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Abstract

Humans are remarkably adept at interpreting the gaze direction of other individuals in their surroundings.

This skill is at the core of the ability to engage in joint visual attention, which is essential for establishing

social interactions. How accurate are humans in determining the gaze direction of others in lifelike scenes,

when they can move their heads and eyes freely, and what are the sources of information for the

underlying perceptual processes? These questions pose a challenge from both empirical and

computational perspectives, due to the complexity of the visual input in real-life situations. Here we

measure empirically human accuracy in perceiving the gaze direction of others in lifelike scenes, and study
computationally the sources of information and representations underlying this cognitive capacity. We show

that humans perform better in face-to-f ace condi ti ons compared with Orecor de
advantage is not due to the availability of input dynamics. We further show that humans are still performing

well when only the eyes-region is visible, rather than the whole face. We develop a computational model,

which replicates the pattern of human performance, including the finding that the eyes-region contains on

its own, the required information for estimating both head orientation and direction of gaze. Consistent with
neurophysiological findingsontask-s peci fi ¢ Afaced regions in the brain,
representations reproduceper cept ual effects such as the O6Woll aston i
direction of gaze, but not when trained to recognize objects or faces.
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Introduction

Humans, as a social species, are remarkably adepts at understanding other people's mental
states based on the perception of their actigiakemore & Decety, 2001; Carruthers & Smith,
1996) Developmental studies have demonstrated that even young infants can be engaged in
joint attention with other humangYu & Smith, 2013)nd can understand their mentalages by
observing and interpreting their newerbal behavior, including their looking directi(®aron
Cohen, 1994; Johnso8Jaughter, & Carey, 1998; Chris Moore & Corkum, 1994; Saxe, Carey, &
Kanwisher, 2004; Striano & Reid, 2Qd6ferring where people are looking at plays a major role
in the development of communication and langug@eooks & Meltzoff, 2005; Tomasello, 1995,
1999) opens a window into their mental state, and serves as an important cue towards
understanding intentions and actions in social interactions (Figdlder et al., 2002; Ross Flom,
Lee, & Muir, 2007; Frischen, Bayliss, & Tipper, 2007; C. Moore & Dunham, 1995;&undy
Newell, 2007; D. Perrett & Emery, 1994; Reid & Striano, 2005; Scaife & Bruner, 1975; Vertegaal,
Veer, & Vons, 200D)

While gaze perception has been extensively studied in human \({Bmrk, Dicke, & Thier, 2008;
Cline, 1967; Gibson & Pick, 1963; Schweinberger, Kloth, & Jenkins, 2007; Stiel, Clifford, &

al NBaOKIfX wnmnT {@&Y2yas [SST / SRNBcepST 3 bAaKAYdzNI =

existing behavioral studies pralds only a limited understanding of gaze perception in real
GKSGKSNI 2NJ y2iG I LISNA 2 yARstis, Maghel, & Mdrley31968in8S O G S R
1967; Gibson & Pick, 1963; Schweinberger et al., 2007; Stiel et al., Z8&4cuity of detecting

direct eyecontact was found to be as high as 3° of visual af@iee, 1967; Gibson & Pick,

1963) However, brain studies have shown that direct gaze and general gaze directions are
encoded in different brain regions, suggesting that direct-egetact may involve a separate
processing mechanism and different computational representationspesed with judging

general direction of gaz@llison, Puce, & McCarthy, 2000; Calder et al., 2002, 2007; George,
Driver, & Dolan, 2001; Hoffman & Haxby, 2000; Jellema, Baker, Wicker, & Perrett, 2000; Wicker,
Michel, Henaff, & Decety, 189 Another limitation in past studies is due to the constraints,
imposed by most of the behavioral studies, on the looker's gaze behavior, such as fixing the head
at a certain pose and only allowing the eyes rotat{Bock et al., 2008; Symons et al., 2004)

While these constraints help to isolate the effects of head and eye orientatitingz, Mayes,

West, & Kerby, 2009; S. R. Langton, 2000; S. R. H. Langton, Honeyman, & Tesslér, 2004)
remains unclear from past studieshat is the accuracy of gaze perception under natural
unconstrained looking , where the looker can move her head and gaze fsaigenter, 1988;
Freedman & Sparks, 199@nd which parts of the face contribute most of the information

required to perform the task. Dealing with unconstrained gaze direction is also a more
challenging computational problem. In frontéilew with controlled head movement, the eyes

are clearly visible to the observer, and the gaze direction can be estimated directly from the
relative position of the iris and pupil in the eyes. In contrast, in the unconstrained gaze scenario,
the appearance of the &g vary dramatically, from clear fromtew of the eye, to partially

occulated eyes, when most of the eyes are invisible, due to the complex interaction of head pose
and eye gaze. Finally, in many studies on discriminating gaze perception, the lookediscas

look at an empty spacgCline, 1967; Gibson & Pick, 1988hereas in natural and realistic

situations a person's gaze is typically oriented at an object in the scene. Both developmental and
neuropsychological studies have shown that gazing towards an object is an important source for
learning and estimating direction ofgage! Yl y23 YST dzl X g |, FYlY2i@{23
Hains, & Muir, 1997; Ross Flom, Deak, Phill, & Pick, 2004; Pelphrey, Singerman, Allison, &
McCarthy, 2003; Ullman, Harari, & Dorfman, 2082 it remains possible that the exjraental
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Computationally, modeling the perceptual and cognitive processes involved in the analysis of

social interactions, including the extraction of 3D direction of gaz@terpreting visual joint

attention in reallife situations, pose a challenge due to the complexity of the visual input in

realistic 3D environment, compared with restricted 3D configurations studied under laboratory

conditions. Head pose estimation édudetection of eye gaze have been studied extensively in the

computer vision and applied mathematics communiijEenes Mora, Nguyen, Gatieerez, &

Odobez, 2013; Gee & Cipolla, 1994; Hansen & Ji, 2010; Lu, Sugano, Okabe, & Sato, 2011; Mora &

Odobez, 2012; MurphZhutorian & Trivedi, 2009; Odobez & Mora, 2013; Recasens, Khosla,

Vondrick, & Torralba, 2015; Sugano, Matsushita, & Sato, 2014NBdBA 6 > HnncT 2 SARSyYy ol OK
Layher, Bayerl, & Neumann, 2006; Wood et al., 2015; Zhang, Sugano, Fritz, & Bulling[1#915)

majority of these studies addressed either the head pose estimation or the eye gaze direction

estimation as disjoint problem&Gee & Cipolla, 1994; Kriiger, P6tzsch, & von der Malsburg, 1997;

Lu et al., 2011; Murph€hutorian & Trivedi, 2009; Odobez & Mora, 20121y, Wang, Yin, &

Kong, 2003)While studies of these two problems have demonstrated impressive performance

for each of the separate tasks, little has been done in addressing the problem of detecting the

direction of gaze in natural and unconstraineeses, in which observed humans can look freely

at different targets. In this natural and unconstrained setting, gaze events towards different

targets may share the same head or eye poses, while different poses may share the gaze towards

the same target. Aecent study(Recasens et al., 201#5ained a deep neural network to infer

direction of gaze in natural images using many labeled examples, in which both head

orientation and gaze targets were manually annotated. Since heads and faces in the training set

images were small and sometimes seemdrthe back, it remains unclear which face and eye

parts contributed to the gaze estimation. Other stud{@lobez & Mora, 2013; Zhang et al.,

2015)suggested to estimate direction of gaze under ffead movements by first rectifying the

eyes images (estimating how they would look if seen from a frontal)yigsing the 3D head

pose, acquired by a 3D sensor or estimated from the face image. However, the eyes rectification

procedure is complex and sets limitation on the range of supported head poses (due to self

occlusions at noifrontal poses), and there isonevidence for its role in human perception. Eye

region rectification was addressed in another st#yood et al., 2015which suggested a

computer graphics method for synthesizing realistic clopemages of the human eye for a wide

range of head poses, gaze directions, and illumination conditions. Using the synthesized eye

images in the training phase improved the performance over stéithe-are methods for gaze

estimation including deep neural nets, but the synthesized datasetdesigned for a typical

laptop-viewing setting with limited head pose and gaze variations.

Here we study for the first time accuracy of 3D gaze perception under natural and unconstraint

f221Ay3 O2yRAGAZ2Y&AD Ly 2 dzNJ gaSeidiiektigriohashurhay’ W2 60 & S NI S ND
Yi221SNDE 6KAOK Oly Y2@3S KSNJKSFIR FyR SéSa FTNBStex
conditions were tested to determine the source of information for the estimation of the 3D gaze
RANBOGAZ2YY Wi ARASAQY dZf SINGE d¥ER SWNBYORNIFIRIN B dz8A YAGR G A OB | vy
PGS NAE dzNBBI@ TN 2yithéut-IeyFa QF 1 6OSS NBadz Ga akKz2g GKIFG Kdzyl
AY GKS WiA@GSQ O2yRAGAZ2Y O2YLI NBR gA0GK GKS WNBO2NRSF
the visual input. Furthermore, the eyesgion (Fig. 3) was essentially sufficient for estimating 3D
RANBOGAZ2Y 2F 3JITS IyR 2AStRAI OIF@A ORI RYili A RIFKF 2B 6 B0 §
understand human performance, we constructed and compared coatjprtal models that can

process head orientation and gaze direction from 2D images of faces. We developed a model

GKIFG NBLX AOF(GSa KdzYly LISNF2NXIF YOS dzy RSNJ aAYAf I NI WNE
to future studies), including the finding ththe eyes region contains on its own most of the

information for interpreting 3D direction of gaze and head orientatigmery, 2000; S. R.

Langton, 2000; D. I. Perrett, Hietanen, Oram, Beisors w2f f 8 MPPHT ¢2R2NBJAS I H
1824) The model operates in a twatage process: head pose estimation followed by gaze

RANBOGAZY SalGAYFGA2Y FNBY (KS -shgeprocestitpogoved (1 A2y SRQ 2y
superior to endto-end deep neural networks (DNN) we studied. In addition, the learned
NBLINBaSydalraAz2ya akKz2g¢g +y STTFSO4Wdaldstgi I8249hemn2 §( KS W2 2f f



trained for estimating direction of gaze but not for object or face recognition, suggesting the
involvement of gazeselective cortical regions in the Wollaston effect.

Methods

This studycombines empirical testing with computational modeling and evaluation. The goal was
to measure human accuracy, and unfold the sources of information, which underlie the
perceptual and cognitive processes involved. We first describe the empirical stuztiesicted

under different conditions. Next, we describe the computational study, which includes modeling
of the computational processes, and a comparison between the performance of models and
humans under similar conditions.

Human Experiments

Tasks:

Each trial of the current study involved two human participants: a looker and an observer. The

looker was sitting, facing 52 objects arranged on a tabletop. On each trial, a command was

generated for the looker, indicating the color and number of a taaigéect. The looker was

AYyaidNHzOGSR G2 t221 Fd GKS GFNBSG 2062S0G al a yI GdzNT ¢
freely. An observer, either sitting in front of the looker across the table, or watching a recorded

aSaairzy 27 (KS fga2ifgadidh aswelbas all Kbfectd |adh tBeNable.

¢CKS dFai FT2NJGKS 20aSNBSNI gl a G2 AYyFSNI GKS GFNBSG 2
trials, each object was selected as the target once in a random order generated by an automated

scriph @ ¢ KS LINBOAaAzYy 2F (KS 20aSNBSNRa NBaLkRyasS sgla
which was also used in the evaluation of the computational study. All participantsgvgré K

Y2 NIt 2 N 32 NXNB O gdtidei iafofried consentansl SNB AR T2 NJ G KSANJ

LJ- NJi A O Alllekpérimentg and procedures were approved by the institutional review board

of Massachusetts Institute of Technology, Cambridge, MA, USA.

Experimental Design:

Across two experiments, we varied the visual input of theeobars, to control the sources of

visual information available to them in performing the task. As described in more detail below,
the viewing conditions ranged from fully unconstraint live 3D observation, down to highly
blurred face images with two tightigonstrained patches allowing a clear view only of the eyes.
This design enabled us not only to measure the overall precision of gaze perception, but also to
reveal the contribution of different sources of information, such as 3D vs. 2D, dynamic vs. static
and clear view of the whole face vs. partially blurred views of the face.

Experiment 1a and 1b: Live conditions

We started from the viewing condition that contained the richest visual information: atface

face live 3D viewind-(J. Four observers sat the opposite side of the table watching a single
looker. The looker looked at target objects, one target in each trial, by following commands
showing on a monitor (visible only to the looker, Figure S1A). At the beginning of the experiment,
the looker wa instructed to keep looking at the target, until a beep sound signaled the end of
the trial after 10 seconds, when the looker should look back at the monitor for the command of
the next trial. The observers were instructed to write down the name of thgeiaobject by
interpreting the lookers gaze. Following each two blocks, the observers shift their sits clockwise.
The four positions were categorized into two classes: center and periphery. To make a direct
comparison with results from the recorded coridits in experiment 2 (the recording equipment
was located in the center), here we only include in the results data from the two center positions
(Figure S1B)

Experiment 1a has 2 Asian lookers, one female (JP) and one male (TG). There were 16 Asian
participants as the observers. Experiment 2b has two Caucasian lookers, one female (VO) and



one male (HE). There were 10 Caucasian and African American participants as the observers in

this part of the experiment. Experiment 1a originally also included a swaga®ndition, in

GKAOK (GKS t221SNJ 6SINE | LIANI 2F RFENJ] adzy3traasSa (K
performance in this condition significantly drops. However, wearing sunglasses disrupts the

automatic face tracking of the recording system, vbhicakes the data unavailable for

computational modeling. Therefore, we do not include data from this condition in the results and

exclude it from experiment 2b.

Experiment 2a and 2b: Recorded conditions

Here we showed the observers the recorded videos iamhes (captured by the R&BKinect

aSyazNb 2F GKS t221SNRQ | O0lAazya 2y I 0O2YLlzi SNJ a
whole scene, including both the looker and the full object array on the table (the Kinects field of

view is 70°x60° of visuangle). The face of the looker roughly spang2®f visual angle in the
20aSNIBSNRa FTASER 27 -@hbfSigual angle ivthd livelsenditior). NB dzZaAKf & p
Although 3D live information is no longer available to the observers, we can systeligatica

manipulate the visual stimuli, by introducing 4 different viewing conditions in Exp. 2a

(Supplementary Materiql (RC) Dynamic videothe entire movements of the looker were shown

to the observer, starting from the resting state (watching a commantherscreen behind the

recording system) and ending at the fixed gaze at the targEXWholeface static images

Images of lookers gazing at targets were shown. Image frames were extracted from the

recorded videos when the lookers kept steady bothitheead and eyes (Fig. S3AO3 Eyes

region static imagesa rectangular image strip around the eyes region (including the nose bridge

and face boundaries at the temples) was visible, while the rest of the face was blurred (using a

low-pass Gaussianték, Fig. S3B)RC4 Headonly static imagesThe eyesegion was Gaussian

blurred, while the rest of the face was visible (Fig. S3E).
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Exp. 2b further isolated information available in the eyegion by introducing two further
conditions: RC3 Tighteyes face parts and boundaries surrounding the eyes (excluding the nose
bridge) were Gaussiaolurred (Fig. SSCR(C6 Separateeyes the nose bridge between the two
eyes was also Gausstbhurred (Fig. S3D). The Whdbre RC2 and Eyesegion RC3

conditions were repeated in Expt. 2b as baselines.

Images of the Eye®gion, Heaebnly, Separateeyes and Tightyes conditionsRC3RC6 were
automatically created using standard computer vision algorithfugpplementary Material

In both experimerg 2a and 2b, there were 16 blocks (4 visual conditions for each of the four
lookers). Each block consisted of 52 trials, in which the order of the target objects was
randomized. Each trial lasted 10 seconds. Observers were requested to move a computer mous
and click on the inferred target. Botllock order and trial order within each block, were
randomized. Each observer h&f practice trials at the beginning of the experiment, using

images of a different looker which was not one of the four lookers efattual experiment.

Apparatus and stimuli:

An array of 52 objects (candles of size 4.6x4.6x3.6 cm) was laid on a table in a concentric
configuration, with 13 columns and four rows (semnigs, Fig. S1B). A red wooden egg was

placed on the table to mark the center position of the concentric arrdje€s on the same row

had the same color (white, green, blue or red). The number of the column was marked on the
side of each object. The distance of each row from the center of the array (29 cm for the closest
row, and 96 cm for the furthest row) was seich that the visual angle between every two
adjacent rows, from a point 35 cm above the center of the array (the average looker perspective
at the array), was 10°. The column positions were set such that the angular difference between
each two adjacent@umns was 10° on the table surface. The corresponding visual angle
between every two adjacent columns, from the same point (35 cm above the center of the



array), was 8° on average. In practice, the visual angles slightly vary given the exact position of

tKkS t221SNRa KSI R Iy Pytdgabost (n@an\itfddetcd & viénvifg dnglell NR& |- €
between lookers across all target objects was 4.7°£3.0°). A Microsoft Kinect \\P R&®&or

was also positioned across the table, facing the table and the thjeay (121 cm away from the

center of the array and slightly below the instruction screen, Fig S1A). Th® R&®or was

used to record on video the looking trials of the lookers, and also provide accurate 3D

information of the recorded scene for compitonal evaluations (RGB at 1920x1080 pixel

resolution; depth at 512x424 pixel resolution; g§&arbolandi, Lefloch, & Kolb, 2016) a
RSGFAET SR S@FftdzZ GAzZgra)FT GKS YAySOGQa RSLIIK I

In thelive condition, observers were seated on the opposite side of the table, 128cm away from
the looker. In the recorded conditions, observers were seated 60 cm away from the display (full
screen size is 3 19° of visual angles)rhe recoded stimuli included 4 video sessions and 1040
still images of looking trials at different viewing conditions, all at 1920x1080 pixel resolution (Fig.
S2, S3Supplementary materigl

Computational modeling

To understand the sources of information for the underlying perceptual and cognitive processes

Ay SaldAYFGAY3 + LISNAR2YQa o5 3AFTS RANBOGAZYZI ¢S aidzF
direction of gaze from 2D images of faces. Accurate 3D informafithre visual environment

was extracted from the RGB sensor depth data, including the 3D position of objects and faces.

The Microsoft Kinect for Windows SDK provides accurate face tracking and reliable 3D head

orientation for tracked faces. The 3D ditien of gaze was defined as the 3D vector pointing

from the center location between the eyes and the location of the target object.

We developed a model for estimating the 3D direction of gaze from a 2D image of a face or face

parts, based on statef-the-art computer vision methods. The model works in a{stage

LINEOS&aazr KSIFR L12aS FANRGEI FYR GKSy 3T S RANBOGAZ2Y 7
our implementation image representations of the face and face p@tsch, Zisserman, &

Munoz, 2006; Dalal & Triggs, 2005; Lowe, 2@0d)associated with 3D directions of the head

orientation and gaze directiofAltmann, 1986; Wilkins, 1844)sing thek-nearest neighborsk¢

NN)approach(Duda, Hart, & Stork, 2001; Wu et al., 2088jilar to (Ullman et al., 2012k=15,

Supplementary material

Computational evaluation

I RFGF&SE F2NJGNFYAYAY3 YR S@FtdzZ GA2y 61 & ONBIFGSR 7
gSNBE y2i dzaASR Ay (KS GSadAay3a 2F (KS KdzYly w206aSNBSN
FYR GKSANI Fada20AF0GSR 05 KSIFR 2NASYydGFdAz2y oFa SEGNI C

and 3D direction of gaze (between the location of the face iasttucted target object),
collected from 37 blocks. Evaluation on this dataset was done using adeaweoker-out cross
validation approach.

We evaluated our two stage model together with leading deep neural network (DNN) models

(Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, & Hinton, #tHt5yere pretrained for

object recognition(Simonyan & Zisserman, 201&)face recognitior{Parkhi et al., 2015pnd

then finetuned to infer 3D head orientation and 3D direction of gaze from 2D face images (the

2 NX Sshfyhbo® RVdzi O a aA FAOF GA 2y fully goBriddie@s @ NA LNA LI F OSREA G A (
of size 4, representing 3D directions in rotation quaternions). Models were evaluated on similar

conditions to the human psychophysics, excluding the dynamic condiiG4. (For conparison

with human performance, the models were also tested on face images extracted from the stimuli

images of the human psychophysics te2CERCH.

To evaluate the Wollaston illusidiVollaston, 1824)a set of 120 face triplets was created from
the evaluation dataset. A face triplet consisted of a pair of authentic face images (of the same
w221 SNROS YR Iy FINIAFAOAIft@® WwWaeyikSaArAl SRQ TI
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depicted a face turned to the left in one image and to the right in the other image (mean angular

difference between the head orientations in the two imadés25.9°, SD=7.6°, and between the

gaze directions M=40.3°, SD=8.0°). An image cloning metRérkz, Gangnet, & Blake, 2003;

Tanaka, Kamio, & OkutomiQ22)was used to generate a synthesized face image with the same

SeSa FNRBY GKS FANRG AYF3IAS owaz2dz2NOSQ0L FyR KSIR LkRa
GKS SeSa Ay (GKS Wil NBSGQ AYF3AS sAGK GHeS ONBLIISR S
DNN models to the set of face triplets and compared between the estimated 3D directions of

gaze. We also compared the underlying representations for the eyes, which were extracted from

GKS RP&IdEA & SN 2F GKS Y2RSeéestmatoyasWwellRSt & GNI AySR ¥
models trained for object and face recognition. For the comparison, we used correlations of the

extracted layer responses localized at the eyes region, between pairs of faces with different head

poses and either different or samges.

S
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Results

Human experiments results

Figure 5A shows the overall performance of human observers in estimating the 3D gaze direction

of lookers under the tested conditionMéthods LC, RERC§. The accuracy is measured as the
percentage of trialsinwliK (G KS KdzYl'y 20aSNBSNE 3ISiG SEIFOGfeée (K

AY NBRT YSFyYy Fy3dz I NJ SNNBN) 6a! 90 Aa -Saa GKIYy noTto
Y SAITKO 2NKEENR QD& AYA BRNSZNGEACHI Blue; MAE is less than 14.1° and

MTOnoX NBALISOGAGSteod ¢KS WSEL OG0 Q Metkb@sdan: O& Ay GKS Y
ga aAIYATAOLIyidte KAIKSNI 6GoomMOTHDPY DN LIndantov GKI
6§8ai SR WNRiNR dFpsRQided, My3R%, SD=6%thods RC1 Both the 4and &
YSAIKO2NK22R | OOdzN> OASa 2F (GKS Wi Adi@0=5QMUy RAGAZ2Y &SN
p<0.001;8/Y GoomMOTcdTonYE LFkndnnanmod | 24568 OSNBthedi KS RAFFSNB
ReylYAO O2yRAGAZY | YR (KS -fa&dondifidn (M=280G@eN0& Ay (KS &
Methods RCRwas found to be insignificant (t(6)=1.474, p=0.191), suggesting that the

LISNF2NXIF YOS 3AFL) 6SG6SSy (KS &k thaip@ dyhayhRs. TIE O2 NRSRQ C
WSEIF OGQ I+ OO dpgioe ORyY RECHNS, SMEIM&GHDDs RCRwas significantly

fSaa GKIy GKS WSE I-fdeé candiiod @6eRI6E) p=0.01yethdds BCRAUK 2 f S

the difference between the4and 8neighborhood accuracies of the two conditions was not

significant (4n: t(6)= 1.494, p=0.186:8Y GO0 c Ol MPTpT I LI ndmo-n0 d CdzNI KS NI 2
and 8neighborhood accuracies in the eyegyion condition were much better than the

accuraciesintheead2 yf & O2y RAGAZ2Y O6WSELF OGQY afuweye:x {5 o2 u (
6.313, p<0.001;-®: t(6)= 5.241, p=0.002ethodsRO4 ® ¢ KSaS FAYyRAy3Ia adza3 é a 0K
AOGNRLIQ SaaSydaAalrtte O2ydGrAya Y2aid 2 FatidnKS AyTzNyluxzy

In Experiment 2b, we furthered manipulated images around the egg®n. Removing the

ONARIS 2F (KS (g2 SeSa 6SNB Y2ail-eREmhdtioni A Sz | & WSEL
(M 19%, SD=4%lethods RCpBwas significantly lower than that ofeheyesreglon condition

6GoTO0lodcT TS LI ndnny GePes boddiion@Ni=21%, SOOMMHodB RCE2 T G KS G A I K
was also lower than that of the eyesgion condition, with a marginal significance (t(7)=2.315,

p=0.054).

Remarkably, the humanacc®d&® Ay | ff O2yRA uy(S)yin\%NJRQ
0 NR LI SRy SiAya Kiok2SNKUy2 RQY ¢gKAES GKS a! 9 Aa
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Results for the computational model

For the computational model evaluation, accuracy was measured directly as the aegatar
between the estimated 3D direction and the true 3D direction of both head orientation and gaze
G2 GFINBSGDP ¢2 O2YLINB 0SiGsSSy (KS Y2RSt Qa | OOdzNI Oe@



also extracted an estimated target object, as the nearest digenund the intersection between

the estimated 3D direction of gaze and the 3D plane of the object array. Applying the model to

the same test images from the human experiments, as well as on additional evaluation images,

reproduced the performance variatis under similar conditiondethods RCRC6Fig. 5B),

although humans performed better than the computational model. As with humans, the

F OO0dzNI 08 -MEIANKEQ WBES& O2yRAGAZ2Y oOa! OMepodpd = {5 cdT 63
RC3 was found to beomparable with the accuracy in the whole face condition (MAE=9.7°,

{5T'podp62 WSEI Kethads RCREdaNatiah dffthe dstintated head orientation

during the first stage of our model, yielded comparable mean angular errors when applied to the
WasNB3IA2YyQ o6a! 9T pdod> {5Tpodydo yR (2 GKS gK2tS TFI O
GKS -NSa8f8yQ SaaSyidAartfte O2ylGlrAya FdzZft KSFIR LI2&S AyT¥
boundaries near the temples and the nose bridge, Table S1). Alitegrsinglestage models,

including deep neural networks, which estimate directly both head orientation and gaze

direction from a given face image, were trained and evaluated, but were all found to be inferior

to the two-stage model$upplementary Materigl

Computational results on the Wollaston illusion

The twostage model inherently supports the Wollaston illusion that the perceived gaze of

identical eyes with different heagdose contexts is shifted in the direction of the head

orientation, since in thenodel the eyes are conditioned on the head orientation. For a

guantitative analysis of the underlying representations of the eyes in the model, we evaluated a

deep neural network (DNN) trained for gaze estimatible{hods, Computational evaluatipn

Thisb b NBLINPRdAzZOSR (KS 22ftflFad2y Atfdzaizy 6KSy | LILX AS
RFEGFrasSis 6A0GK YSIFy Fy3dzZ N 2FFasSi 2F alomdyodr {5lyd
images with identical eyes but different head orientation (the estindag@ze direction in the

WaeyiKSAAT SRQ AYI BHDPp o6&l H Ppiby 6BK $ NRIdZZ RS (KB HRANBOGQ :
camera). These results suggest that the eyes representations for congruent-endgruent

eyes, with respect to the head orientation asglied by the face context, are different. We

further evaluated networks trained for object classification and face identificatibettfods,

Computational evaluation which yielded with significantly lower correlation values between

network responsestok S S&8S& NBIA2y Ay (62 | dzZiKSyiAd FF0OS AYIl 3!
RAZAAYATI NI SeSavs GKFry GKS O2NNBflGAz2y @FtdzSa o6Si
FYR WaeyiKSaATl SRQ AYIFIASAST A400pLO0@ KootijektS S&Sa | NB A
classification; t(238)2.66, p=0.05, for face identification). The lower correlation values suggest

GKFd GKSasS ySig2Nla KIFIFGS aAYAflI NI NBLINBaSyidladgAaAzya ¥F2
YaeyiKSaAl SRQ AYlI3ISasr adkiS RMATASINGY (- NIBSIENGGIA Sy HITKAS? yus
Wik NBSGQ AYF3AS&ad 1 26SOHSNE F2N) GKS ySiég2N] GNFXAYySR 7
the correlation values for the two pairs of images was found to be insignificant (t(238]+

z

poRS
o (N

p=0.14), suggestingthaty (KA & ySGg2N] (G(KS NBLINBaSyidlrdAaz2ya F2N i
YR WaeyiKSaAT SRQ AYF3IS&as INB a4 RAFFSNByd +Fa GKS N
WE2dzNOSQ YR WilFNBSGIQ AYIFI3ISad ¢KASE idericaNBSt F G SR (12 2 2

eyes look different with different headose contexts.

Discussion

The current study aims to better understand the perception of 3D gaze direction under natural
and unconstraint looking conditions at a single target out of tens of objects. &tydyi
unconstrained gaze direction is a challenging computational problem, due to the complex
interaction between head orientation and eye gaze direction. The gaze direction cannot be
estimated directly from the relative position of the pupils in the eyesndhke frontview case.
Furthermore, the appearance of the eyes varies dramatically, from fully visiblevfientof the

two eyes, to partially occulated eyes, where most of the eyes region becomes invisible.



In this study, we have measured for the fitisne human accuracy of perceiving unconstrained
natural gaze directions of human lookers. The experiments tested several viewing conditions,
including faceo-face (live) and recorded conditions. A comparison between the accuracy of the
different conditbns indicates that the performance in the live condition is significantly better
than in the recorded conditions. Further analysis shows that the gap is not due to the dynamics
in the input, similar to the findings ifBymons et al2004) It is worth noting, however, that

input dynamics serve as a strong learning cue for gaze following in early infanthood, with static
gaze perception developing only later, around the age of 12 maffthsoks & Meltzoff, 2005;
5Q9YyGNBY2yild Si It o modt T aSt iiThep@fbrmance.ghf? 21 & =
between live and recorded conditions may be in part due to better 3D perception eging
stereoscopic vision in the live condition, as indicated by a recent study (which was limited to
frontal views,(Atabaki, Marciniak, Dicke, & Thier, 2015}his assumption may be further

validated empirically, using fanstance monocular vision by covering one eye. The gap may be
also due to body context cues, which may be better perceived during the live condition, and
were found to influence face and gaze percept{dfoors, Germeys, Pomianowska, & Verfaillie,
2015; D. I. Perrett et al., 1992; Yovel, Pelc, & Lubetzky, 2010)

Among the static viewing condlins, the highest accuracy was measured when the whole face
was visible in the stimuli, as expected. However, surprisingly, the small performance gap
between viewing the whole face compared with the eyes region only, suggests that the eyes
region include®n its own most of the information required for accurate perception of the 3D
direction of gaze. This was unexpected, as this limited region contains only a fraction of the face
features. Furthermore, our computational model, which replicates these firsdicgn also

extract head orientation at humatevel accuracy based on the eyes region only. Excluding the
face boundaries and the nose bridge from the eyegion stimuli results in a significant
performance drop for both humans and model, since these fres provide essential

information, in particular for 3D head pose estimatig@ R. H. Langton et al., 200daving a
compact region, where most of the relevant information is located, may provide an efficient
computational represetation for gaze estimation, which can be acquired in a single saccade,
when the entire eyes region falls within foveal vision. It will be interesting to test the patterns of
fixations on faces, while performing e.g. the task of gaze estimation duradjdijoint attention,

and compare with patterns from other fagelated taskgPeterson & Eckstein, 2013)

Our computational model consists of two processing stages: estimation of head orientation,
followed by estmak 2y 2F 31T S RANBOGAZY FTNRBRY (KS SesSa:x
pose. Moreover, both attraction and repulsion effects of the head orientation on the perceived
gaze are implicitly included in the modé@tsuka, Mareschal, Calder, & Clifford, 2014)e model
proves to be superior to alternative singdéage models, including ertd-end deep neural

network models, which learn to associate images of face and!faaits directly to gaze

direction and head orientation. Performance evaluation of our computational model reproduces
human performance, including the differences among the different viewing conditions. The
model also agrees with neurophysiological findiregn the organization of face processing cells

for social attention in the STS, that are responsive for head pose and gaze in the same
direction(Calder et al., 2007; De Souza, Eifuku, Tamura, Nishijo, & Ono, 2005; Farzmahdi, Rajaei,
Ghodrati, Ebrahimpour, & Khalighazavi, 2016; Freiwald & Tsao, 2010; D. I. Perrett et al.,.1992)
The two-stage model, is also in agreement with psychophysical findings on the development of
face and gaze perception, as infants are first able to track faces and roughly follow gaze using
head motiond 5 Q9 y i NB Y 2 v, ivhil&using céeddin the éygsrfar accurate gaze
perception only at later staggfRoss Flom et al., 2004; Johnson et al., 1998; Meltzoff & Brooks,
2007) This developmental trajectory may suggest that the computational processihg efyes

for gaze perception is built on top of (and therefore conditioned on) the early acquired capability
of head pose estimation.

An intriguing finding is the reproduction of the Wollaston illusion (both for perceived gaze and
eyes appearance) with a rdel trained for estimating gaze direction, but not with alternative
models trained for object classification or face recognition. This finding suggests that different
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face and eyes representations are learned in computational Dadé¢d models for different

tasks, in line with neurophysiological findings on tapkcific cortical regions, which are
responsive to face and facial parts, including the eyes, for gaze estimation, but not for face or
object recognitionCalder et al., 2007; Carlin, Calder, Kriegeskorte &\Ripwe, 2011; Hoffman

& Haxby, 2000)Our findings suggest that the Wollaston effect depends specifically on the gaze
related regions.

Finally, our computational model for accurate estimation of 3D gaze direction from face images
could be combined witlexisting methods for depth estimatiqgiu, Shen, Lin, & Reid, 20Hsd
scene segmentatio(Shi &Malik, 2000) to model joint attention in social interactions. In
particular, such a combined scheme will be able to follow direction of gaz®isf&ce and

identify the attended target. An artificial intelligence system, which includes the cognitive
capability for interpreting joint attention, will be able to interpret social interactions in scenes, by
understanding that some people in the scene are engage in joint attention, as well as learn to
interact on its own (e.g. a robot) in social interacsdoy identifying attended targets of humans

in its view (Fig. 6).

Notes

1. 4-neighborhood, also known as the Von Neumann neighborhood, comprises the four
objects orthogonally surrounding a central target in the object array. Mathematically, it is
defined as the set of points at a Manhattan distance of 1 from the central point.

2. 8-neighborhood, also known as the Moore neighborhood, comprises the eight objects
surrounding a central target in the object array. Mathematically, it is defined as the set of points
at a Chebyshev distance of 1 from the central point.
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Figure 1: Direction of gaze in social interactions .(A)* The fortune teller?”

, a
de La Tour(c. 1630)depicting a scenan which a young man of some wealth is having his fortune told by the
oldwomanatright.(B)The young woman’' s e yshesispayingcaraful atterticn to the e c
direction of gaze of the man on her right, while she cuts a medal worn by thean from its chain. The artist

uses these gaze direction cues to allow the common observer al fuhderstanding of the social act of
deception and theft in the scene.



Figure 2: Unconstraint natural looking task .(A)Sampl e faces of ‘1l ookers’

‘displayed’ condition, illustrating the wide ran
combinations of head and eyegB) Sample faces looking at the same object in the object ay; illustrating the
variability of head pose and eye gaze combinatio

Figure 3: 4 E AyeSA C ETihé région around the eyes, including the bridge of the nose and face boundarie
near the temples, is sufficienfor estimating direction of gaze, and essentially equivalent to the full face.



Figure 4: The Wollaston illusion . The face in(A) is perceived to gaze to the left, but when the eyes from\)

A

B

C

are extracted and combined with the head pose in imad®), the perceived gazén the synthesized imagegC),

by both humans and models, is to the front. The model suggests that the perceived gaze is shifted in the

direction of the new head pose. The eyeagpresentation in these models for synthesized images like irCj
are different from the eyes representation for the authentic imageA), despite the fact that the eyes in4)
and (C) are the same. This is in agreement with Wollaston original commettiat the sameeyesare perceived
as different with different head pose contexts
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Figure 6: Towards automatic interpretation of social interactions . Automatic interpretation of social
interactions in 2D images requires the fundamental capability of interpreting directions of gaze and detecting
the attended targets. Our computational model accurately estimates the 3D direction of gaze in 2D images,
and dlows the detection of the attended targets by combining the 3D gaze direction with estimated depthiu
et al., 2015)and scene segmentatioriShi & Malik, 2000)



Observers

Looker

Figure S1: Apparatus of psychophysics experiment. An array of 52 objects (candles) was laid on a table at a
concentric configuration, with 13 columns and 4 rows. A red wooden egg magll the center position of the
concentric array. Objects on the same row had the same color (white, green, blue or red). The number of the
column was marked on the side of each objed. laptop was placed behind the table, facing the table and the
object array, to display instructing commandsothep ar t i c logkers. A Migosdft Kinect V2 RGED

sensor, positioned across the table andacing the object arraywas used to record on video the looking trials of
the performing ‘lookers’, and provide accurate3D information of the scene for computational evaluations(A) A
picture of the setup takeeapAsthematctdpeidwi nd t he | ooker



di spl aye
freely |l ooking at one of 52 targets on the table.
i mage his best guess of the |l ooker’'s target wusing

Figure S33 OAOEA OAEODI ASthkd cAi'ldiBs®Aialy®ed’ stimuliAcon:
whole face visible; B) ‘ey es p’'C otnil gistt (‘i gyD sparhty eyes pnly; ) face without eyes.



Head

Input image Gazedirection
orientation
OnBAAC Ox o Mean Mean angular
accuracy T AECEA] 1T AECEA angular error
accuracy accuracy error

Full eyesregion 13.15% 46.14% 67.80% 9.58° 10.22°
Eyesregion w/o nose 11.12% 40.87% 61.01% 10.44° 11.27°
bridge

Eyesregion w/o face 5.01% 21.66% 35.23% 16.38° 13.93°
boundaries

Eyesregion w/o both nose 4.23% 17.69% 29.75% 18.48° 15.73°

bridge and face boundaries

Table S1: Informative cues in the eyes -region. Performance of a computational model trained testimate both head
orientation and direction of gaze from images of the eyemegion (single-stage, DNN), when applied to images from the
computational evaluation dataset, under different occlusion conditions. The results indicate that the information is
originated not only in the eyes, but also in the nose bridge and face boundaries, which contribute information mainly for

head orientation.

Model Gaze direction Head
orientation
OnDA Ox o Mean Mean angular
accurac | 1 AECEA| 1T AECEA angular error
y accuracy accuracy error
Single Whole-face | k-NN 13.94% 45.09% 69.94% 9.40° 6.81°
stage
DNN 8.25% 36.85% 62.47% 10.58° 9.55°
Eyes k-NN | 13.31% 45.72% 65.76% 9.64° 9.07°
region
DNN | 13.15% 46.14% 67.80% 9.58° 10.22°
Two-stage | Whole-face | k-NN | 19.15% 54.70% 75.26% 8.39° 6.81°
Eyes k-NN 15.55% 51.10% 73.64% 8.73° 9.07°
region

Table S2: Performance evaluation of the computational models. A comparison ofestimated targetaccuracy, and mean
angular error of estimated direction of gaze and head orientation, betweethe two-stagecomputational model andthe
alternative single-stage modelsThe results are reported for the computational evaluation dataset.



Supplementary material
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All visual stimuli in experiments 2a and 2b were acquired using A Microsoft Kinect M2 RGB
sensor. Still images were extracted as individual frames from the recorded videos. The pixel

resolution, for both video and image stimuli, was 1920x1080. There @vditferent viewing
conditions:

(RCJ Dynamic videos. Video clips, 10 seconds long for each trial, depicting a performing
looker. Each video clip starts when a looker is at a resting state pose (watching a command
on the screen behind the recording systg then showing the full motion trajectory of the
looker until the looker fixates her gaze at a target on the table. The video clip ends when the
looker returns to the resting state pose (waiting for the next trial).

(RC2 Wholeface still images. Imageaimes of lookers gazing at targets (one image for each
target) were extracted from the recorded videos, when the lookers keep steady both their
head and eyes while fixating on a target. All image parts are clearly visible, including the

f 221 S NI dhe dbjecd Sraytox tRe table (Fig. S3A). Faces are of width 86+8 pixels and
height 9717 pixels.

(RC3 Eyegegion still images. The images frétC2vere manipulated as follows: a
rectangular image region around the eyes is kept clearly visible, incluténgoise bridge
and face boundaries at the templesifth 58+4 pixels; height 21+3 pixglé\surrounding
image region of siz800x200 pixels, includirthe rest of the face, is blurredyy down
sampling followed by wsampling of the image region by a facbf 50, using the Lanczos
resampling methodFig. S3B).

(RC2 Headonly still images. The images fraRC2avere manipulated as follows: a
rectangular image region around the eyes (the same region R@f is blurred (using the
same blur method describeabove forRC3, while the rest of the face is kept clearly visible
(Fig. S3E).

(RCH Tighteyes still images. The images fret@2vere manipulated as follows: a
rectangular image region tightly surrounding the eyes is kept clearly visible, including the
nose bridge but excluding any face boundarig&lth 4914 pixels; height 15+2 pixglsvhile
asurroundingimage region of siz800x200 pixels, includintpe rest of the face, is blurred
(using the same blur method described RE3 Fig. S3C).

(RCH Separateeyes still images. The images fret€2Avere manipulated as follows: two
rectangular image regions tightly surrounding eaclthefeyes is kept clearly visibleft eye
region width 24+8 pixels, height 18+5 pixels; right eye region width 20£3 pixels, height 16+2
pixel9, while asurroundingimage region of siz800x%200 pixels, includirthe rest of the

face (in particular, includg the nose bridge and face boundaries), is blurred (using the same
blur method described foRC3 Fig. S3D).

For generating the stimuli IRC3RC6image center locations of the eyes, nose and mouth, as

well as the face bounding box, were automaticaly@d SOG4 SR o0& GKS YAySoOodiQa ¥FI OS
algorithm. The location and dimensions of the rectangular image regions around the eyes were

heuristically determined by the locations of the face parts above and their spatial configuration,

in every image.

Two-stagecomputational model

We developed a model for estimating the 3D direction of gaze from 2D images of faces, using
computer vision methods. During training, the model learns to associate facial appearances

(either wholeface or eyegegions) with 3D head pos#rections, and to associate eymirs
appearances with 3D offset directions between head orientation and final gaze direction. In our



implementation we used HOG image descriptors (2480 dimensions) to represent facial
appearances, and dens®FT image desptors (8448 dimensions) to represent epairs
appearance¢Bosch et al., 2006; Dalal & Triggs, 2005; Lowe, 2004)ng inference, the
processing in the model works in two stages. In the firstesttige model estimates the 3D head
pose direction from the input face image, by extracting familiar faces in the model with similar
facial appearances (based &mearest neighbors techniqué&=15,(Duda et al., 2001; Wu et al.,
2008). The estimated head orientation is the weighterage (based on appearance similarity) of
the associated head pose directions with the neighboring fdoethe second stage, the model
extracts familiar faces in the model with similar gya&rs appearances, only around the

estimated head orientation from the first stage. The associated 3D offset directions between the
head orientation and the final gaze dation of the extracted neighboring faces, are weight
averaged to yield the estimated 3D offset direction from the estimated head orientation from
the first stage and the final gaze direction. In our implementation we use rotational quaternions
to represen 3D directiongAltmann, 1986; Wilkins, 1844)

Alternative computational models

We compared the performance of our twgiage model with alternative appearanbased

models that infer directly head orientation and final direction of gaze from the input image, in a
single processing stage. We trained and tested additional nearest neighbor models and deep
neural network moded, which all yielded inferior performance compared with the istage

model (Table S2).

The nearest neighbor models included models associating HOG or-8&fiE@appearance

descriptors of the whole face or the eyssgion directly with head orientation ahgaze

direction. The deep neural network models were based on face recognition m@thelshi ¢ al.,

2015) fine-tuned to minimize the error between the estimated and grodnath head

orientation and gaze direction, given input images of the whole face or thereggsn (the

2 NR Fshfyhbo® 2Pdzi Lddzi Of I aa A FA O G fully yonrfedte® S REz( #I8z285 ¢ NB SINE OS R
of size 4, representing 3D directions in rotational quaternions).



