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Why are human inferences sometimes remarkably close to the Bayesian ideal and other times 
systematically biased? One notable instance of this discrepancy is that tasks where the candidate 
hypotheses are explicitly available result in close to rational inference over the hypothesis space, whereas 
tasks requiring the self-generation of hypotheses produce systematic deviations from rational inference. 
We propose that these deviations arise from algorithmic processes approximating Bayes’ rule. Specifically, 
in our account, hypotheses are generated stochastically from a sampling process, such that the sampled 
hypotheses form a Monte Carlo approximation of the posterior. While this approximation will converge to 
the true posterior in the limit of infinite samples, we take a small number of samples as we expect that the 
number of samples humans take is limited by time pressure and cognitive resource constraints. We show 
that this model recreates several well-documented experimental findings such as anchoring and 
adjustment, subadditivity, superadditivity, the crowd within as well as the self-generation effect, the weak 
evidence, and the dud alternative effects. We confirm the model’s prediction that superadditivity and 
subadditivity can be induced within the same paradigm by manipulating the unpacking and typicality of 
hypotheses. We also partially confirm our model’s prediction about the effect of time pressure and cognitive 
load on these effects. 
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Introduction

In his preface to Astronomia Nova (1609), Johannes Kepler described how he struggled
to find an accurate mathematical description of planetary motion. Like most of his contem-
poraries, he started with the hypothesis that planets move in perfect circles. This necessitated
extraordinary labor to reconcile the equations of motion with his other assumptions, “because
I had bound them to millstones (as it were) of circularity, under the spell of common opinion.”
It was not the case that Kepler simply favored circles over ellipses (which he ultimately ac-
cepted), since he considered several other alternatives prior to ellipses. Kepler’s problem was
that he failed to generate the right hypothesis.1

Kepler is not alone: the history of science is replete with examples of “unconceived alter-
natives” (Stanford, 2010), and many psychological biases can be traced to failures of hypothesis
generation, as we discuss below. In this paper, we focus on hypothesis generation in the ex-
tensively studied domain of probabilistic inference. The generated hypothesis are a subset of a
tremendously large space of possibilities. Our goal is to understand how humans generate that
subset.

In general, probabilistic inference is comprised of two steps: hypothesis generation and
hypothesis evaluation with feedback between these two processes. Given a complete set of hy-
pothesesH and observed data d, optimal evaluation is prescribed by Bayes’ rule, which assigns
a posterior probability P (h|d) to each hypothesis h ∈ H proportional to its prior probability
P (h) and the likelihood of the observed data under h, P (d|h):

P (h|d) = P (d|h)P (h)∑
h′∈H P (d|h′)P (h′) . (1)

Many studies have found that when H is supplied explicitly, humans can come close to the
Bayesian ideal (e.g., Frank & Goodman, 2012; Griffiths & Tenenbaum, 2006, 2011; Oaksford
& Chater, 2007; Petzschner, Glasauer, & Stephan, 2015).2 However, when humans must gen-
erate the set of hypotheses themselves, they cannot generate them all and instead generate only
a subset, leading to judgment biases (Carroll & Kemp, 2015; Dougherty & Hunter, 2003; Get-
tys & Fisher, 1979; Koriat, Lichtenstein, & Fischhoff, 1980; Thomas, Dougherty, Sprenger, &
Harbison, 2008; Weber, Böckenholt, Hilton, & Wallace, 1993). Some prominent biases of this
kind are listed in Table 1.

Most previously proposed models of hypothesis generation rely on cued recall from
memory based on similarity to previously observed scenarios (c.f. Gennaioli & Shleifer, 2010;
Thomas et al., 2008). The probability of a generated hypothesis depends on the strength of its
memory, and the number of such hypotheses generated is constrained by the available working
memory resources. However, in most naturally encountered combinatorial hypothesis spaces,
the number of possible hypotheses is vast and only ever sparsely observed. Goodman, Tenen-
baum, Feldman, & Griffiths (2008) showed that, when inferring Boolean concepts, people can

1In fact, Kepler had tried fitting an oval to his observations only to reject it, and then labored for another
seven years before finally trying an ellipse and realizing that it was mathematically equivalent to an oval. As he
recounted, “The truth of nature, which I had rejected and chased away, returned by stealth through the back door,
disguising itself to be accepted... Ah, what a foolish bird I have been!”

2This correspondence between human and Bayesian inference requires that the inference task must be one
that is likely to have been optimized by evolution (e.g., predicting the duration of everyday events, categorizing
and locating objects in images, making causal inferences); asking humans to reason consciously about unnatural
problems like randomness or rare events tends to produce striking deviations from the Bayesian ideal (see Chater,
Tenenbaum, & Yuille, 2006, for discussion).
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Table 1
Biases in human hypothesis generation and evaluation.

Name Description Reference

Subadditivity Perceived probability of a hypothesis is
higher when the hypothesis is described as
a disjunction of typical component
hypotheses (unpacked to typical
examples).

Fox & Tversky
(1998)

Superadditivity Perceived probability of a hypothesis is
lower when the hypothesis is described as
a disjunction of atypical component
hypotheses (unpacked to atypical
examples).

Sloman, Rot-
tenstreich, Wis-
niewski, Had-
jichristidis, &
Fox (2004), Had-
jichristidis, Stibel,
Sloman, Over, &
Stevenson (1999)

Weak evidence effect The probability of an outcome is judged
to be lower when positive evidence for a
weak cause is presented

Fernbach, Darlow,
& Sloman (2011)

Dud alternative effect The judged probability of a focal outcome
is higher when implausible alternatives
are presented

Windschitl &
Chambers (2004)

Self-generation effect The probability judgment over hypotheses
that participants have generated
themselves is lower as compared to the
same hypotheses generated by others

Koehler (1994);
Koriat et al. (1980)

Crowd within The mean squared error of an estimate
with respect to the true value reduces with
the number of guesses. This reduction is
more pronounced when the guesses are
averaged across participants rather than
within participants.

Vul & Pashler
(2008)

Anchoring and Adjust-
ment

Generated hypotheses are biased by the
hypothesis that is prompted at the start.

Tversky & Kahne-
man (1974)

generate previously unseen hypotheses by using compositional rules, instead of likening the
situation to previously observed situations. So it seems that humans do not generate hypothe-
ses only from the manageably small subset of previously observed hypotheses in memory and
instead are able to generate hypotheses from the formidably large combinatorial space of all
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the conceivable possibilities. Given how large this space is, resource constraints at the time of
inference suggest that only a subset are actually generated.

In this paper, we develop a normative theoretical framework for hypothesis generation in
the domain of probabilistic inference, given fixed data, arguing that the brain copes with the in-
tractability of inference by stochastically sampling hypotheses from the combinatorial space of
possibilities (see also Sanborn & Chater, 2016). Although this sampling process is asymptot-
ically exact, time pressure and cognitive resource constraints limit the number of samples that
can be generated, giving rise to systematic biases. Such biases are “computationally rational”
in the sense that they result from a trade-off between the costs and benefits of computation—
i.e., they are an emergent property of the expected utility calculus when costs of computation
are taken into account (Gershman, Horvitz, & Tenenbaum, 2015; Lieder, Griffiths, & Good-
man, 2013; Vul, Goodman, Griffiths, & Tenenbaum, 2014). We propose that the framing of a
query leads to sampling specific hypotheses first, and biases the rest of the hypothesis gener-
ation process through correlations in the sampling process. We explore what sampler designs
can reproduce the phenomena listed in Table 1, and then test our theory’s novel predictions in
four experiments.

A rational process model of hypothesis generation

Much of the recent work on probabilistic inference in human cognition has been de-
liberately agnostic about its underlying mechanisms, in order to make claims specifically
about the subjective probability models people use in different domains (Chater et al., 2006).
Because the posterior distribution P (h|d) is completely determined by the joint distribution
P (h, d) = P (d|h)P (h), an idealized reasoner’s inferences can be perfectly predicted given
this joint distribution. By comparing different assumptions about the joint distribution (e.g.,
the choice of prior or likelihood) under these idealized conditions, researchers have attempted
to adjudicate between different models. Importantly, any algorithm that computes the exact
posterior will yield identical predictions, which is what licenses agnosticism about mechanism.
This method of abstraction is the essence of the “computational level of analysis” (Marr &
Poggio, 1976), and is closely related to the competence/performance distinction in linguistics
and “as-if” explanations of choice behavior in economics.

The phenomena listed in Table 1 do not yield easily to a purely computational-level anal-
ysis, since different choices for the probabilistic model do not account for the systematic errors
in approximating them. For this reason, we turn to “rational process” models (see Griffiths, Vul,
& Sanborn, 2012, for a review), which make explicit claims about the mechanistic implemen-
tation of inference. Rational process models are designed to be approximations of the idealized
reasoner, but make distinctive predictions under resource constraints. In particular, we explore
how sample-based approximations lead to particular cognitive biases in a large space of hy-
potheses, when the number of samples is limited. With an infinite number of samples, different
sampling algorithms are indistinguishable as they all converge to the ideal response, but these
algorithms display different behaviors at small sample sizes. We narrow the space of candidate
sampling algorithms by studying these behaviors and comparing their predictions to observed
cognitive biases.
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Monte Carlo methods

In their simplest form, sample-based approximations (also known as Monte Carlo ap-
proximations; Robert & Casella, 2013), take the following form:

P (h|d) ≈ P̂N(h|d) = 1
N

N∑
n=1

I[hn = h], (2)

where I[·] = 1 when its argument is true (0 otherwise) and hn is a random hypothesis drawn
from some distributionQn(h).3 WhenQn(h) = P (h|d), this approximation is unbiased, mean-
ing E[P̂N(h|d)] = P (h|d), and asymptotically exact, meaning limN→∞ P̂N(h|d) = P (h|d).

In general, a bounded reasoner cannot directly sample from the posterior, because the nor-
malizing constant P (d) = ∑

h P (h, d) requires the evaluation of the joint probabilities of each
and every hypothesis and is intractable when the hypothesis space is large. In fact, sampling
from the exact posterior entails solving exactly the problem which we wish to approximate.
Nonetheless, it is still possible to construct an asymptotically exact approximation by sampling
from a Markov chain whose stationary distribution is the posterior; this method is known as
Markov chain Monte Carlo (MCMC). Before presenting a concrete version of this method, we
highlight several properties that make it suitable as a process model of hypothesis generation.

First, MCMC approximations are stochastic in the finite sample regime, producing “pos-
terior probability matching” (Denison, Bonawitz, Gopnik, & Griffiths, 2013; Moreno-Bote,
Knill, & Pouget, 2011; Vul et al., 2014; Wozny, Beierholm, & Shams, 2010): hypotheses are
generated with frequencies proportional to their posterior probabilities. Second, MCMC does
not require knowledge of normalized probabilities at any stage and relies solely on an ability
to compare the relative probabilities of two hypotheses. It has been shown in the literature
(Stewart, Chater, & Brown, 2006) that humans have a better sense for relative rather than ab-
solute probabilities. Third, MCMC allows for feedback between the generation and evaluation
processes. The evaluated probability of already generated hypotheses influences if and how
many new hypotheses will be generated, consistent with observations such as in Hamrick,
Smith, Griffiths, & Vul (2015). Fourth, Markov chains generate autocorrelated samples, con-
sistent with autocorrelation in hypothesis generation (Bonawitz, Denison, Gopnik, & Griffiths,
2014; Gershman, Vul, & Tenenbaum, 2012; Vul & Pashler, 2008). Correlation between con-
secutive hypotheses manifested as anchoring effects (where judgments are biased by the initial
hypothesis; Tversky & Kahneman, 1974) are replicated by MCMC approximations that are also
transiently biased (during the“burn-in” period) by their initial hypothesis, prior to reaching the
stationary distribution (Lieder et al., 2013). This seems to hold also true for the way in which
participants update their internal models in causal learning tasks (Bramley, Dayan, & Lagnado,
2015). Finally, work in theoretical neuroscience has shown how MCMC algorithms could be
realized in cortical circuits (Buesing, Bill, Nessler, & Maass, 2011; Moreno-Bote et al., 2011;
Pecevski, Buesing, & Maass, 2011).

Computational rationality of sampling. We have emphasized properties that emerge
in the finite sample regime because people tend to only generate a small number of hypotheses
(Dougherty, Gettys, & Thomas, 1997; Gettys & Fisher, 1979; Klein, 1999; Ross & Murphy,
1996; Weber et al., 1993). Although this may seem to be manifestly sub-optimal, it can be
justified within a “computational rationality” or “resource-rational” framework (Gershman et

3This approach is straightforwardly generalized to sets of hypotheses: P̂N (h ∈ H|d) = 1
N

∑N
n=1 I[hn ∈ H],

where H ⊂ H.
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al., 2015; Griffiths, Lieder, & Goodman, 2015; Schulz, Speekenbrink, & Meder, 2016; Vul et
al., 2014). If generating hypotheses is costly (in terms of time and cognitive resources), then the
rational strategy is to generate the minimum number of samples necessary to achieve a desired
level of accuracy. This implies that incentives or uncertainty should have systematic effects on
hypothesis generation. For example, Hamrick et al. (2015) showed that people generated more
hypotheses when they were more uncertain. By the same token, cognitive load (Sprenger et al.,
2011) or response time pressure (Dougherty & Hunter, 2003) act as disincentives, reducing the
number of generated hypotheses.

Despite our focus on the finite sample regime, it is also important to consider the asymp-
totic regime in order to explain the cases where human inference comes close to the Bayesian
ideal. Monte Carlo algorithms are typically asymptotically exact; thus, they can accommodate
unbiased inference when adequate cognitive resources are available. We do not claim, how-
ever, that all biases in human inference arise from adaptive allocation of cognitive resources. It
seems likely that evolution has endowed the mind with some hardwired heuristics in order to
avoid the cost of adaptive resource allocation (Gigerenzer & Brighton, 2009).

Comparison with particle filtering. A key feature of MCMC is that it produces hy-
potheses sequentially. It is therefore useful to compare MCMC with particle filtering, another
Monte Carlo algorithm that generates hypotheses sequentially, and which has also been fruit-
fully applied to a number of domains in psychology, such as multiple object tracking (Vul,
Alvarez, Tenenbaum, & Black, 2009), categorization (Sanborn, Griffiths, & Navarro, 2010),
and change detection (Brown & Steyvers, 2009). In order to clarify the distinction between
the sequential nature of particle filtering and MCMC, we note that the sequential structure of
particle filtering is dictated by the sequential nature of the generative process. For example,
in multiple object tracking, the object positions are dynamic latent variables; particle filtering
generates new hypotheses about the positions after each new data point is observed. Particle
filters can also be used for inferring static parameters (Chopin, 2002), updating the Monte Carlo
approximation as new data arrive. Note that in this case the generative process is still inherently
sequential. In contrast, MCMC always involves sequential hypothesis generation, regardless of
the structure of the generative process.

MCMC can also be used in conjunction with particle filters: the samples generated by
the particle filter can be “rejuvenated” by applying a Markov chain operator that preserves the
target distribution (Abbott & Griffiths, 2011). This process prevents degeneracy (collapse of
the Monte Carlo approximation onto a few samples), a common problem in particle filtering.
Here, the sequential nature of the Markov chain is relevant only locally to each step of the
particle filter, orthogonal to the sequential nature with which the particle filter processes new
data. In this paper, we focus on non-sequential generative models, with no online updating of
data, in order to retain clarity on this point.

A specific Markov chain Monte Carlo algorithm

The space of MCMC algorithms is vast (Robert & Casella, 2013), but for the purposes
of modeling psychological phenomena many of the algorithms generate indistinguishable pre-
dictions. Our goal in this section is to specify one such algorithm, without making a strong
claim that people adhere to it in every detail. We focus on qualitative features of the algorithm
that align with aspects of human cognition. Nonetheless, we shall see that the algorithm makes
accurate quantitative predictions about human probabilistic judgments.
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The most well-known and widely-used version of MCMC is the Metropolis-Hastings
algorithm. Here, at step n in the Markov chain, new suggestions h′ are drawn from a proposal
distributionQ(h′|hn), where hn is the hypothesis at step n. This proposal is accepted or rejected
according to:

P (hn+1 = h′|hn) = min
[
1, P (d|h′)P (h′)Q(hn|h′)
P (d|hn)P (hn)Q(h′|hn)

]
. (3)

If the proposal is rejected, then the chain stays at the same hypothesis, hn+1 = hn. Al-
though the posterior cannot be directly evaluated, we assume it is known up to a normalizing
constant, since P (h|d) ∝ P (d|h)P (h). The acceptance function forces moves to higher prob-
ability hypotheses, while also stochastically exploring lower probability hypotheses. This pro-
cess repeats until N samples have been generated. In the limit of large N , the amount of time
the chain spends at a particular hypothesis is proportional to its posterior probability. If N is
not large enough, then the samples are affected by the initialization, leading to biased estimates
of the posterior probability. The unique members of the set of accepted samples constitute the
generated hypotheses, and the number of times they appear provides their judged probability.

We recap here two psychologically appealing properties of the algorithm mentioned in
the previous section. First, we see that it relies solely on being able to gauge relative probabil-
ities and not on having good estimates for any absolute probabilities. Second, the acceptance
function engenders an interaction between generation and evaluation by ensuring that if one
is at a high probability hypothesis, proposals are more likely to be rejected and therefore not
generated4 .This follows the intuition that, if one finds a good (high probability) hypothesis,
one is less likely to generate more hypotheses. Conversely, if one is at a bad (low probability
hypothesis), more proposals will be accepted.

The next step is to specify the proposal distribution. For simplicity, we assume that the
proposal is symmetric, Q(h′|h) = Q(h|h′). This reduces the acceptance function to:

P (hn+1 = h′|hn) = min
[
1, P (d|h′)P (h′)
P (d|hn)P (hn)

]
. (4)

We also assume that the proposal distribution is “local”: the proposal distribution prefer-
entially proposes hypotheses that are in some way “close” to the current one. This ensures that
the hypothesis generated next is close to the current one with high probability. The alternative
possibility is to instead have a “global” proposal distribution - for example one that proposes
the next hypothesis uniformly at random from the space of all possible hypotheses, instead of
favoring those closer to the current one.

MCMC algorithms always exhibit some autocorrelation as long as the acceptance ratio
is less than one (irrespective of the details of the proposal distribution), because the same state
occurs consecutively when a proposal is rejected. However, we are also interested in the next
new hypothesis that is generated, not exact repetitions of the same hypothesis. A more nuanced
notion of autocorrelation takes into account the fact that sampled hypotheses can be “similar”

4A low acceptance rate only implies that proposals are lower probability than the current state of the Markov
chain, not that the current hypothesis necessarily has a high probability globally. There may always be higher
probability hypotheses that the proposal distribution fails to propose. Conversely, a high acceptance rate does
not necessarily imply a poor current hypothesis. For example, if the proposal distribution is proportional to the
posterior distribution, then all proposals will be accepted.
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(though not identical) when the proposal distribution is centered on a local neighborhood of
the current hypothesis, as opposed to if the proposal is a “global” one. This kind of locality in
determining the next state given the current one, has been studied previously in the context of
traversing and searching semantic networks (Abbott, Austerweil, & Griffiths, 2015) and com-
binatorial spaces (Smith, Huber, & Vul, 2013). This locality has been shown to be optimal as
a foraging strategy (Hills, Jones, & Todd, 2012) as well as consistent with human behavioral
data. Since the generation of hypotheses is largely analogous to a search through the combina-
torial space of conceivable possibilities, locality in the proposal distribution that moderates this
search can be expected.

The question then is how we should define locality. This is relatively easy to answer in
domains where the inference is over a one-dimensional continuous latent variable like in Lieder
et al. (2013); for example, one can use a normal distribution centered at the current hypothesis.
For the discrete combinatorial hypothesis spaces studied in this paper, we assume that there is
some natural clustering of the hypotheses based on the observations they tend to generate (their
centroids). We use the Euclidean distance between centroids as a measure of distance between
clusters. In our simulations, we assume for simplicity that all hypotheses within a cluster
are equidistant and that all clusters are equidistant from each other. The proposal distribution
chooses hypotheses in the same cluster with a higher probability than those outside the cluster,
but it treats all hypotheses within a cluster equiprobably. While this structure induces locality in
the proposal distribution, we are not making a strong claim about the nature or role of clustering
in hypothesis generation. We speculate about more sophisticated proposal distributions in the
section on Future Work.

Finally, we need to specify how the chain is initialized. For cases where a hypothesis is
presented explicitly or primed in the query, we assume that the chain starts at that hypotheses.
If there are several hypotheses (say n in number) that have been presented explicitly in the
query, we assume that a different chain starts from each of these hypotheses and runs for N

n

steps each, giving a total of N samples. However, in cases where no hypotheses are explicitly
prompted, we assume that the initial hypothesis is drawn from the prior over the hypotheses
instead of initializing at a prompted example. This assumption is consistent with evidence that
hypotheses with high base rates are more likely to be generated (Weber et al., 1993). In order
to maximize similarity to the corresponding “explicitly prompted” version of the question and
keep the number of new initializations the same, n such chains are run for N

n
steps to give a total

ofN samples. There may also be initialization schemes that mix explicit prompts and sampling
from the prior—for example a prompt that encourages sampling from a specific subset of the
hypothesis space. We speculate about more sophisticated initialization schemes in the section
on Future Work.

Model simulations

In this section we apply our model to a range of empirical phenomena, using a disease-
symptom Bayesian network as our running example. For each simulation, we run the Markov
chain many times and average the results, in order to emulate multiple participants in an exper-
iment.
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Diagnostic hypotheses in a disease-symptom network

Our model is generally applicable to domains where the inference is carried out over
a large space of possibilities that is sparsely observed and thus requires one to generate pre-
viously unobserved possibilities. A data set containing medical symptoms is a prototypical
example of this problem: a patient could have any combination of more than one disease
and many such combinations will not have been encountered before by an individual clini-
cian. This combinatorial structure makes medical diagnosis computationally difficult—exact
inference in a Bayesian network is known to be NP-hard (Cooper, 1990). To address this prob-
lem, approximate probabilistic inference algorithms (including Monte Carlo methods) are now
widely-established (e.g., Heckerman, 1990; Jaakkola & Jordan, 1999; Shwe & Cooper, 1991).
It is therefore reasonable to conjecture that diagnostic reasoning by humans could be captured
by similar approximate inference algorithms. Suggestively, a number of the judgment biases
listed in Table 1 have been documented in clinical settings (Elstein, Shulman, & Sprafka, 1978;
Redelmeier, Koehler, Liberman, & Tversky, 1995; Weber et al., 1993); our goal is to investigate
whether the MCMC model can reproduce these biases.

In the disease-symptom network, the observations are the presence or absence of symp-
toms and the latent variables are the presence or absence of diseases (S possible symptoms
and D possible diseases). The diagnostic problem is to compute the posterior distribution over
2D binary vectors, where each vector encodes the presence (hd = 1) or absence (hd = 0) of
diseases d = 1, . . . , D. The diseases are connected to the symptoms via a noisy-or likelihood,
following Shwe et al. (1991):

P (ks = 1|h) = 1− (1− ε)
D∏

d=1
(1− wds)hd , (5)

where ks = 1 when symptom s = 1, . . . , S is present (0 otherwise), ε ∈ [0, 1] is a base
probability of observing a symptom, and wds ∈ [0, 1] is a parameter expressing the probability
of observing symptom s when only disease d is present. Intuitively, the noisy-or likelihood
captures the idea that each disease has an independent chance to produce a symptom.

As our goal is to use this set-up purely for illustrative purposes, we use a simplified fic-
titious disease-symptom data set designed to resemble real-world contingencies (Table 2). We
designated two distinct clusters of four diseases each (gastrointestinal diseases and respiratory
diseases); these two clusters have largely disjoint sets of symptoms, and the symptoms within
a cluster are largely overlapping. We allow any combination of diseases to be present, making
even this small number of diseases a fairly large space of 256 possible hypotheses.

Subadditivity

As described above, a resource-rational algorithm will arrest computation after a small
number of samples, once accuracy is balanced against the cost of sampling (Vul et al., 2014).
This gives rise to subadditivity (see Table 1): the probability of a disjunction (in “packed” form)
is judged to be less than the probability of the same disjunction presented explicitly as the union
of its sub-hypotheses (in “unpacked” form) (Dougherty & Hunter, 2003; Tversky & Koehler,
1994), despite the fact that mathematically these are equal. For example, the probability of a
gastrointestinal disease is judged to be less than the sum of the probabilities of each possible
gastrointestinal disease.
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Table 2
Parameters used for noisy-or model.

Diseases
& Symp-

toms

lung
can-
cer

TB
respiratory

flu
cold

gastro-
enteritis

stomach
cancer

stomach
flu

food poi-
soning base

Prior 0.001 0.05 0.1 0.2 0.1 0.05 0.15 0.2 1.0
cough 0.3 0.7 0.05 0.5 0.0 0.0 0.0 0.0 0.01
fever 0.0 0.1 0.5 0.3 0.0 0.0 0.1 0.2 0.01
chest
pain

0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.01

short
breath

0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.01

nausea 0.0 0.0 0.2 0.1 0.5 0.1 0.5 0.7 0.01
fatigue 0.0 0.0 0.2 0.3 0.1 0.05 0.2 0.4 0.01

stomach
cramps

0.0 0.0 0.0 0.0 0.3 0.05 0.1 0.5 0.01

abdom.
pain

0.0 0.0 0.01 0.0 0.1 0.5 0.0 0.0 0.01

Let us define a few terms here that we use in our simulations of these unpacking effects.
The space of hypotheses that the disjunction refers to is called the focal space of the query. For
example, when queried about the probability of a gastrointestinal diseases, the focal space is
the set of all hypotheses that include at least one gastrointestinal disease. When unpacking this
disjunction, we do not unpack to every single member of the focal space. Instead, we unpack to
a few examples and to a catch-all hypothesis that refers to all other members of the focal space
that were not explicitly unpacked. For example: “Food poisoning, stomach cancer or any other
gastrointestinal disease” where a few example components of the focal space are unpacked and
explicitly prompted in the question (food poisoning and stomach cancer) and presented along
with a catch-all hypothesis (any other gastrointestinal disease)5.

Our model offers the following explanation of subadditivity: when a packed hypothesis
is unpacked to typical examples and a catch-all hypothesis, the typical examples (that are part
of the focal space) are explicitly prompted, causing the Markov chain to start there and thus
include them in the cache of generated hypotheses. If the examples are not explicitly prompted
and instead a packed hypothesis is presented, the chain initializes with a random sample from
the prior. The chain is thus likely to start from a fairly typical (high prior probability) hypothe-
sis; however, with some probability it may fail to generate all the high probability hypotheses.
Deterministically initializing the chain at a typical (high probability) hypothesis, ensures that
the chain generates high probability hypotheses in the focal space and thus results in a larger
probability judgment for that focal space.

To illustrate this effect in our medical diagnosis model, consider the following queries:

5In this paper, we study what is termed “implicit” subadditivity, where the unpacked query is framed as a
conjunction of mutually exclusive sub-hypotheses, in contrast to “explicit” subadditivity, where each mutually ex-
clusive sub-hypothesis is queried separately and the numerical estimates from each query are then added together.
The implicit version maximizes similarity between the packed and unpacked queries and provides a controlled
way to study the effect of framing on hypothesis generation.
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Figure 1. Subadditivity. MCMC estimates were made for the following queries: Given the
symptoms fever, nausea and fatigue, (a) Packed: what is the probability that these symptoms
were caused by the presence of a gastrointestinal disease? (b) Unpacked to typical examples:
what is the probability that these were caused by the presence of food poisoning, stomach flu,
or any other gastrointestinal diseases? The estimate for the unpacked condition is higher than
that of the packed condition. The difference between these estimates is represented by the red
line. This effect diminishes as the number of samples increases.

• Packed query: Given the symptoms fever, nausea and fatigue, what is the probability that
these symptoms were caused by the presence of a gastrointestinal disease?

• Unpacked query (typical examples): Given the symptoms fever, nausea and fatigue, what
is the probability that these symptoms were caused by the presence of food poisoning,
stomach flu, or any other gastrointestinal diseases?

The difference between the probability estimates between these two conditions is shown in
Figure 1.

Experiments in Dougherty & Hunter (2003) show that the effect size of subadditivity
decreases as the participants are given more time to answer the question. In our model, as more
samples are taken, it becomes more and more likely that the packed chain also finds the high
probability examples prompted in the unpacked scenario on its own. So the head-start given
to the unpacked chain gets gradually washed out and the effect size of subadditivity decreases.
If we assume that as more time passes, people take more samples (up until a resource-rational
limit on the number of samples), and that the time-points measured are before the resource-
rational sample limit is met, our model replicates these time-dependence effects as seen in
Figure 1.
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Superadditivity and related effects

Taking a limited number of samples with an MCMC sampler can also give rise to an effect
opposite to the one described in the previous section, known as superadditivity (see Table 1):
the probability of a disjunction (in “packed” form) is judged to be greater than the probability
of the same disjunction presented explicitly as the union of its sub-hypotheses (in “unpacked”
form) (Hadjichristidis et al., 1999; Sloman et al., 2004), despite the fact that mathematically
they should be equal. This effect occurs when unpacking to atypical (low probability) examples
and subadditvity prevails when unpacking to typical (high probability) examples.

The key feature that produces this effect is the acceptance function of the MCMC sampler
and the feedback it causes between the generation and evaluation processes. If a chain is at a
low probability hypothesis (such as when a low probability hypothesis is explicitly prompted
in the form of an atypical unpacking), the chain is likely to accept more of the proposals made
by the proposal distribution. Therefore, this chain could generate many alternate hypotheses
outside the focal space. In contrast, a chain at a higher probability hypothesis (for example, if it
was randomly initialized in the focal space instead of being initialized at a particularly atypical
example) will reject more of these proposals and remain at the initial hypothesis. So most of
these proposals will not be generated. The probability estimate for the focal space A is given
by

∑
h∈A

P̂ (h|d) =
∑
h∈A

1
N

N∑
n=1

I[hn = h] =
∑

h∈A
∑N

n=1 I[hn = h]∑
h∈A

∑N
n=1 I[hn = h] + ∑

h′ /∈A
∑N

n=1 I[hn = h′]
(6)

Being in A or not divides the total hypothesis space of H into two mutually exclusive
parts. Therefore, the generation of more hypotheses outside the focal space (on average) when
initialized at a consistently low probability (atypical) hypothesis in the focal space lowers the
resulting probability estimate of the focal hypothesis space. This results in superadditive judg-
ments.

To elucidate this effect in our medical diagnosis model, we use the following “unpacked
to atypical examples” query: Given the symptoms fever, nausea and fatigue, what is the prob-
ability that these symptoms were caused by the presence of gastroenteritis, stomach cancer, or
any other gastrointestinal disease? The difference between the probability estimates from the
two conditions is shown in Figure 2.

Previous accounts of subadditivity (e.g., Neil Bearden & Wallsten, 2004; Thomas et
al., 2008) cannot explain superadditivity; any unpacked example only increases the proba-
bility judgment of the unpacked query with respect to the packed query. This weakness of
MINERVA-DM has been observed by Costello & Watts (2014) in the context of its failure to
model binary complementarity—an effect which their noise-based analysis can capture. How-
ever, their analysis still fails to completely capture superadditvity, as it constrains unpacked
judgments to be greater than (and, only for binary complements, equal to) the packed judg-
ment, never less than the packed judgment. Sloman et al. (2004) explain superadditivity by
suggesting that atypical examples divert attention from more typical examples and thus lower
the probability estimate. But an explanation at the level of a rational process model is, to our
knowledge, lacking in the literature.

Some other cognitive effects can also be modeled by the same mechanism that gives
rise to superadditivity. One example is the weak evidence effect: the perceived probability of
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Figure 2. Superadditivity. MCMC-estimates were made for the following queries: Given the
symptoms fever, nausea and fatigue, (a) Packed: What is the probability that these symptoms
were caused by the presence of gastrointestinal disease? (b) Unpacked to atypical examples:
What is the probability is that these symptoms were caused by the presence of gastroenteritis,
stomach cancer, or any other gastrointestinal disease? The estimate for the unpacked condition
is lower than that of the packed condition. The difference between these estimates is repre-
sented by the red line. This effect diminishes as the number of samples increases.

an outcome is lowered by the presence of evidence supporting a weak cause. Fernbach et al.
(2011) explain this effect as follows: mentioning evidence in support of a specific weak cause
drives people to focus disproportionately on it and thus they fail to think about other good can-
didates in the focal space of possible causes. Our model replicates this effect by initializing at
the weak cause, or low-probability hypothesis, resulting in a lower probability judgment of the
focal space by the same mechanism as in the superadditivity effect. However, the added evi-
dence should normatively increase the probability of the cause it supports. Since the evidence
is weak, this increase is small and the cause still remains low probability. Therefore, the super-
additivity effect overwhelms this small increase in probability of the specific hypothesis and
instead lowers the probability estimate of the focal space overall. This causes the final judged
probability to be lower than if the positive evidence had not been presented and the chain was
initialized randomly (on average at a higher probability hypothesis than the presented weak
one) in the focal space.

To elucidate this effect in our medical diagnosis model, we use the following query:

• Control: Given the symptoms fever, nausea and fatigue, what is the probability that these
symptoms were caused by the presence of gastrointestinal disease?

• Evidence for a weak cause: Given the symptoms fever, nausea and fatigue, what is the
probability that these symptoms were caused by the presence of gastrointestinal disease,
assuming the patient’s grandmother was diagnosed with stomach cancer?
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Figure 3. Weak evidence effect. MCMC estimates were made for the following queries: Given
the symptoms fever, nausea and fatigue, (a) Control: What is the probability that these symp-
toms were caused by the presence of gastrointestinal disease? (b) Evidence for a weak cause:
What is the probability that these symptoms were caused by the presence of gastrointestinal
disease, assuming the patient’s grandmother was diagnosed with stomach cancer? The increase
in support of the weak cause (stomach cancer) is modeled by increasing the prior probability
of stomach cancer from 0.05 to 0.06. The estimate from the weak evidence chain is lower than
that from the control chain. The difference between these estimates is represented by the red
line. The effect diminishes as the number of samples increases.

The increase in support of the weak cause (stomach cancer), by making available the presence
of familial history, is implemented in our model by increasing the prior probability of stomach
cancer in this patient from 0.05 to 0.06 (see Table 2). While this small change is not expected
to elicit a large difference in the probability of gastrointestinal diseases between the two cases,
it certainly does make it more (rather than less) probable compared to the control. However, it
also causes the chain to be initialized at the weak hypothesis of stomach cancer by prompting
it, resulting in the generation of more alternative hypotheses outside the focal space and a lower
probability judgment than in the first case (Figure 3).

Another such bias is the Dud alternative effect: presenting low probability (or “dud”) al-
ternate hypotheses increases the perceived probability of the focal space of hypotheses (Wind-
schitl & Chambers, 2004). This can be viewed as the superadditivity effect in the complement
(alternate) hypothesis space. The queries being contrasted here are initialized in the space com-
plementary to the focal space—i.e., the space of alternatives. Initialization at a low probability
alternative when it is explicitly prompted in the question results in a superadditive judgment
(i.e., a lower probability judgment) of the complement space. This lower probability estimate
for the complement space entails a higher probability estimate for the focal space. The assump-
tion here is that the same chain is used to gauge the probability of both binary complements,
by grouping the generated hypotheses into being either inside or outside the focal space and
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calculating the net- probability of each group. The framing simply alters the initialization of
the chain. This assumption ensures that probability judgments over complementary spaces add
up to one, in accordance with behavioral experiments that demonstrate binary complementarity
in human judgments (Tversky & Koehler, 1994).

To elucidate this effect in our medical diagnosis model, we use the following queries:

• Control: Given the symptoms fever, nausea and fatigue, what is the probability that
the patient has a respiratory disease (as opposed to the symptoms being caused by the
presence of a gastrointestinal disease)?

• Dud alternative: Given the symptoms fever, nausea and fatigue, what is the probability
that the patient has a respiratory disease (as opposed to the symptoms being caused by
the presence of gastroenteritis, stomach cancer, or any other gastrointestinal disease)?

We see in Figure 4 that the model predicts that the scenario with dud alternatives produces
higher probability judgments than the control. Findings in Windschitl & Chambers (2004) also
suggest that the magnitude of this effect decreases with the amount of processing time given to
participants. The model also replicates this phenomenon, if we assume that more time means
more samples, and that the time points queried are before the resource-rational limit on the
number of samples is reached.

Self-generation of hypotheses

In this section, we focus on the self-generation effect: the probability judgment of a
set of hypothesis that are generated and reported by a subject themselves is lower than when
the same set of reported hypotheses is presented to a new subject (Koehler, 1994; Koriat et
al., 1980). Our model provides the following explanation: Self-reported hypotheses generated
by a chain are the modes it discovers after having explored the space and having generated
several alternate hypotheses. However, in a situation where these high probability hypotheses
are directly presented, the chain starts at the mode and is likely to get stuck—i.e., not accept
any of the proposals and thus not generate them at all. This, in the small sample limit, results
in the generation of fewer alternate hypotheses. As in the previous section, fewer alternate
hypotheses lead to a higher probability judgment.

We simulate an experiment analogous to the experiments in Koehler (1994) by querying
the model as follows: Given the symptoms fever and fatigue, what are the two most likely
respiratory disease to have caused these symptoms? To simulate the answer to this query, a
randomly initialized “self-generated” chain is run and the 2 hypotheses over which this chain
returns the highest probabilities are returned. In this case, these are a cold and respiratory
flu. The net probability estimate of the generated hypotheses cold or respiratory flu is tracked
over time for the chain that generated them. A separate “other-generated” chain is queried as
follows: Given the symptoms fever and fatigue, What is the probability that these symptoms
were caused by the presence of a cold or respiratory flu? Thus, this chain is initialized at these
high probability hypotheses of cold and respiratory flu. The difference between the probability
estimates from these two chains is shown in Figure 5.

While this effect has previously been understood in terms of the generation of alternatives
(Koehler, 1994), a rational process model specifying a mechanism for this differential gener-
ation of alternatives is novel. Our explanation of this effect is largely contingent upon a link
between generation and evaluation. In both self-generated and other-generated scenarios, the
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Figure 4. Dud alternative effect. MCMC estimates were made for the following queries:
Given the symptoms fever, nausea and fatigue, (a) Control: What is the probability that the pa-
tient has a respiratory disease (as opposed to the symptoms being caused by the presence of a
gastrointestinal disease)?, (b) With dud alternatives: What is the probability that the patient has
a respiratory disease (as opposed to the symptoms being caused by the presence of gastroen-
teritis, stomach cancer, or any other gastrointestinal disease)? The estimate from the control
chain is higher than from the chain for which dud alternatives are presented. The difference
between these estimates is represented by the red line and the effect diminishes as the number
of samples increases

same hypothesis was generated, but evaluated differently depending on how many alternatives
were generated. An MCMC chain can “get stuck” at a high probability hypothesis when ini-
tialized there by rejecting most of the new proposals, resulting in fewer generated alternatives.

Anchoring and adjustment

In a classic experiment, Tversky & Kahneman (1974) had participants observe a roulette
wheel that was predetermined to stop on either 10 or 65. Participants subsequently had to guess
the percentage of African countries in the United Nations. Participants who saw the wheel
stopping on 10 guessed lower values than participants whose wheel stopped at 65. This and
other findings led Tversky & Kahneman (1974) to hypothesize the “anchoring and adjustment”
heuristic, according to which people anchor on a salient reference (even if it is irrelevant) and
incrementally adjust away from the anchor towards the correct answer.

Lieder et al. (2013) showed that the anchoring and adjustment heuristic is a basic con-
sequence of MCMC algorithms, due to the inherent autocorrelation of samples. Consistent
with this account, our model posits that anchors, even when irrelevant, can serve to initialize
the Markov chain. Locality guarantees that the chain will adjust incrementally away from the
initial state, though anchoring will occur more generally as long as the rejection probability is
non-zero. An MCMC algorithm with global proposals will capture anchoring to some extent
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Figure 5. Self-generation effect. MCMC estimates for the following query: Given the symp-
toms fever and fatigue, (a) Self-generated: What are the two most likely respiratory diseases
to have caused these symptoms? Estimate the probability that these symptoms are caused by
either of these two diseases. (b) Other-generated: What is the probability that these symptoms
were caused by the presence of a cold or respiratory flu (two most likely respiratory diseases to
have caused these symptoms returned by the first chain)? The estimate from the other-generated
chain is higher than from the self-generated chain. The difference between these estimates is
represented by the red line and the effect decreases as the number of samples increases

because of its non-zero rejection probability and resulting auto-correlation of samples. How-
ever, without locality, estimates would not adjust incrementally away from the initial state. In
other words, any MCMC algorithm will over-represent the initial anchoring hypothesis in the
small sample limit, but only an MCMC algorithm with local proposals will also over-represent
other hypotheses close to the initial anchoring hypothesis.

We illustrate this effect in Figure 6 using MCMC with local proposals on the disease-
symptom network. The space of diseases in our example is clustered into respiratory and
gastrointestinal diseases. The given symptoms are fever and fatigue. Chains initialized in
different clusters show an initial within-cluster bias (i.e. not just a bias towards the initial
anchoring hypothesis, but also to other hypotheses in its cluster), and this bias diminishes with
the number of samples.

The crowd within

Error in estimates of numerical quantities decrease when the estimates are averaged
across individuals, a phenomenon known as the wisdom of crowds (Surowiecki, 2005). This
is expected if the error in the estimate of one individual is statistically independent from the
error of the others, such that averaging removes the noise. Any unbiased stochastic sampling
algorithm replicates this result, because taking more samples gets one closer to the asymptotic
regime, where the estimates are exact and the error tends to zero.
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Figure 6. Anchoring and adjustment. The y axis represents the difference in the probabilities
of respiratory flu and stomach flu given the symptoms fever and fatigue as returned by two
different chains that are initialized differently. The chains are initialized in the two different
clusters, at hypotheses other than the focal hypotheses of respiratory or stomach flu. Before
reaching convergence, the chain initialized in cluster 1 of respiratory diseases places higher
probability on respiratory flu than the chain initialized in cluster 2 of gastrointestinal diseases.
The net difference between the two chains diminishes as the number of samples increases.

This error analysis was extended by Vul & Pashler (2008) to the effects of averaging
across multiple estimates from a single individual. They found that averaging estimates re-
duced error—a phenomenon they named the crowd within. However, they also found that this
error reduction was less compared to the reduction obtained by averaging across individuals.
One explanation for this observation is that the error in the estimates given by the same individ-
ual are not entirely independent. We propose that the dependence between multiple estimates
arises from an autocorrelated stochastic sampling algorithm like MCMC. This effect is illus-
trated in Figure 7. We presented the following query to the model: Given symptoms are fever,
nausea and fatigue, what is the probability that these symptoms are caused by the presence of
a respiratory disease rather than a gastrointestinal disease? We ran several chains (Nc = 24)
initialized randomly in the space of all possible diseases, with each run generating the same
number of samples (Ns = 200). Each chain is initialized at the last sample of the previous
chain6, for another Ns steps and a new set of Nc estimates are obtained, corresponding to the
second guesses of the Nc individuals. This process is continued until we have 7 estimates from
each of the Nc = 24 participants. The samples are then averaged either within or across in-
dividuals (chains). We find results analogous to those in Vul & Pashler (2008)—the error of

6We could also induce correlation between consecutive estimates by continuing the chain—i.e., carrying over
the estimates from the first guess to the second one, instead of re-initializing. However, if we continue the chain,
the second estimate is made with more samples and will always have a lower error on average than the first one.
Vul & Pashler (2008) find this to not be the case empirically.
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Figure 7. The crowd within. Errors in the MCMC estimates for the following query: Given
the symptoms nausea and shortness of breath, what is the probability that these were caused
by the presence of a respiratory disease? The estimates are averaged either over samples from
the same individual (blue) or over samples from different individuals (red)

the responses monotonically declines with the number of samples, and the error reduction is
greater when averaging across (compared to within) individuals.

Our MCMC model can replicate this effect because it generates auto-correlated samples.
The last sample from one estimate is where the chain for the next estimate is initialized. As
the sampling process is auto-correlated, subsequent samples in the second chain (in the small
sample size limit) are correlated to its initial sample. Similarly, earlier samples from the first
chain are correlated to its last sample. Because the samples from the two chains are correlated
via the common sample, the probability estimates they generated are correlated as well. This
auto-correlation exists irrespective of proposal distribution because of the non-zero rejection
probability, but is strengthened by locality in the proposals because this increases correlation.

Summary of simulation results and comparison with importance sampling

To highlight the distinctive predictions of MCMC, it is useful to compare it with other
sampling algorithms that have been explored in the psychological literature. Importance sam-
pling also uses a proposal distribution Q(h), but unlike MCMC it samples multiple hypotheses
independently and in parallel. These samples are then weighted to obtain an approximation of
the posterior:

P̂N(h|d) = 1
N

N∑
n=1

I[hn = d]wn, (7)
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where wn is an “importance weight” for sample n computed according to:

wn ∝
P (hn, d)
Q(hn) . (8)

Intuitively, the importance weight corrects for the fact that the importance sampler draws sam-
ples from the wrong distribution. Shi, Griffiths, Feldman, & Sanborn (2010) have shown how
this algorithm can be used to simulate human performance on a wide range of tasks. They
also identified a correspondence between importance sampling and exemplar models, which
have been widely applied in psychology. In related work, Shi & Griffiths (2009) demonstrated
how importance sampling could be realized in a biologically plausible neural circuit (see also
Abbott, Hamrick, & Griffiths, 2013).

Some of the effects we have replicated in this work could also be captured by an impor-
tance sampling algorithm with limited samples. Thomas et al. (2008) have proposed a model,
HyGene, that is similar in spirit to an importance sampler with limited samples, with a mem-
ory driven proposal distribution that selects the hypotheses to be generated. HyGene explains
subadditivity in terms of a failure to retrieve all the relevant hypotheses from memory due to
stochastic noise in the retrieval process and limited working memory capacity.

The self-generation effect can to some extent be reproduced by importance sampling
because prompting a hypothesis causes it to be sampled an extra time. So the probability
of the focal space will be slightly larger if hypotheses in it are explicitly prompted (other-
generated and presented to the participant) than if it they are generated without prompting (self-
generated). However, Experiment 2 in Koehler (1994) shows that in a situation where all the
alternatives are specified, prompting specific hypotheses (as in the other-generated scenarios),
does not result in a higher probability judgment than when these hypotheses are not prompted
(as in the self-generated scenarios). The MCMC algorithm captures this finding because in a
small hypothesis space, the Markov chain will visit all the hypotheses with the right frequency
irrespective of initialization. By contrast, the importance sampler predicts a higher probability
for other-generated hypotheses, contrary to the empirical finding.

This brings us to a key difference between importance sampling and MCMC: Impor-
tance sampling generates all hypotheses in parallel—the generation of new hypotheses has no
dependence on hypotheses that have already been generated. Without this dependence, there is
no interaction between the generation and evaluation processes. MCMC captures this depen-
dence by sequentially generating hypotheses. Our model’s explanation of the self-generation
effect, superadditivity, the weak evidence effect and the dud alternative effect rests on this de-
pendence. The Markov chain can get stuck (at least temporarily) by rejecting proposals, thus
generating fewer alternatives. If, on the other hand, the current hypothesis has low probability,
more alternatives are generated and the probability estimate of the focal space is reduced.

The importance sampler does not produce these effects, because its mechanism for gener-
ating new hypotheses is independent of the probability of the current one. If anything, prompt-
ing a hypothesis within the focal space, no matter how atypical, causes it to be sampled, in-
creasing the importance sampler’s estimate for the probability of the focal space, contradicting
superadditivity.

Another key difference between MCMC and importance sampling is that MCMC gener-
ates correlated samples, whereas consecutive samples from an importance sampler are totally
independent. This prevents the importance sampler from reproducing the effects in Table 1 that
rely on correlated sampling, such as the anchoring effect and the crowd within.
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Overview of experiments

We now turn to novel experimental tests of our theory. As discussed in the Introduction,
the primary impetus for considering rational process models based on approximate inference is
that inference in many real-world problems is computationally intractable. However, studying
complex inference problems experimentally is challenging because it becomes harder to control
participants’ knowledge about the generative model. In the case of medical diagnosis, we can
rely on the extensive training of clinicians, but it is unclear whether conclusions from these
studies are generalizable to non-expert populations. Thus, for our experiments we sought a
more naturalistic inference problem.

One domain in which humans have rich, quantifiable knowledge is scene perception and
understanding. Extensive research suggests that the visual system encodes information about
natural scene statistics (Barlow, 2001; Simoncelli & Olshausen, 2001). Although these low-
level scene statistics like the distribution of oriented edges are not consciously accessible,
statistics at the level of objects, for example object co-occurrence statistics in natural scenes
studied in Greene (2013), can be used to inform a generative model that can act as a proxy for
one aspect of human scene understanding. We can then leverage such models to test theories
of hypothesis generation in this domain.

Specifically, Greene (2013) provides a database of natural scenes with hand-labeled ob-
jects. We fit the latent Dirichlet allocation (LDA) model (Blei, Ng, & Jordan, 2003) to this
dataset, allowing us to capture the distribution of co-occurrences of different objects in terms
of latent “topics” (distributions over objects). Each scene is modeled as a probabilistic mix-
ture of topics. The LDA model captures the fact that microwaves are likely to co-occur with
toasters, and cars are likely to co-occur with mailboxes. The marginal distribution of objects
provides a natural empirical prior over objects. We do not fit any free parameters to the dataset;
all hyperparameters are set to the values described in Blei et al. (2003).

For our purposes, the important point is that we can use our model to compute conditional
probabilities over hidden objects in a scene, given a set of observed objects. Formally, let h ∈ H
denote a hypothesis about k hidden objects in a scene, among all such possible hypotheses
H. Given a set of observed objects d, the inference problem is to compute the conditional
probability P (h ∈ H|d) that h is in some set H ⊂ H (e.g., hypotheses in which at least one
of the hidden objects is an electrical appliance, or hypotheses in which the name of at least
one of the hidden objects starts with a particular letter). This conditional probability can be
approximated using MCMC in the hypothesis space.

In our experiments, we present participants with a set of observed objects, and ask them
to estimate the probability that the hidden objects belong to some subset of possible objects. By
manipulating the query, we attempt to alter the initialization of participants’ mental sampling
algorithm, allowing us to quantitatively test some of the predictions of our model.

Due to the relative complexity of this domain (compared to the simplified fictitious
disease-symptom domain we have used so far for illustrative purposes), we refrain from making
claims about the structure of proposal locality here and only test the predictions of our model
that are immune to the choice of proposal distribution. Specifically, we focus on subadditivity
and superadditivity.
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Experiment 1

Our first prediction is the occurrence of both superadditivity and subadditivity in the
same domain. The key factor is the typicality of the examples prompted by the unpacked
query. We predict that if the query prompts typical examples from the focal space, probability
judgments of that focal space will be higher than in the packed condition where no hypotheses
are prompted (subadditivity). By contrast, if the question prompts atypical examples from the
focal space, probability judgments of that focal space will be lower than in the packed condition
where no hypotheses are prompted (superadditivity).

Using LDA as the probabilistic model, the data consist of visible objects in a scene, and
the hypotheses are hidden objects. The focal space of hypotheses is given by a query such as
all objects starting with ‘c’. The focal space was unpacked into several either highly probable
(typical) examples or highly improbable (atypical) examples, as well as a catch-all hypothesis.
In the packed condition, the focal space is queried without any unpacked examples.

Participants. 59 participants (26 females, mean age=35.76, SD=11.63) were recruited
via Amazon’s Mechanical Turk and received $1 for their participation plus a performance-
dependent bonus.

Materials and procedure. Participants were asked to imagine playing a game with
a friend in which the friend specifies an object in a scene that they cannot see themselves.
The task is to estimate the probability of certain sets of other objects in the same scene. For
example, the friend could specify “pillow”. In the unpacked condition, participants were then
asked to estimate the conditional probability of a focal space presented as a few examples and
a catch-all hypothesis (e.g., “an armchair, an apple, an alarm clock or any other object starting
with an A”). In the packed condition, the query did not contain any examples.

Table 3
Queries in Experiment 1. The letter determines the focal space (e.g., all objects beginning with
A), conditioned on the cue object. Typical and atypical unpackings are shown for each focal
space.
Cue object Letter Unpacked-typical Unpacked-atypical
Pillow A armchair, alarm clock, apple arch, airplane, artichokes
Rug B book, bouquet, bed bird, buffalo, bicycle
Table C chair, computer, curtain cannon, cow, canoe
Telephone D display case, dresser, desk drinking fountain, dryer, dome
Computer E envelope,electrical outlet, end table eggplant, electric mixer, elevator door
Armchair F fireplace, filing cabinet, fan fire hydrant, fountain, fish tank
Stove L light, lemon, ladle leavers, ladder, lichen
Chair P painting, plant, printer porch, pie, platform
Bed R rug, remote control, radio railroad, recycling bins, rolling pin
Kettle S stove, shelves, soap suitcase, shoe, scanner
Sink T table, towel, toilet trumpet, toll gate, trunk
Lamp W window, wardrobe, wine rack wheelbarrow, water fountain, windmill

Each participant responded to one query for each of 9 different scenarios shown in Ta-
ble 3, with 3 unpacked-atypical, 3 unpacked-typical, and 3 packed questions. We randomized
the order of the scenarios as well as the assignment of scenarios to condition for each partici-
pant.
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On every trial, participants first saw the cue object, followed by a hypothesis (either
packed, unpacked-typical or unpacked-atypical). Participants had 20 seconds to estimate the
probability of the hypothesis on a scale from 0 (not at all likely) to 100 (certain). For every
timely response per trial they gained an additional reward of $0.1. A screenshot of the experi-
ment is shown in Figure 8.

Figure 8. Experimental setup. Participants were asked to estimate the conditional probability
using a slider bar within a 20-second time limit.

Model fitting. Our model has two free parameters: the number of hidden objects in the
scene (k) and the number of samples (N ). These parameters were fit to the behavioral data
from both Experiment 1 and Experiment 2 combined, using a coarse grid search to optimize
the mean-squared error between the experimental probability estimates and the probability es-
timates from the model. The value of k that best fit the data was k = 6, and the number of
samples N = 230. This value of k is in the same ballpark as values found for average number
of uniquely labeled objects in natural scenes from data collected in Greene (2013). This value
forN as the number of samples is higher than numbers found in some previous work like Vul et
al. (2014) etc, but it is important to note that each unique hypothesis can appear several times in
the sample set. So even if the number of samples is larger than in previous studies, the number
of unique hypotheses is comparable.

The details of the proposal distribution could also influence the individual and relative
magnitudes of the observed subadditivity and superadditivity effects, and perhaps different
parameters for N and k. Instead of making strong assumptions about locality in this particular
hypothesis space, we use a uniform proposal distribution.

Results and discussion. We compared the mean probability judgments for each condi-
tion (Figure 9). Consistent with our hypothesis, we found subadditivity in the unpacked-typical
condition, with significantly higher probability estimates compared to the control condition
[t(58) = 4.53, p < 0.01], and superadditivity in the unpacked-atypical condition, with sig-
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nificantly lower probability estimates compared to the control condition [t(58) = −4.97, p <
0.01]. This pattern of results was captured by our MCMC model.
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Figure 9. Experiment 1 results. Mean probability estimates for each condition. Error bars
represent the 95% confidence interval of the mean. Red dots show estimates from the MCMC
model with 230 samples, assuming 6 hidden objects in the scene.

Our results confirm the prediction that subadditivity and superadditivity will occur within
the same paradigm, depending on the typicality of unpacking. A related result was reported by
Sloman et al. (2004), who found subadditivity only when the definition of the focal space was
fuzzy and typical unpacking may have led to the consideration of a larger focal space. We
consider this study in more detail in the General Discussion.

Experiment 2

In Experiment 1, we demonstrated that the typicality of unpacked examples has a power-
ful effect on biases in probability estimation. In Experiment 2, we provide converging evidence
by showing that different biases can be induced for the same unpacked examples by changing
the cue object.

Typicality depends on an interaction between the cue and the examples: in the presence
of a road, a crosswalk is typical and a coffee-maker is atypical, but the opposite is true in the
presence of a sink. Our model predicts that subadditivity will occur when unpacked examples
are typical for a given cue object, whereas superadditivity will occur when the same examples
are atypical for a different cue object.

Participants. 180 participants (84 females, mean age= 34.25, SD=11.16) were re-
cruited via Amazon’s Mechanical Turk web service and received $0.5 for their participation
plus a performance-dependent bonus.

Materials and procedure. The experimental procedure was identical to Experiment
1, except for the choice of scenarios (Table 4). Each participant responded to one unpacked-
typical, one unpacked-atypical and one packed scenario in random order.
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Table 4
Queries in Experiment 2. The letter determines the focal space (e.g., all objects beginning with
A), conditioned on the cue object. Conditioned on cue object 1, unpacking 1 is predicted to
cause subadditivity and unpacking 2 is predicted to cause superadditivity. These predictions
reverse for cue object 2.

Cue object 1 Cue object 2 Letter Unpacking 1 Unpacking 2
Pillow Faucet B bed skirt, bedspread bucket, bread
Road Sink C cabin, crosswalk cup, coffee maker
Cabinet Road T toothpaste, tray terrace, tunnel

Results and discussion. As shown in Figure 10, we observed a superadditivity effect:
probability estimates were significantly higher in the packed condition compared to the atypical
unpacking for both cue object 1 [t(165) = 3.31, p < 0.01] and cue object 2 [t(162) = 4.31, p <
0.01]. We did not observe a subadditivity effect for either cue object 1 [t(171) = 0.73, p > 0.05]
or cue object 2 [t(168) = 0.08, p > 0.05]. Importantly, we found a significant interaction be-
tween the cue-object and the unpacking of the objects [F (498, 2) = 12.69, p < 0.001]. In
particular, when conditioning on cue object 2, using “Unpacking 1” (see Table 4) leads to sig-
nificantly lower estimates than using “Unpacking 2” [t(251) = 2.52, p < 0.01]. Additionally,
when conditioning on cue object 1, using “Unpacking 2” produces significantly lower estimates
than using “Unpacking 1”; [t(165) = −3.31, p < 0.001]. These results show that typicality of
the unpackings and, by proxy the sub- and super-additive effects, crucially depend on the con-
ditioned cue object.
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Figure 10. Experiment 2 results. Mean probability estimates for each condition. Error bars
represent the 95% confidence interval of the mean. Red dots show estimates from the MCMC
model with 230 samples, assuming 6 hidden objects in the scene. Unpacking 1 is typical for
cue object 1 and atypical for cue object 2; unpacking 2 is typical for cue object 2 and atypical
for cue object 1.
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Our fitted model matches the experimental data well (r = 0.96, p < 0.001), only slightly
underestimating the superadditive effect with cue object 2 and unpacking 1. We can conclude
from the fact that this cue-dependent swap can be even partially carried out—for example, the
superadditivity effect certainly does get swapped—indicates that these effects are not modu-
lated solely by the prior typicality or inherent availability of the unpacked examples. The same
unpacking that induces superadditivity in the presence of one cue object, does not induce it in
the presence of the second cue object. Furthermore, a new unpacking can be chosen such that
it induces superadditivity in the presence of the second cue object but not in the presence of
the first. These results support a sampling process that is modulated by the cue objects, i.e. the
observed data.

Experiment 3

A key prediction of our model is that the strength of subadditivity and superadditivity
will decrease with the number of sampled hypotheses, as the chain approaches its stationary
distribution. To test this prediction, we repeated Experiment 1, but reduced the time limit and
incentivized participants to respond more quickly. We predicted that these changes would lead
to stronger subadditivity and superadditivity effects.

Participants. 62 participants (34 females, mean age= 25.65, SD=12.36) were recruited
via Amazon’s Mechanical Turk web service and received $0.5 for their participation plus a
performance-dependent bonus.

Materials and procedure. Materials were the same as in Experiment 1. However, in
this experiment participants had less time available per trial (5 seconds) and were asked to
respond as quickly as possible. Participants were paid a baseline amount for their participation
of $0.5. Additionally, they were incentivized to respond quickly: they could gain more money
the faster they responded on each trial (up to $0.1 per trial) and gained an additional $0.1 for
every on time response per trial overall.

Results and Discussion. The mean estimates for the different conditions are shown in
Figure 11. Replicating the results of Experiment 1, the estimates for the unpacked-atypical
condition were significantly lower than for the packed condition [t(57) = −4.8183, p < 0.01],
and the estimates for the unpacked-typical condition were significantly higher than for the
packed condition [t(57) = 4.76, p < 0.01]. Our hypothesis generation model fits the data well
with parameter values K = 3 and N = 170. We see that the best fit number of samples is
substantially lower than that found in Experiment 1 (N = 230). The number of hidden objects
K is also lower. These parameter estimates are consistent with the idea that time pressure
results in fewer generated samples and fewer objects under consideration.

Next, we performed a median split based on the overall reaction times and thereby clas-
sified trials into slow and fast trials. The slow and fast trials were separately fit using the same
value of K from the overall responses and adjusting N . We see that the data from the fast trials
are better fit with a lowerN (N = 150) than the slow trials (N = 190). The results are shown in
Figure 12. We then performed an ANOVA, regressing the median time (fast or slow response),
condition (packed, typically unpacked and atypically unpacked hypothesis) onto participants’
probability estimates, where responses were nested within participants.Condition was a sig-
nificant predictor of participants’ responses (χ2(1) = 157.8, p < 0.001). The time variable
alone was not a significant predictor of participants’ responses (χ2(1) = 3.9, p = 0.05). This is
expected since the subadditivity and superadditivity effects go in opposite directions. The inter-
action between time and condition was significant (χ(1) = 37.03, p < 0.01) indicating that the
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Figure 11. Experiment 3 results. Mean probability estimates for each condition. Error bars
represent the 95% confidence interval of the mean. Red dots show estimates from the MCMC
model with 170 samples, assuming 3 hidden objects in the scene. Blue squares show means
estimates of Experiment 1.

time variable influences the estimates depending on condition. Further assessing this difference
between the interactions again using a nested ANOVA showed that faster responses produced
greater subadditivity effect as compared to slow responses (t(248) = −2.1602, p < 0.05). The
difference in the superadditivity effect however was not significant (t(213) = 0.78, p = 0.4).
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Figure 12. Experiment 3 results: response time analysis. Mean probability estimates for
each condition divided into fast and slow trials based on a median split of the response times.
Error bars represent the 95% confidence interval of the mean. Dots represent the model fits
with model parameters K = 3, and N = 150 for the fast trials and N = 190 for slow trials.
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Experiment 4

In our final experiment, we explored the possibility that cognitive load will reduce the
number of samples, under the assumption that load consumes resources necessary for hypothe-
sis generation. Therefore, we repeated Experiment 1, but put participants under cognitive load
while responding to the packed or unpacked queries. We predicted that subadditivity and super-
additivity effects should become stronger under cognitive load. In addition, the effects should
again depend on participants’ response time, such that faster trials are expected to produce
larger effects.

Participants

69 participants (28 females, mean age= 32.17, SD=7.64) were recruited via Amazon’s
Mechanical Turk web service and received $0.5 for their participation plus a bonus of $0.1 for
every question they answered on time and $0.1 for every time they remembered whether or not
an item shown after the question had a appeared within a sequence before the target question
correctly.

Materials and Procedure

Materials were the same as in Experiment 1 and 3. Additionally, participants were put
under cognitive load while performing the probability estimation task. On each trial, partic-
ipants again first saw the cue object. Once they clicked “Next”, a sequence of three random
digits appeared, each remaining on the screen for 1 second before disappearing after which the
next digit appeared. Participants were asked to remember these digits. Immediately afterwards,
participants were asked to judge the probability of a hypothesis that could be either packed or
unpacked (same as in Experiment 1). They were then shown another digit and had to indicate
whether or not that digit had occurred within the sequence they had just been shown.

Results and Discussion

The mean probability estimates for each condition are shown in Figure 13. Again repli-
cating Experiment 1, the estimates for the unpacked-atypical condition were significantly lower
than for the packed condition [t(68) = −7.31, p < 0.01], and the estimates for the unpacked-
typical condition were significantly higher than for the packed condition [t(68) = 4.18, p <
0.01]. The model fits the data well with parameter values K = 2 and N = 110. We see
again that the best fit number of samples is substantially lower than that found in Experiment
1 (N = 230). The number of hidden objects K is also lower. Additionally, the cognitive load
manipulation increased the effect of superadditivity (packed-atypical condition) as compared to
Experiment 1 [t(58) = 10.38, p < 0.001], but was not significantly different from Experiment
1 for the subadditivity effect (packed-typical condition) [t(58) = −1.9, p > 0.05].

General Discussion

We have presented a rational process model of inference in complex hypothesis spaces.
The main idea is to recast hypothesis generation as a Markov chain stochastically traversing
the hypothesis space, such that hypotheses are visited with a long-run frequency proportional
to their probability. Our simulations demonstrated that this model reproduces many observed
biases in human hypothesis generation. Finally, we confirmed in four experiments the model’s
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Figure 13. Experiment 4 results. Mean probability estimates for each condition when par-
ticipants are put under cognitive load. Error bars represent the 95% confidence interval of the
mean. Red dots show estimates from the MCMC model with 110 samples, assuming 2 hidden
objects in the scene. Blue squares show means estimates of Experiment 1.

prediction that subadditivity and superadditivity depend critically on the typicality of unpacked
examples and that the superadditivity effect increases under time pressure and cognitive load.

Our work extends a line of research on using rational process models to understand cog-
nitive biases. Most prominently, Thomas et al. (2008) have attempted in their HyGene model
to explain a wide range of hypothesis generation phenomena by assuming that Bayesian infer-
ence operates over a small subset of hypotheses drawn from memory. We follow a similar line
of reasoning, but depart in the assumption that hypotheses may be generated de novo through
stochastic exploration of the hypothesis space. This assumption is important for understanding
how humans can generate hypotheses in complex combinatorial spaces where it is impossible
to store all relevant hypotheses in memory.

Prior studies suggest that—when averaged over long time periods or across individuals—
probability estimates converge roughly to the Bayesian ideal (Vul et al., 2014). Like other
models based on Monte Carlo methods (e.g., Gershman et al., 2012; Lieder et al., 2013; Shi
et al., 2010), our model predicts exact Bayesian inference in the limit of large sample sizes.
However, cognitively bounded agents are expected to be computationally rational (Gershman
et al., 2015): sampling takes time and effort, and hence the optimal sampling strategy will tend
to generate relatively few hypotheses (Vul et al., 2014).

Our model recreates several cognitive biases exhibited by humans: subadditivity, su-
peradditivity, anchoring and adjustment, weaker confidence in self-generated hypotheses, the
crowd within, and the dud alternative and weak evidence effects. While some of these biases
have been accounted for by other models, ours is the first unified rational process account. Ta-
ble 5 provides a systematic comparison of which phenomena are accounted for by different
models.
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Our simulation results rest on two key features of the model. First, our model posits an
interplay between generation and evaluation of hypotheses: when a low probability hypothesis
has been generated, the sampler is more likely to accept new proposals compared to when a
high probability hypothesis has been generated. This property of MCMC allows us to under-
stand superadditivity and related effects (such as the dud alternative and weak evidence effects),
where unpacking a query into low probability examples causes a reduction in the probability
estimate for the focal space. This feature also explains why participants give lower probability
estimates to hypotheses that are self-generated compared to those generated by others and pre-
sented to them. A shortcoming of previous models based on importance sampling (Shi et al.,
2010) or cued recall (Thomas et al., 2008) is that the generation and the evaluation processes
are largely decoupled; the probabilities of the hypotheses already in the cache of generated
hypotheses do not affect whether or not new hypotheses are generated.

The second key property of our model is the autocorrelation of hypotheses in the Markov
chain. This autocorrelation arises from two sources: the non-zero rejection rate (which ensures
that the chain sometimes stays at its current hypothesis for multiple time steps) and the locality
of the proposal distribution (which ensures that proposed hypotheses are in the vicinity of the
previously generated hypothesis). Previous models based on importance sampling or cued re-
call generate new candidate hypotheses independently of the hypotheses that have already been
generated (i.e., the previously generated hypotheses have no impact on future hypotheses).
Lieder et al. (2013) argued that autocorrelation and locality of proposals in MCMC models
can account for the anchoring and adjustment phenomena. They analyzed a one-dimensional
continuous hypothesis space for numerical estimation, and we generalized this idea to combina-
torial spaces. More broadly, several findings in the literature suggest hypothesis autocorrelation
(Bonawitz et al., 2014; Gershman et al., 2012; Vul & Pashler, 2008). For example, the “crowd
within” phenomenon (Vul & Pashler, 2008), which we also simulate, demonstrates that errors
in numerical guesses are correlated in time, and this error is reduced if the guesses are spread
out.

MCMC models with global proposal distributions will show much weaker autocorre-
lation compared to those with local proposal distributions, because any autocorrelation will
depend entirely on rejection of proposals. Since efficient samplers have relatively low rejection
rates (Robert & Casella, 2013), there is reason to believe that human probability estimation
makes uses of local proposal distributions. Evidence for locality has been found in domains
analogous to that of hypothesis generation (Abbott et al., 2015; Smith et al., 2013), further
suggesting that humans use local proposal distributions.

Previous work demonstrating the effect of superadditivity (Sloman et al., 2004) did not
find subadditivity except in situations where the search was over an ill-defined fuzzy category,
such that unpacked typical examples lead participants to consider a larger hypothesis space than
entailed by the packed query. However, this effect was driven by a single item: Guns that you
buy at a hardware store with staple gun as the unpacked typical example. Excluding this item,
typical unpackings were not subadditive. Our experiments demonstrated that subadditivity can
be obtained in well-defined (non-fuzzy) domains like “words starting with the letter A”, and
where typical unpackings do not extend the hypothesis space. A possible explanation for this
discrepancy is that, unlike the studies in Sloman et al. (2004), we impose a response deadline

7While an importance sampler does reproduce the dud alternative effect, we have elaborated in the section
comparing our MCMC model to importance sampling how its explanation does not extend to follow-up studies
on this effect (Koehler, 1994).
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Table 5
Comparison of stochastic sampling algorithms

Effect Stochastic Sampling Variants
Importance
Sampling

Global proposal
MCMC

Local proposal
MCMC

Subadditivity X X X
Superadditivity X X

Weak Evidence effect X X
Dud Alternative effect X X
Self-generation effect ?7 X X

Crowd within X X
Anchoring & adjustment X

on participants. The size of the subadditivity and superadditivity effects decay with the number
of hypothesis sampled. Subadditivity decays to almost zero with fewer samples than superad-
ditivity as seen for the scene statistics model in Figure 14. The time pressure in Experiment
1, by restricting the number of samples, may have rendered subadditivity observable, whereas
the superadditivity effect is observable in both. Time pressure in Experiment 3 and cognitive
load in Experiment 4 strengthened some of the effects, but did not consistently strengthen both
effects. Thus, more experimental work is needed to understand the role of time pressure and
cognitive load.

Our results cannot be explained by simpler heuristics like anchoring and adjustment.
Although anchoring to a low probability hypothesis can account for superadditivity (probability
estimates are adjusted upwards), anchoring to a high probability example does not explain
subadditivity, since the high probability hypothesis still has lower probability than the total
probability of the focal space (e.g., the probability of “chair” is lower than the probability of
seeing any object starting with the letter “c”). Thus, adjustment away from the low probability
hypothesis towards the normatively correct probability cannot lead to a probability estimate
higher than the answer to the packed query (where presumably no anchoring occurs).

Other effects like the conservatism bias could also potentially be captured by variants of
our model. Conservatism bias has previously been modeled using noisy retrieval of memories
(Dougherty, Gettys, & Ogden, 1999; Marchiori, Di Guida, & Erev, 2015) and can be repro-
duced in our model in the same spirit by allowing noisy initialization. Due to the discreteness
and resulting low resolution of probability estimates allowed by a limited number of samples,
even a few initial samples from the focal space might over-represent its probability. When
queried focal space has low probability, the chain is initialized there and the few initial hy-
pothesis generated from the focal space could give it higher probability than the true posterior.
When the queried focal space instead has high probability, it will be under-represented (as pre-
dicted by conservatism) if there are more samples from its complement space. If we introduce
noise that causes the chain to initialize in the complement space with some small probability,
this will produce a higher probability for the complement space and thus a lower probability
for the focal space—i.e., conservatism.
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Figure 14. The effect size of subadditivity and superadditivity (calculated as the absolute differ-
ence between unpacked judgments and packed judgments, averaged over 200 chains) decays
with increase in the number of samples taken. We plot this for K = 3 but this structure is
maintained at all K. This plot shows that superadditivity decays faster than subadditivity with
increase in the number of samples, and that subadditivity decays to close to zero with a smaller
number of samples.

Future work

Our model can be improved in several ways. First, we adopted relatively simple assump-
tions about initialization of the Markov chain. Recent work suggests that humans might use a
fast, data-driven proposal distribution learned from previous experience (Gershman & Good-
man, 2014; Yildirim & Kulkarni, n.d.). Second, our simplistic assumptions about the proposal
distribution could likewise be made more sophisticated by using data-driven methods. Finally,
we have assumed that the number of samples is constrained solely by the available time, but
the computational rationality perspective argues that this number is chosen adaptively to bal-
ance the benefits of taking more samples against their costs in time and energy (Gershman et
al., 2015; Griffiths et al., 2015; Vul et al., 2014). Investigating cognitive algorithms for meta-
control of sampling is an interesting avenue for future research.

Our experiments and simulations only studied two domains (medical diagnosis and scene
understanding), but there exist many real-world domains that impose a severe computational
burden on mental inference. For example, it has been shown that humans are capable of simu-
lating physical trajectories that they have never directly observed before and make fairly accu-
rate inferences when predicting the motion of a projectile (Téglás et al., 2011), judging mass
in collisions (Sanborn & Griffiths, 2009), and judging the balance of block towers (Hamrick,
Battaglia, & Tenenbaum, 2011). Furthermore, research also suggests that humans sample noisy
simulations of future trajectories (Hamrick et al., 2015; Smith & Vul, 2013), but the precise
sampling mechanisms are currently unknown. The number of possible trajectories is exponen-
tially large in this domain, and thus approximate inference schemes like MCMC may come into
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