g., L2 or cross-entropy losses). For
simplicity, sometimes we will omit writing W in the subscript of h.

We typically do not have direct access to the full population distribution P . Therefore, we typically
aim to learn a the classifier, h, from some balanced training data S = {(xi, yi)}mi=1 = ∪Cc=1Sc =
∪Cc=1{xci, yci}

m0
i=1 ∼ PB(m) of m = C ·m0 samples consisting m0 independent and identically

distributed (i.i.d.) samples drawn from Pc for each c ∈ [C]. Specifically, we intend to minimize the
empirical risk

LS(h) =
1

m

m∑
i=1

`(h(xi), yi). (2)

Finally, the performance of the trained model is evaluated using the train and test error rates, which
are computed as follows: errS(h) =

∑m
i=1 `(h(xi), yi) and errP (h) = E(x,y)∼P [`(h(x), y)].

Neural Networks. In this work, the classifier h is implemented as a neural network, decomposed
into a set of parametric layers. Formally, we write h := gL+1 ◦ · · · ◦ g1 := gL+1

θL+1
◦ · · · ◦ g1θ1(x),

where giθi ∈ {g
′ : Rpi → Rpi+1} are parametric functions with θi being vectors of real-values. For

example, giθi could be a standard layer giθi(z) = σ(θi · z), a residual block gθi(z) = z + θ2i σ(θ
1
i z) or

a pooling layer. The last layer gL+1
θL+1

is simply a linear mapping. Here, σ is an element-wise activation
function. We denote the ith layer of the neural network as fi = giθi ◦ · · · ◦ g

1
θ1
(x), for i ≤ d.

Optimization. In this work, we consider optimizing h using stochastic gradient decent (SGD).
We aim at minimizing the regularized empirical risk LλS(h) = LS(h) + λ‖W‖22 by applying SGD
for a certain number of iterations. Namely, we initialize the weights W0 of h using a standard
initialization procedure (e.g., Kaiming He initialization ) and at each iteration, we update Wt+1 ←
Wt − µt∇WLS̃(ht), where µt > 0 is the learning rate at the t’th iteration and the subset S̃ ⊂ S of
size B is selected uniformly at random. Throughout the paper, we denote by hS = gL+1

S ◦ fS the
output of the learning algorithm.
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Notations. Throughout the paper, we use the following notations. For an integer k ≥ 1, [k] =
{1, . . . , k}. For any real vector z, ‖z‖ denotes its Euclidean norm. We denote by µu(Q) =
Ex∼Q[u(x)] and by Varu(Q) = Ex∼Q[‖u(x) − µu(Q)‖2] the mean and variance of u(x) for x ∼
Q. For a finite set A, we denote by U [A] the uniform distribution over A. We denote by I :
{True,False} → {0, 1} the indicator function. For a given distribution P over X and a measurable
function f : X → X ′, we denote the distribution of f(x) by f ◦ P . Let U = {yi}mi=1 be a set of
labels yi ∈ [C]. We denote D(U) = (p1, . . . , pC), with pc = 1

m

∑m
i=1 I[yi = c].

3 Neural Collapse and Generalization

In this section we theoretically explore the relationship between neural collapse and generalization.
We begin by formally introducing neural collapse, NCC separability along with the effective depth of
neural networks. Then, we connect these notions with the test-time performance of neural networks.

3.1 Neural Collapse

As mentioned in Section 1, neural collapse considers training dynamics of deep networks for standard
classification tasks, in which the features of the penultimate layer associated with training samples
belonging to the same class tend to concentrate around their class means. In this paper, we focus on
the class-features variance collapse (NC1) and the nearest class-center classifier simplification (NC4)
properties of neural collapse.

To evaluate NC1, we follow the evaluation process suggested by Galanti et al. [2022], that works with a
slightly different variation of within-class variation collapse, which is related with the clusterability of
the sample feature vectors. For a feature map f : Rd → Rp and two (class-conditional) distributions1

Q1, Q2 over X ⊂ Rd, we define their class-distance normalized variance (CDNV) to be

Vf (Q1, Q2) =
Varf (Q1) + Varf (Q2)

2‖µf (Q1)− µf (Q2)‖2
.

The definition of Galanti et al. [2022] for neural collapse (at training) asserts that

lim
t→∞

Avgi 6=j∈[l][Vf(t)(Si, Sj)] = 0,

where f (t) is the value of the function f at iteration t of the training, focusing on f being the
penultimate layer of the neural network f = gL ◦ · · · ◦ g1. As shown empirically in Galanti et al.
[2022], this definition is essentially the same as that of Papyan et al. [2020].

The nearest class-center classifier simplification property asserts that, during training, the feature
embeddings in the penultimate layer become separable and classifier h itself converges to the ‘nearest
class-center classifier’, ĥ. Formally, suppose we have a dataset S = {(xi, yi)}mi=1 = ∪Cc=1Sc of
samples and a feature map f : Rd → Rp, we say that the features of f are NCC separable, if

∀j ∈ [m] : ĥ(xj) = argmin
c∈[C]

‖f(xj)− µf (Sc)‖ = yj . (3)

As additional measures of collapse of a given layer, we also use the NCC train and test error rates,
errS(ĥi) and errP (ĥi), which are the error rates of ĥi(x) = argminc∈[C] ‖fi(x) − µfi(Sc)‖. As
shown in [Galanti et al., 2022], the NCC error rate can be upper bounded in terms of the CDNV.
However, the NCC error can be zero in cases where the CDNV would be larger than zero.

3.2 Effective Depths and Generalization

In this work we argue that neural networks trained for standard classification exhibit an implicit
bias towards depth minimization. Namely, if by training a model fL = gL ◦ · · · ◦ g1 of depth L
for classification, the learned features fL are NCC separable, then by training a neural network
fL+l = gL+l ◦ · · · ◦ g1 (with the same hyperparameters) we obtain that the features of the top l layers
are NCC separable. Intuitively, we could correctly classify the samples already in the L’th layer
of fL+l, and therefore, it depth is effectively upper bounded by L. The notion of effective depth is
formally defined as follows.

1The definition can be extended to finite sets S1, S2 ⊂ X by defining Vf (S1, S2) = Vf (U [S1], U [S2]).
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Definition 1 (Effective depth). Suppose we have a dataset S = ∪Cc=1Sc = {(xi, yi)}mi=1, a neural
network fL = gL ◦· · ·◦g1 with g1 : Rn → Rp2 and gi : Rpi+1 → Rpi . The effective empirical depth
dS(fL) of fL is the minimal value i ∈ [L], such that, ĥi(xj) = argminc∈[C] ‖fi(xj)−µfi(Sc)‖ = yj
for all j ∈ [m].

While our empirical observations in Sec. 4 demonstrate that the optimizer tends to learn neural
networks of low-depths, it is not necessarily the lowest depth that allows NCC separability. As a next
step, we define the minimal NCC depth. Intuitively, the NCC depth of a given architecture is the
minimal value L ∈ N, for which there exists a neural network of depth L whose features are NCC
separable. As we will show, the relationship between the effective depth of a neural network and the
minimal NCC depth is tightly related with generalization.
Definition 2 (Minimal NCC depth). Suppose we have a dataset S = ∪Cc=1Sc = {(xi, yi)}mi=1 neural
network architecture fL = gL ◦ · · · ◦ g1 with g1 : Rn → Rn0 and gi ∈ G ⊂ {g′ | g′ : Rn0 → Rn0}
for all i = 2, . . . , L. The minimal NCC depth of the network is the minimal depth L for which there
exists a feature map fL = gL ◦ · · · ◦ g1(x) that perfectly fit the data using a NCC classifier. We
denote the minimal NCC depth by dmin(G, S).

As a technicality, throughout the analysis we assume that if the output neural network hS1
was trained

on a given balanced dataset S1 of size m, then, it is also reasonable to expect that the labels hS1

produces on a new balanced set of samples X2 = ∪Cc=1{x2ci}
m0
i=1 would also be fairly balanced. This

notion is formally defined in the following definition.
Definition 3 ((ε, δ)-balancedness). Let hS be the output of our learning algorithm. Assume that hS
perfectly fits the dataset S. We say that the learning algorithm is (ε, δ)-balanced, if with probability
at least 1 − δ over the selection of S1 = {(xi, yi)}mi=1, S2 = {(x̃i, ỹi)}mi=1 ∼ PB(m), we have
‖D({hS1(x̃i)}mi=1)− (1/C, . . . , 1/C)‖1 ≤ ε.

Following the setting above, we are prepared to formulate our generalization bound.
Proposition 1 (Comparative generalization). Let ε > 0, δ, p ∈ [0, 1]. Assume that the learning
algorithm is (ε, δ)-balanced. Assume that S1, S2 ∼ PB(m). Let hS1

= gL+1
S1
◦ fS1

be the output of
the learning algorithm given access to a dataset S1. Then,

ES1
[errP (hS1

)] ≤ P

[
dS1

(fS1
) ≥ min

Ỹ2∈Eεp(Y2)
dmin(G, S1 ∪ S̃2)

]
+ p+ δ, (4)

where Eεp(Y2) is the set of all Ỹ2 = {ỹi}mi=1 that are ε-balanced and disagree with Y2 = {yi}mi=1 on
at least p ratio of the labels.

The above proposition provides an upper bound on the expected test error of the classifier hS1
selected

by the learning algorithm using a balanced dataset S1 of size m. This bound assumes that with access
to a balanced dataset, S1, the learning algorithm returns a function hS1 that behaves approximately
like a uniform distribution over the samples X2. This is formally captured by the (ε, δ)-balancedness
assumption we make regarding the learning algorithm.

In this case, our classifier’s error is at most p if its effective depth is lower than the depth of any
alternative network that perfectly fits S1, mistakes on p ratio of the samples in X2 and generates
fairly uniform labels on X2. In the other case, the expected error is, by definition, upper bounded
by P

[
dS1(hS1) ≥ minỸ2∈Eεp(Y2)

dmin(G, S1 ∪ S̃2)
]
. Combining the two cases gives us the bound in

Eq. 4.

We note that minỸ2∈Eεp(Y2)
dmin(G, S1 ∪ S̃2) essentially measures the minimal depth required in

order to perfectly fit the labels Y1 ∪ Ỹ2, where p ratio of the labels in Ỹ2 are simply random. Hence,
the first term in the bound measures the probability that the effective depth of fS1

is smaller than
the minimal depth required to fit a balanced dataset of size 2m, where p/2 ratio of the samples are
random.

In general, it is impossible to perfectly fit an increasing amount of random labels without increasing
the size of the neural network. Therefore, we expect minỸ2∈Eεp(Y2)

dmin(G, S1 ∪ S̃2) to increase as
long as we increase p or m.
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(a) 2 hidden layers (b) 3 hidden layers (c) 4 hidden layers (d) 8 hidden layers (e) 16 hidden layers

Figure 1: Within-class feature variation collapse with MLP-d-100 trained on CIFAR10. In (a-c)
we plot the CDNV on the train data when varying the number of hidden layer in the network (plotted
in lin-log scale). Each line stands for a different layer within the network. In (e) we plot the train
accuracy rates of the various architecture.

This generalization bound is fairly different than typical generalization bounds . Typically, the
expected error is bounded by the sum between the train error and the ratio between the a measure of
complexity of the selected hypothesis (e.g., depending on the number of parameters, their norm, etc’)
and the square root of the number of training samples. Furthermore, measuring the generalization
using a traditional generalization bounds would still result in a non-vacuous bound even if an implicit
depth minimization is evident. That is because, the overall number of parameters of the network
after replacing the top, redundant, layers with a nearest class-center classifier would still exceed the
number of training samples.

4 Experiments

In this section we experimentally analyze the presence of neural collapse in the various layers of a
trained network. In the first experiment, we validate the implicit bias of SGD to favor neural networks
of minimal NCC depths. In the second experiment, we consider the effect of noisy labels on the
extent of neural collapse, and specifically, on the minimal NCC depth. We show that NCC depth
typically increases when extending the amount of noisy labels present in the data. Finally, we also
conduct an experiment on the presence of neural collapse in a standard ResNet-18 classification
problem to show that our observations happen in general settings as well.

4.1 Setup

Evaluation process. Following our problem setup, we consider k-class classification problems (e.g.,
CIFAR10, STL10) and train a multilayered neural network h = gd ◦ f = gL ◦ · · · ◦ g1 : Rn → RC
on some balanced training data S = ∪Cc=1Sc = ∪Cc=1{(xci, yci)}

m0
i=1. The model is trained using

cross-entropy loss minimization between its logits and the one-hot encodings of the labels. Here,
g1, . . . , gL are the various hidden layers of the network, where gL is its top linear layer. As a second
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Figure 2: Within-class feature variation collapse with ConvNet-d-400 trained on CIFAR10. In
(a-c) we plot the CDNV on the train data when varying the number of hidden layer in the network
(plotted in lin-log scale). Each line stands for a different layer within the network. In (e) we plot the
train accuracy rates of the various architecture.

stage, the NCC accuracy of each sub-architecture fi = gi ◦ · · · ◦ g1(x) (i ∈ [L]) is evaluated as
well. Throughout the experiments, we treat > 99% fitting of the training data as a (close to) perfect
interpolation of the data.

Architectures and hyperparameters. In this work we consider three main architectures. The first
architecture is a Multi-layered perceptron (MLP) whose depth is d and its width is w, denoted by
MLP-d-w. Each layer consists of a linear layer, followed by batch normalization and ReLU. The
second architecture is a simple convolutional neural network that begins with a stack of a 2 × 2
convolutional layer with stride 2, batch normalization, a convolution of the same structure, batch
normalization and ReLU. Following that we have a set of d stacks of a 3× 3 convolutional layer with
stride 1 and padding 1, batch normalization and ReLU. The number of channels in each convolutional
layer is w. The network is denoted by Conv-d-w. The third architecture is the standard ResNet-18 He
et al. [2015].

The optimizations was carried out using SGD with batch size 128, momentum 0.9 and weight decay
5e−4. We train h for 500 epochs.

Datasets. Throughout the experiments, we consider five different datasets: (i) MNIST; (ii) CIFAR10;
(iii) CIFAR-100; (iv) STL-10; and (v) SVHN. For CIFAR variations we used random cropping,
random horizontal flips and random rotations (by 15k degrees for k uniformly sampled from [24]).
For all datasets we standardized the data.

4.2 Results

Minimal depth in neural networks. To study the bias towards learning solutions of minimal depth,
we trained a set of fully connected neural networks with varying depths. In Figs. 1, 6 and 2 we plot
the results of this experiment, for MLP-d-100, ConvNet-d-100 and ConvNet-d-400 networks. In each
row we consider a different evaluation metric (the CDNV on the train and test data and the NCC
classification accuracy on the train and test data) and in each column, we consider a neural network of
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Figure 3: Within-class feature variation collapse with MLP-10-500 trained on CIFAR10 with
noisy labels. In the first row we plot the CDNV on the train data for layers 4, 6, 8, 10 of networks
trained with varying ratios of label noise (see legend). In the second row each figures reports the
NCC accuracy rates of the various layers of a network trained with a certain amount of noisy labels
(see titles). In the third and fourth rows we report the same experiments, but for the test data.

a different depth d = 2, 3, 4, 8, 16. The i’th line stands for the CDNV at train time of the i’th hidden
layer of the neural network. As can be seen from the first row of Fig. 1, for the networks with 8 and
16 hidden layers, the fifth and higher layers enjoy neural collapse. Therefore, these networks are
effectively of depth 4, which is exactly the minimal depth that allows > 99% fitting of the training
data as observed in the third row of Fig. 1. The same can be observed with Fig. 2 for convolutional
networks. In this case, the minimal depth is 5 instead of 4.

Emergence of neural collapse and overparameterization. Originally, neural collapse has been
associated with the terminal stages of training, when the network perfectly fits the training data. As
can be seen in Figs. 1(3,a) and 2(3,a), in certain cases, a relatively shallow network is sufficiently
overparameterized in order to perfectly fit the data. In these cases, we do not necessarily achieve an
emergence of neural collapse. As can be seen from the experiments in Figs. 1 and 2, neural collapse
emerges only when it is possible to perfectly fit the training data with a nearest class-center classifier
as the top layer.

Neural collapse with random labels. We follow Mixon et al. [2020] and investigate the emergence
of neural collapse in the presence of random labels. In Mixon et al. [2020] they showed the neural
collapse tends to happen on the training data even in the case when 100% of the training labels
are selected uniformly at random from [C]. In this experiment we intend to compare the degree of
collapse in the various layers of a neural network that is being trained with different portions of
random labels. We train MLP-10-500 for CIFAR10 classification with 0%, 25%, 50% and 75% of
the labels being replaced with random labels. We compare the degree of redundancy of the various
layers of the networks as a function of the amount of noise in the data. The results are summarized in
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Figure 4: Within-class feature variation collapse with ConvNet-10-500 trained on CIFAR10
with noisy labels. In the first row we plot the CDNV on the train data for layers 4, 6, 8, 10 of
networks trained with varying ratios of label noise (see legend). In the second row each figures
reports the NCC accuracy rates of the various layers of a network trained with a certain amount of
noisy labels (see titles). In the third and fourth rows we report the same experiments, but for the test
data.

Fig. 3. In the first row we plot the CDNV of the ith layer of the various models on the train data for
different layers in the networks, with i = 4, 6, 8, 10. In the second row we plot the NCC accuracy
rates of the various layers of the models, when trained with different amounts of random labels. We
also compare the performance with the train accuracy rate of the full model. In the third and fourth
rows we plot exactly the same as the first two rows, but for the test data. The experiment is repeated
for ConvNet-10-500 trained on CIFAR10 and the results are reported in Fig. 4.

As can be seen, we get a higher degree of neural collapse on each one of the layers. Specifically, we
observe that within the fourth layer we obtain a CDNV of ≈ 0.28 for the network trained with 0%
random labels, ≈ 0.6 with 25% random labels and CDNV above 1 for the others. Interestingly, we
also observe that when training with noisy labels, the fourth layer’s NCC accuracy rate is lower than
100%, despite the fact that the network itself achieved 100% accuracy. In contrast, for a network
trained with zero noisy labels, both the training accuracy and the NCC accuracy of the fourth layer are
100%. In fact, we can see that the NCC accuracy rate of the fourth layer decreases when increasing
the amount of noisy labels. Therefore, we conclude that the NCC accuracy rate of the minimal depth
is more predictive of the actual test performance than the training accuracy rate.

Implicit depth regularization in deep networks. As an additional experiment, we study the
presence of neural collapse with standard ResNet-18 training on multiple datasets. During training,
we evaluate the CDNV on the train and test data along with the layer’s performance (see ’Method’).
The CDNV is computed over each layer following a group of residual blocks. To train each model,
we used learning rate scheduling with an initial learning rate 0.1, decayed three times at epochs 60,

9



0 100 200 300 400 500
Epoch

2 8

2 6

2 4

2 2

20

22

CD
NV

 - 
Tr

ai
n

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8

0 100 200 300 400
Epoch

2 4

2 2

20

22

24

26

CD
NV

 - 
Te

st

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8

0 100 200 300 400 500
Epoch

2 2

2 1

20

21

22

23

24

25

CD
NV

 - 
Tr

ai
n

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8

0 100 200 300 400 500
Epoch

2 6

2 4

2 2

20

22

CD
NV

 - 
Te

st

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8

0 100 200 300 400
Epoch

2 3

2 1

21

23

25

CD
NV

 - 
Te

st

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8

0 100 200 300 400 500
Epoch

2 1

20

21

22

23

24

CD
NV

 - 
Te

st

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8

0 100 200 300 400 500
Epoch

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

Ac
cu

ra
cy

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
train accuracy
test accuracy

0 50 100 150 200 250 300 350 400
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
train accuracy
test accuracy

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
train accuracy
test accuracy

(a) MNIST (b) CIFAR10 (c) CIFAR100

Figure 5: Within-class feature variation collapse with ResNet-18. We plot (row 1) the CDNV
over the train data, (row 2) the CDNV over the test data and (row 3) the embedding performances
(see ’Method’) along with the train and test accuracy rates. In each column we present the results on
a different datasets.

120, and 160. The results are summarized in Fig. 5. As can be seen, the few top-most evaluated layers
of the neural network tend to collapse. In addition, in Fig. 5(c), we observe that collapsed layers tend
to be redundant in the sense that their performance already matches that of the full network. In that
sense, we argue that SGD implicitly prunes the top layers of the trained neural network, since it tends
to select weights for which the top layers are replaceable by a linear classifier.

5 Conclusions

Training deep neural networks is a successful approach for a variety of learning problems. However,
the role of depth in deep learning and the functionalities learned by each layer are not very clear.
In this paper we presented a new perspective on this problem by studying the emergence of neural
collapse in the various layers during training.

While Papyan et al. [2020] suggested that neural collapse is a property that emerges in the penultimate
layer of an overparameterized neural network at the stage where perfect fitting of the data is achieved,
we suggest several extensions to this observation. First, we show that neural collapse does not
necessarily emerge when perfect fitting to the data is achieved. In fact, we show that neural collapse
emerges only when the network is sufficiently deep.

In addition, we empirically showed that the within-class variance collapse and NCC separability
tend to emerge within the intermediate layers of a neural network and not just in the penultimate
layer. Furthermore, we observe that if a network is able to perfectly fit the training data with a nearest
class-center classifier as its top layer, then, any network with additional layers would exhibit the same
degree of collapse.
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Figure 6: Within-class feature variation collapse with ConvNet-d-100 trained on CIFAR10. In
(a-c) we plot the CDNV on the train data when varying the number of hidden layer in the network
(plotted in lin-log scale). Each line stands for a different layer within the network. In (e) we plot the
train accuracy rates of the various architecture.

A Additional Experiments

In this section we provide some additional experiments.

B Proofs

Proposition 1 (Comparative generalization). Let ε > 0, δ, p ∈ [0, 1]. Assume that the learning
algorithm is (ε, δ)-balanced. Assume that S1, S2 ∼ PB(m). Let hS1

= gL+1
S1
◦ fS1

be the output of
the learning algorithm given access to a dataset S1. Then,

ES1
[errP (hS1

)] ≤ P

[
dS1

(fS1
) ≥ min

Ỹ2∈Eεp(Y2)
dmin(G, S1 ∪ S̃2)

]
+ p+ δ, (4)

where Eεp(Y2) is the set of all Ỹ2 = {ỹi}mi=1 that are ε-balanced and disagree with Y2 = {yi}mi=1 on
at least p ratio of the labels.

Proof. Let S1 = {(x1i , y1i )}mi=1 and S2 = {(x2i , y2i )}mi=1 be two balanced datasets. Let Ỹ2 be an
ε-balanced set of labels that disagrees with Y2 on at least p labels. We define four different events:

A1 = {S1, S2 | {hS1(x̃
2
i )}mi=1 is not ε-balanced}

A2 = {S1, S2 | {hS1(x̃
2
i )}mi=1 is ε-balanced and d(hS1) < min

Ỹ2

dmin(F , S1 ∪ S̃2)}

A3 = {S1, S2 | {hS1
(x̃2i )}mi=1 is ε-balanced and d(hS1

) ≥ min
Ỹ2

dmin(F , S1 ∪ S̃2)}

B1 = {S1, S2 | d(hS1
) ≥ min

Ỹ2

dmin(F , S1 ∪ S̃2)}

(5)
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By the law of total expectation

ES1
[errP (hS1

)] = ES1,S2
[errS2

(hS1
)]

=

3∑
i=1

P[Ai] · ES1,S2 [errS2(hS1) | Ai]

≤ P[A1] + ES1,S2
[errS2

(hS1
) | A2] + P[B1],

(6)

where the last inequality follows from errS2(hS1) ≤ 1, P[A2] ≤ 1 and A3 ⊂ B1. We consider that if
{hS1(x̃

2
i )}mi=1 is ε-balanced and d(hS1) < minỸ2

dmin(F , S1 ∪ S̃2), then hS1(x
2
j ) 6= y2j on at most

p ratio of the samples in S2. Therefore, ES1,S2
[errS2

(hS1
) | A2] ≤ p. In addition, since the learning

algorithm is (ε, δ)-balanced, P[A1] ≤ δ.
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