
Untangling in Invariant Speech Recognition

Cory Stephenson
Intel AI Lab

cory.stephenson@intel.com

Jenelle Feather
MIT

jfeather@mit.edu

Suchismita Padhy
Intel AI Lab

suchismita.padhy@intel.com

Oguz Elibol
Intel AI Lab

oguz.h.elibol@intel.com

Hanlin Tang
Intel AI Lab

hanlin.tang@intel.com

Josh McDermott
MIT/ Center for Brains, Minds, and Machines

jhm@mit.edu

SueYeon Chung
Columbia University/ MIT

sueyeon@mit.edu

Abstract

Encouraged by the success of deep neural networks on a variety of visual tasks,
much theoretical and experimental work has been aimed at understanding and
interpreting how vision networks operate. Meanwhile, deep neural networks have
also achieved impressive performance in audio processing applications, both as sub-
components of larger systems and as complete end-to-end systems by themselves.
Despite their empirical successes, comparatively little is understood about how
these audio models accomplish these tasks. In this work, we employ a recently
developed statistical mechanical theory that connects geometric properties of
network representations and the separability of classes to probe how information
is untangled within neural networks trained to recognize speech. We observe
that speaker-specific nuisance variations are discarded by the network’s hierarchy,
whereas task-relevant properties such as words and phonemes are untangled in
later layers. Higher level concepts such as parts-of-speech and context dependence
also emerge in the later layers of the network. Finally, we find that the deep
representations carry out significant temporal untangling by efficiently extracting
task-relevant features at each time step of the computation. Taken together, these
findings shed light on how deep auditory models process time dependent input
signals to achieve invariant speech recognition, and show how different concepts
emerge through the layers of the network.

1 Introduction

Understanding invariant object recognition is one of the key challenges in cognitive neuroscience
and artificial intelligence[1]. An accurate recognition system will predict the same class regardless
of stimulus variations, such as the changes in viewing angle of an object or the differences in
pronunciations of a spoken word. Although the class predicted by such a system is unchanged, the
internal representations of individual objects within the class may differ. The set of representations
corresponding to the same object class can then be thought of as an object manifold. In vision
systems, it has been hypothesized that these "object manifolds", which are hopelessly entangled
in the input, become "untangled" across the visual hierarchy, enabling the separation of different
categories both in the brain [2] and in deep artificial neural networks [3]. Auditory recognition also
requires the separation of highly variable inputs according to class, and could involve the untangling
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of ‘auditory class manifolds’. In contrast to vision, auditory signals unfold over time, and the impact
of this difference on underlying representations is poorly understood.

Speech recognition is a natural domain for analyzing auditory class manifolds not only with word
and speaker classes, but also at the phonetic and semantic level. In recent years, hierarchical neural
network models have achieved state of the art performance in automatic speech recognition (ASR)
and speaker identification [4, 5]. Understanding how these end-to-end models represent language and
speech information remains a major challenge and is an active area of research [6, 7]. Several studies
on speech recognition systems have analyzed how phonetic information is encoded in acoustic models
[8, 9, 10], and how it is embedded across layers by making use of classifiers [11, 12, 13, 6]. It has also
been shown that deep neural networks trained on tasks such as speech and music recognition resemble
human behavior and auditory cortex activity [14]. Ultimately, understanding speech-processing in
deep networks may shed light on understanding how the brain processes auditory information.

Much of the prior work on characterizing how information is represented and processed in deep
networks and the brain have focused on linear separability, representational similarity, and geometric
measures. For instance, the representations of different objects in vision models and the macaque
ventral stream become more linearly separable at deeper stages, as measured by applying a linear
classifier to each intermediate layer [2, 3]. Representations have been compared across different
networks, layers, and training epochs using Canonical Correlation Analysis (CCA) [15, 16, 17].
Representational similarity analysis (RSA), which evaluates the similarity of representations derived
for different inputs, has been used to compare networks [18, 19]. Others have used explicit geometric
measures to understand deep networks, such as curvature [3, 20], geodesics [21], and Gaussian mean
width [22]. However, none of these measures make a concrete connection between the separability of
object representations and their geometrical properties.

In this work, we make use of a recently developed theoretical framework[23, 24, 25] based on
the replica method [26, 27, 28] that links the geometry of object manifolds to the capacity of a
linear classifier as a measure of the amount of information stored about object categories per feature
dimension. This method has been used in visual convolutional neural networks (CNNs) to characterize
object-related information content across layers, and to relate it to the emergent representational
geometry to understand how object manifolds are untangled across layers [25]. Here we apply
manifold analyses1 to auditory models for the first time, and show that neural network speech
recognition systems also untangle speech objects relevant for the task. This untangling can also be
an emergent property, meaning the model also learns to untangle some types of object manifolds
without being trained to do so explicitly.

We present several key findings:

1. We find significant untangling of word manifolds in different model architectures trained
on speech tasks. We also see emergent untangling of higher-level concepts such as words,
phonemes, and parts of speech in an end-to-end ASR model (Deep Speech 2).

2. Both a CNN architecture and the end-to-end ASR model converge on remarkably similar
behavior despite being trained for different tasks and built with different computational
blocks. They both learn to discard nuisance acoustic variations, and exhibit untangling for
task relevant information.

3. Temporal dynamics in recurrent layers reveal untangling over recurrent time steps, in the
form of smaller manifold radius, lower manifold dimensionality.

In addition, we show the generality of auditory untangling with speaker manifolds in a network
trained on a speaker recognition task, that are not evident in either the end-to-end ASR model or
the model trained explicitly to recognize words. These results provide the first geometric evidence
for untangling of manifolds, from phonemes to parts-of-speech, in deep neural networks for speech
recognition.

2 Methods

To understand representation in speech models, we first train a neural network on a corpus of
transcribed speech. Then, we use the trained models to extract per-layer representations at every time

1Our implementation of the analysis methods: https://github.com/schung039/neural_manifolds_replicaMFT

2



time

word1

word2

word3

Low Manifold Capacity High Manifold Capacity
: anchor point, ÷s

!t
: Gaussian vector

(d)(a) (b) (c)

fe
at

ur
e 

sp
ac

e

ClassiÞer

DM = !!t áös"!t,t 0

RM =
!

! ÷s2"!t,t 0

!t, t 0t0
O

Figure 1: Illustration of word manifolds. (a) highly tangled manifolds, in low capacity regime (b)
untangled manifolds, in high capacity regime (c) Manifold Dimension captures the projection of a
Gaussian vector onto the direction of an anchor point, and Manifold Radius captures the norm of an
anchor point in manifold subspace. (d) Illustration of untanglement of words over time.

step on each corpus stimulus. Finally, we apply the mean-field theoretic manifold analysis technique
[24, 25] (hereafter, MFTMA technique) to measure manifold capacity and other manifold geometric
properties (radius, dimension, correlation) on a subsample of the test dataset.

Formally, if we have P objects (e.g. words), we construct a dataset D with pairs (x i ; yi ), where x i is
the auditory input, and yi 2 f 1; 2; :::; Pg is the object class. Given a neural network N (x), we extract
N l

t (x), which is the output of the network at time t in layer l , for all inputs x whose corresponding
label is p, for each p 2 f 1; 2; :::; Pg. The object manifold at layer l for class p is then defined as the
point cloud of activations obtained from the different examples x i of the pth class. We then apply the
MFTMA technique to this set of activations to compute the manifold capacity, manifold dimension,
radius, and correlations for that manifold.

The manifold capacity obtained by the MFTMA technique captures the linear separability of object
manifolds. Furthermore, as shown in [24, 25] and outlined in SM Sect. 1.2, the mean-field theory
calculation of manifold capacity also gives a concrete connection between the measure of separability
and the size and dimensionality of the manifolds. This analysis therefore gives additional insight into
both the separability of object manifolds, and how this separability is achieved geometrically.

We measure these properties under different manifold types, including categories such as phonemes
and words, or linguistic feature categories such as part-of-speech tags. This allows us to quantify
the amount of invariant object information and the characteristics of the emergent geometry in the
representations learned by the speech models.

2.1 Object Manifold Capacity and the mean-field theoretic manifold analysis (MFTMA)

In a system where P object manifolds are represented by N features, the ‘load’ in the system is
defined by � = P=N . When � is small, i.e. a small number of object manifolds are embedded in a
high dimensional feature space, it’s easy to find a separating hyperplane for a random dichotomy2 of
the manifolds. When � is large, too many categories are squeezed in a low dimensional feature space,
rendering the manifolds highly inseparable. Manifold capacityrefers to the critical load, � C = P=N ,
defined by the critical number of object manifolds, P , that can be linearly separated given N features.
Above � C , most dichotomies are inseparable, and below � C , most are separable[24, 25]. This
framework generalizes the notion of the perceptron storage capacity [26] from points to manifolds,
re-defining the unit of counting to be object manifolds rather than individual points. The manifold
capacity thus serves as a measure of the linearly decodable information about object identity per
feature, and it can be measured from data in two ways:

1. Empirical Manifold Capacity, � SIM : the manifold capacity can be measured empirically
with a bisection search to find the critical number of features N such that the fraction of
linearly separable random dichotomies is close to 1=2.

2. Mean Field Theoretic Manifold Capacity, � MF T : can be estimated using the replica
mean field formalism with the framework introduced by [24, 25]. � MF T is estimated from

2Here, we define a random dichotomy as an assignment of random � 1 labels to each manifold
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