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Abstract

In [46] we suggested that any memory stored in the human/animal brain is forgotten fol-
lowing the Ebingghaus curve – in this follow-on paper, we define a novel algebraic structure, a
Forgetting Neural Network, as a simple mathematical model based on assuming param-
eters of a neuron in a neural network are forgotten using the Ebbinghaus forgetting curve. We
model neural networks in Sobolev spaces using [39] as our departure point and demon-strate
four novel theorems of Forgetting Neural Networks: theorem of non-instantaneous

forgetting, theorem of universal forgetting, curse of forgetting theorem, and cen-ter

of mass theorem. We also present the possibly most e�cient representation of neural
networks’ “minimal polynomial basis layer” (MPBL) since our basis construct can
generate n polynomials of order m using only 2m + 1 + n neurons. As we briefly discuss in the
conclusion, there are about 10 similarities between forgetting neural networks and human
forgetting. Our research elicits more questions than it answers and may have implications for
neuroscience research –including in our understanding of how babies learn (or perhaps, forget),
which leads us to suggest what we call the baby forgetting conjecture.
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1 Introduction
In this paper we aim to modify deep learning architectures so they exhibit forgetting behavior
similar to that of humans [46] 1 . Notably human brains learn from few examples and
forget spontaneously while deep learning networks require many examples and don’t forget
(unless perhaps if retrained exhibiting then what’s been called in the literature ”catastrophic
forgetting”). If the basic mechanism of neural networks (multiply - add - activate) is also
the basis for biological brains, we feel adding constraints (such as forgetting) may bring the
models closer to real brains, as we have indeed found in the research reported here.

The universal law of forgetting

Time

Memory saliency

Ï(t) = e≠µt

Figure 1: Saliency of ”unused memory” stored in neurons follows an Ebbinghaus rule. As
an additional ln(2)/µ of time passes, memory saliency probability is cut by two. For college
academics, [46] conjectures the curve is µ = 1

2 · ln(2) year≠1.

The extensive evidence in forgetting [46] is consistent with a common neuron-based mech-
anism behind all forms of memory forgetting. Given deep learning approaches have some
similarities with how the natural brain may operate (multiplication of input signals, activa-
tion functions, multiple layers), we explore in this paper if, theoretically, forgetting in deep
learning networks may be modeled at the neuron level too. In this paper we focus on a simple
mathematical model of forgetting in Deep Neural networks based on modeling it as a func-
tion of weight loss. Our research shows this simple neural mechanism generates forgetting
behavior of deep neural networks that strengthens several similarities with human memory.

Our goal is to build on existing research towards a theory of intelligence as described
elsewhere ([39], [38] and [50]) by adding a very simple forgetting component to the theory.
A contribution of this paper is to present in extended and pedagogical form, the key results
shown in [39].

1A recording of a CBMM presentation of this research can be found here: http://cbmm.mit.edu/news-
events/events/forgetting-college-academics-and-role-learning-engineering-building-expertise or here:
https://www.youtube.com/watch?v=DdMlI6R1MJ0.
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In section 2 we introduce the forgetting neurons and deep neural networks, a simple math-
ematical model based on assuming parameters of a neuron are forgotten using the Ebbinghaus
forgetting curve, and also forgetting networks, an algebraic structure with certain basic prop-
erties inspired in human forgetting.

In section 3 we review basic mathematical concepts related to Sobolev spaces and in
section 4 present two novel and basic theorems of forgetting networks: theorem of non-

instantaneous forgetting and theorem of universal forgetting, showing respectively
that forgetting cannot happen instantaneously and that it is unavoidably fatal given su�-
cient time. In section 5 we give a proof of the universality theorems for shallow and deep
networks and prove the center of mass theorem, which states that learned knowledge is
forgotten in such a way that ”high” frequencies are forgotten faster, or that the knowledge
tends to its center of mass and forgets the finner edges. We also present the possibly most
e�cient representation of polynomial basis using a neural network since our basis construct
can generate n polynomials of order m using only 2m + 1 + n neurons. In section 6 we give
theoretical bounds on network complexity to achieve a given accuracy, and present what is
known as the curse of dimensionality. We also introduce the novel curse of forgetting the-

orem. The first 6 sections collectively demonstrate theoretically that the simple construct
used throughout the paper is a forgetting network in a Sobolev space. In section 7 we ex-
plore more complex models of forgetting, both deterministic and stochastic. In section 8 we
conclude with a review of future research and show connections between the model presented
and ten features of memory based on the properties of forgetting networks. Our research
elicits more questions than it answers as we briefly discuss in the conclusion. The appen-
dices contain some support proofs that have been removed from the main text for simplicity
reasons.

2 Desired Constraints in Modelling Forgetting
In general, a basic description of how to perform a simple task with a deep neural network is
the following:

1. Select a task f that the network has to learn.
2. Show the network some examples as pairs of points (xi, f(xi)).
3. With some optimization algorithm, find the value of network parameters (a’s, w’s and

b’s) that best fits the given examples.
4. Evaluate performance and use for the task
Our approach of study is to modify deep neural networks by adding a deterministic or

random perturbation with the aim that the resulting models exhibit a forgetting behavior as
similar as possible to that found in humans. As far as we know, no one has tried to study how
one can make the resulting networks forget in a way similar to that exhibited in Ebbinghaus’
experiments. Researchers have studied what happens if after learning one task the network is
asked to learn another one. The results show, as expected, that eventually the new task takes
over the previous one so the interesting problem is how long does it take for the new task to
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take over and how many tasks can be subsequently learned without a�ecting the performance
on the first one [19].

In the next subsection we present a single modification of neurons that makes the resulting
deep neural network exhibit overall a similar forgetting behavior.

2.1 Making Regular Neurons Forget
In this subsection we will define in parallel the regular and a novel forgetting version of
neural networks. We will refer to results being under the forgetting hypothesis when we
want to emphasize that forgetting networks are considered. We will define them in terms of
its fundamental units, which we call neurons, as defined next.

Definition 2.1 (Domain). We will define a domain in Rn as a Lebesgue measurable,
connected set � ™ Rn.

Definition 2.2 (Neuron). Given a domain � ™ Rn, a neuron is a function ÷ : � æ R
of the form

÷(xxx) = ‡
!Èxxx,wwwÍ + b

"
(1)

where www œ Rn are the weights, b œ R the bias and ‡ : R æ R the activation function.

Definition 2.3 (Forgetting neuron). Given a domain � ™ Rn, a forgetting neuron

is a function ÷ : � ◊ [0, Œ] æ R of the form

÷(xxx; t) = Ïa(t)‡
!Èxxx,wwwÏw(t)Í + bÏb(t)

"
(2)

where www œ Rn are the weights, b œ R the bias, ‡ : R æ R the activation function, and
Ïa, Ïw and Ïb are the forgetting functions, that depend on a continuous parameter t
(time).
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2.2 Shallow Regular and Forgetting Networks

Definition 2.4 (Shallow network). Given a domain � ™ Rn and an activation function
‡ : R æ R, a shallow network of N units is a linear combination of N neurons, i.e. it
is a function � : � æ R of the form:

�(xxx) =
Nÿ

k=1
ak‡

!Èxxx,wwwkÍ + bk

"
(3)

where ak œ R. We will denote the set of all shallow networks for a given ‡, � œ Rn

and number of units N as

SN,n(‡, �) def=
I

Nÿ

k=1
ak‡

!Èxxx,wwwkÍ + bk

"
: wwwk œ Rn, ak, bk œ R

J

(4)

and the set of all shallow networks as

Sn(‡, �) def=
Œ€

N=1
SN,n(‡, �) (5)

although we will usually drop the activation function and the domain and use SN,n and
Sn instead of SN,n(‡, �) and Sn(‡, �).

Note that a shallow network of N units has (n + 2)N (trainable) parameters.

Definition 2.5 (Forgetting shallow network). Given a domain � ™ Rn, an activation
function ‡ : R æ R, forgetting functions Ïa, Ïw, Ïb : [0, Œ) æ R a forgetting shallow

network of N units is a linear combination of N forgetting neurons. I.e., it is a function
� : � ◊ [0, Œ) æ R of the form:

�(xxx; t) =
Nÿ

k=1
akÏa(t)‡

!Èxxx,wwwkÏw(t)Í + bkÏb(t)
"

(6)

where ak œ R.

In this definition we consider three individual forgetting functions, depending on the
forgotten parameter involved (Ïa, Ïw and Ïb). Unless stated otherwise, along the paper we
will suppose that forgetting occurs outside of the activation function (and therefore Ïw(t) =
Ïb(t) = 1 for all t).
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2.3 G-functions

Definition 2.6 (G≠function). Let G = (V, E) be a connected directed acyclic graph
(CDAG), being V and E the sets of vertices and edges respectively, with n source nodes
and one sink node. For any v œ V, let dv be the number of in-edges of v. Consider
that each v œ V has an associated function fv : Rd

v æ R (we call this the constituent

function of v). Let � ™ Rn be a domain. A G≠function is a function G : � æ R that
is computed by the following rule:

• Each source node is a real variable input (since there are n nodes, the domain is in
Rn).

• In any other node v, each of the in-edges represents a real variable input, the node
computes the result of its constituent function fv, the result is thrown as an input
to the vertices in each out-edges of v.

• The result of the whole network is the output of the only sink node.

Note that two di�erent sets of constituent functions for the same CDAG G can give rise
to the same G-function.

Definition 2.7 (Internally Ck G-function). A G-function is said to be internally Ck

if it admits some representation in which all its constituent functions are Ck.
By analogy, we define internally Ck G-functions.

Let us discuss some details about G-functions. More specifically, we will give a justification
for the concept of internally Ck functions and the issues associated.

The first thing to notice is that to extend theorems for shallow networks to their deep
version we need the constituent functions to be representable by shallow networks, so we need
them at least to be continuous. 2

If no conditions are imposed to the constituent functions, all functions can be regarded
as G functions, for any CDAG G with the right number of source nodes. This result will be
formally stated later (Proposition 2.1).

The proof of this statement, relies on bijective functions between R and Rn and its inverses.
It is a well known topological fact that those functions cannot be continuous.

The question that naturally arises is whether constituent functions can be limited to be
continuous. This is not a new problem, and as far as we know there is no answer to that.
An important related result is Kolmogorov-Arnold representation theorem ([5, 24]),
which solved Hilbert’s 13th problem and states that any continuous multivariate function
f : � ™ Rn æ R has a decomposition of the form:

f(x1, . . . , xn) =
2nÿ

q=1
�q

Q

a
nÿ

p=1
Ïq,p(xp)

R

b �q, Ïq,pcontinuous (7)

2Or fulfill the more general condition of belonging to the set M defined in [29, Sec. 4].
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This result requiring only one function � would directly state that any continuous function is
in fact an internally continuous function. Although we have found no answer to the proposed
question, we have found a paper from Giorsi and Poggio [18] stating that Kolmogorov’s
theorem is irrelevant because constituent functions are continuous but highly non-smooth,
while there is another paper by Kůrková [25] satating that Kolmogorov theorem is indeed
relevant.

If no condition is imposed to the constituent functions, then the following result holds:

Proposition 2.1. For any CDAG G = (V, E) and any function f : � æ R, there
exists a set of constituent functions {hv}vœV such that f is a G function with {hv}vœV as
constituent functions.

This is an intuitive observation if one keeps in mind the existence of bijective functions
between R and Rn. We will not give explicit details on this result.

We have also found that if the constituent functions are forced to be twice continuously
di�erentiable, then the analogous result does not hold. As a counterexample, we show here
the case when G is a binary tree of 4 source nodes. This is our decreasing inference

theorem:

Theorem 2.2 (Decreasing Inference Theorem). There exist CDAG’s G with n
source nodes and continuous functions f œ C(Rn) such that f are not internally contin-
uous G-functions as long as the constituent functions are C2.

PROOF.
With the above mentioned graph, a G-function f has a decomposition of the form

f(x1, x2, x3, x4) = h
!
g1(x1, x2), g2(x3, x4)

"
(8)

being its constituent functions h, g1, g2 œ C2(R4). If we di�erentiate f with respect to x1

ˆx1f(xxx) = ˆy1h
!
g1(x1, x2), g2(x3, x4)

" · ˆx1g1(x1, x2) (9)

And di�erentiating again, this time with respect to x3

ˆx1x3f(xxx) = ˆy1y2h
!
g1(x1, x2), g2(x3, x4)

" · ˆx3g2(x3, x4) · ˆx1g1(x1, x2) (10)

By analogy, ˆx1x4f(xxx) is

ˆx1x4f(xxx) = ˆy1y2h
!
g1(x1, x2), g2(x3, x4)

" · ˆx4g2(x3, x4) · ˆx1g1(x1, x2) (11)

Now considering the quotient between (10) and (11)

ˆx1x3f(xxx)
ˆx1x4f(xxx) = ˆx3g2(x3, x4)

ˆx4g2(x3, x4) (12)

9 of 66



Theory of Intelligence with Forgetting

Since the RHS does not depend on x1, the LHS cannot depend on x1.
Therefore ˆx1

1
ˆ

x1x3 f(xxx)
ˆ

x1x4 f(xxx)

2
= 0. Using derivation formulas, the numerator of ˆx1

1
ˆ

x1x3 f(xxx)
ˆ

x1x4 f(xxx)

2
is

!
ˆ

x1x3x1f(xxx)
" · !

ˆ
x1x4f(xxx)

" ≠ !
ˆ

x1x4x1f(xxx)
" · !

ˆ
x1x3f(xxx)

"
= 0 (13)

Now, it gets easy to find a function that does not satisfy that condition. For example, set
f(x1, x2, x3, x4) = x1x3 + x2

1x4, it clearly does not fulfill the given condition. ⌅
A more general theory on this aspect is developed by Vitushkin (see [18, Th. 2.1]) who

states the following theorem:

Theorem 2.3. For any pair of natural numbers k Ø 1 and n Ø 2, there exist functions
f œ Ck(In) that cannot be expressed as a superposition and composition of functions Ck

of n ≠ 1 variables.

2.4 Deep Regular and Forgetting Networks

Definition 2.8 (Layered graph). Let G = (V, E) be a CDAG. Let V1 µ V be the set
of source nodes, and for every integer k > 1, let Vk µ V be the set of nodes that have
an in-edge from a node in Vk≠1. G is a layered graph if for every pair of integers i ”= j,
Vi fl Vj = ÿ

Note that if for some k, Vk = ÿ, then it follows from the definition that for all n Ø k
Vn = ÿ.

If G is layered, ÷d œ N such that |Vd| = 1 and Vd+1 = ÿ. In this case, V =
dg

i=1
Vi.

Each of these sets of vertices is called a layer. V1 is called the input layer, Vd is called the
output layer and the rest are called hidden layers.

Definition 2.9 (Deep network). Let G = (V, E) be a CDAG with n source nodes and
one sink node. Let � ™ Rn be a domain. A G-deep network is a G≠function � : � æ R
with constituent functions being all shallow networks.

Definition 2.10 (Forgetting deep network). Let G = (V, E) be a CDAG with n
source nodes and one sink node and N = |V| ≠ n ≠ 1 internal nodes. Let � ™ Rn be
a domain. A G-forgetting deep network is a G≠function � : � ◊ [0, Œ) æ R with
constituent functions being all forgetting shallow networks.
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x1 x2 x3 x4 x5 x6 x7 x8

�

x1 x2 x3 x4 x5 x6 x7 x8

�

Figure 2: Shallow network vs binary-tree deep network.

In real life applications, one may be interested in functions with more than a single output.
From a theoretical point of view, a function with many outputs can be regarded as many
functions of a single output. This is why we will only consider single output functions in
subsequent proofs.

One of the reasons for the interest in deep networks is that in most real world scenarios,
functions have a G-function structure [39, Appendix 2]. The reasoning comes from physics
where it does not make sense that constituent functions are so pathological as the bijective
functions between R and Rn, and therefore our interest is focused in the internally continuous
(or Ck) case.

2.5 Reinforced Learning
In all the models we have considered that a single task is learned once and then it is gradually
forgotten. In real situations, this only happens to the tasks that are not repeated (not
reinforced).

Most interesting tasks are relearned again and again (like reading or driving) and we want
to find a suitable way to model forgetting of these tasks.

To do so, we introduce a firing parameter to each neuron, so a forgetting neuron with
reinforcement f is a function ÷ : � ◊ [0, Œ] ◊ N æ R of the form:

÷(x; t, f) = Ï(t, f)‡
!Èx, wÍ + b

"
(14)

where f is the firing parameter.
This firing parameter will be how many times the neuron has fired in the interval [0, t].

Typically, this can be defined in a proper way. For example, if ‡(x) = max{0, x}, a neuron is
activated whenever ‡(x) > 0. Or in the case of ‡ being the sigmoid function ‡(x) = 1

1+e≠x

,
the neuron is fired when ‡(x) > 1/2. We will assume that ‡ is such that this definition makes
sense.

The firing parameter is considering reinforced learning, so Ï should increase with f . Based
on Ebbinghaus exponential forgetting, we postulate a forgetting function of the form:

Ï(t, f) = e≠–t+—f (15)
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for some –, — œ R+. These auxiliary parameters model the speed at which the neuron forgets
(–) and the e�ect of each reinforcement firing (—).

Following definitions on subsection 2.2, we can define a forgetting shallow network with
reinforcement as a function � : � ◊ [0, Œ) ◊ NN æ R of the form:

�(x; t, f1, . . . , fN ) =
Nÿ

k=1
akÏ(t, fk)‡

!Èx, wkÍ + bk

"
(16)

And a forgetting deep network with reinforcement as a G≠function � : �◊[0, Œ)◊NN+1 æ R
with constituent functions being all forgetting shallow networks with reinforcement.

This definition may seem to add too many variables (in normal networks we had one
variable in Rn, and we have added one positive real variable and N + 1 discrete variables,
we have added more variables than there were originally). In fact, for each training set, fk

will be a function of time (assuming our algorithm is deterministic). At the end of the day,
we have a forgetting networks as in subsection 2.2 with a more complex forgetting function,
that this time is di�erent in each neuron.

Another possibility would be to consider the firing parameter to be a multi-integer for
each neuron f = (f1, . . . , fn).

The consequences of this approach will be part of our future research, but we want to
highlight what happens with the results that will be presented in section 4.

In Theorem 4.1, Since the firing function is a discrete function, there is no firing, so
f1 = · · · = fN = 0. In that case, we recall exactly the same result for networks with
reinforcement.

In Theorem 4.2 we distinguish two cases:
• If there is a finite number of reinforcements. In this case we get the same result of un-

avoidable forgetting, because from a certain point (the time when the last reinforcement
is made) we can think the network as if it had no reinforcement at all.

• If there is arbitrary reinforcement. In this case the result is probably not true because if
this reinforcement is made constantly to the same task, it is expected that the network
does not forget that given task. What we do expect to be true is that if reinforcement is
random and somehow uniform, we retrieve the same result in terms of expected value.
This may be part of future work.

3 Forgetting Networks Estimate Functions in Sobolev
Spaces
In this review section we introduce Sovolev spaces, which is the basic mathematical construct
used in our forgetting proofs – they enable robust proofs that apply to any function learnable
by deep neural networks. Users familiar with the related concepts can skip it. In the first
section, we introduce normed function spaces, in the second Sovolev spaces (including the
notions of weak derivative) and in the last basic function operators.
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3.1 Normed Spaces
The goal of all learning algorithms is to start from a given function f and some information
about this function, and then find a function fú that is ”similar enough” to the original
function.

The statement becomes precise when we define a norm in the space of functions. In that
case we can study the value Îf ≠ fúÎ to evaluate to what extent fú is ”similar enough” to f
and if possible find an optimal within our representation abilities.

Definition 3.1 (Normed space). A norm in a vector space X is a function Î·Î : X æ R
with the following properties:

i ÎxÎ Ø 0 for all x œ X and ÎxÎ = 0 ≈∆ x = 0
ii Î⁄xÎ = |⁄|ÎxÎ for all ⁄ œ R and all x œ X
iii Îx + yÎ Æ ÎxÎ + ÎyÎ for all x, y œ X (triangular inequality)

The pair (X, Î · Î) is called a normed space.

Definition 3.2 (p-norm, L p spaces). Let � œ Rn be a domain, p œ [1, Œ). Consider
f : � æ R, then its p-norm is (if it exists):

ÎfÎp
def=

3⁄

�
|f(xxx)|pdxxx

41/p

(17)

This notion lets us define L p spaces as:

L p(�) def= {f : � æ R : ÎfÎp < Œ} (18)

For the case p = Œ, an analogous definition can be made, using the concept of essential
supremum

ÎfÎŒ
def= ess sup

�
f = inf{a œ R : f≠1(a, +Œ) is a set of measure zero in A} (19)

The same definition can apply for 0 < p < 1, but the resulting space is not a normed
space. For p Æ 0, the problem is even worse because the norm is not defined for elementary
functions like f(x) = 0 or f(x) = x.

13 of 66



Theory of Intelligence with Forgetting

Definition 3.3 (Ck spaces). Let � ™ Rn and k œ Z+, we define the spaces

Ck(�) def= {f : � æ R : f has continuous partial derivatives up to order k} (20)

CŒ(�) def=
Œ‹

k=1
Ck(�) ; C(�) def= {f : � æ R : f is continuous} (21)

In all these spaces it is common the sup norm can be defined and it corresponds to the
L Œ norm for continuous functions.

Definition 3.4 (Lipschitz continuity). A function f : � ™ Rn æ Rm is Lipschitz

continuous if there exists a constant C such that for all x, y œ � it is satisfied that
Îf(x) ≠ f(y)Î Æ CÎx ≠ yÎ.

If � is compact, this condition is stronger than continuity, but weaker than continuously
di�erentiable. If � = Rn, there exist CŒ functions that are not Lipschitz continuous, for
example f(x) = x2.

3.2 Sobolev Spaces
One technical detail to have in mind is that L p as we have defined it is not rigorously a
normed space, because there are non zero functions that have zero norm. To solve this,
whenever two functions f, g satisfy Îf ≠ gÎp = 0, they will be considered the same function
in L p.

This happens when (f ≠g)p = 0 almost everywhere, that is equivalent to f ≠g = 0 almost
everywhere. As a consequence if Îf ≠ gÎp = 0 for some p, then for all q œ [1, Œ] Îf ≠ gÎq = 0.
That is, whenever two functions f, g are considered the same in some L p space, they are also
considered the same in any other L q.

Since in L p space the notion of the value of a function in a point has no meaning (a
point is of measure zero), there is a priori no notion of derivative. This problem is solved by
defining a suitable concept of weak derivative, that extends its classical version.

Consider two functions F, Ï œ C1(R), for some domain I = [a, b] ™ R, it is well known
that (integration by parts formula):

⁄ b

a

ˆF

ˆx
Ï = [FÏ]x=b

x=a ≠
⁄ b

a
F

ˆÏ

ˆx
(22)

If we consider Ï œ CŒ
0 (I), it is satisfied that [FÏ]x=b

x=a = 0, then the formula above becomes:
⁄ b

a

ˆF

ˆx
Ï = ≠

⁄ b

a
F

ˆÏ

ˆx
(23)
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If we consider all possible Ï œ CŒ
0 (I), given F œ L p(I), it can be shown that the formula:

⁄ b

a

ˆF

ˆx
Ï = ≠

⁄ b

a
F

ˆÏ

ˆx
’Ï œ CŒ

0 (I) (24)

defines ˆF
ˆx in the sense that it may or may not exist, but if it exists, ˆF

ˆx is unique.
This can be generalized to n variables and derivatives of order k as follows.

Definition 3.5 (Weak derivative). Let � ™ Rn be a domain, F œ L p(�). then the
kkk-th derivative of F can be defined (if it exists) as the only function satisfying:

⁄

�
DkkkF · Ï = (≠1)|kkk|

⁄

�
F · DkkkÏ ’Ï œ CŒ

0 (�) (25)

where kkk is the multi-integer kkk = (k1, . . . , kn), |kkk| =
qn

i=1 ki and Dkkkf = ˆ|kkk|f

ˆk1x1 · · · ˆk
nxn

.

For a discussion on the existence and properties of weak derivatives, see [2, Ch. 3].

Example 1. Consider f(x) =
I

0 if x œ Q
sin x if x /œ Q Since Q measure zero, this function is equal to

f̃(x) = sin x in any L p, and as a di�erentiable function its derivative is cos x.
Example 2. Another typical example is f(x) = |x|. This function has no classical derivative
in x = 0. In this case it can be shown that the weak derivative is the sign function:

‡(x) =

Y
_]

_[

1 x > 0
0 x = 0

≠1 x < 0
This concept of weak derivative gives rise to the definition of Sobolev spaces, which are

normed spaces with a certain number of (weak) derivatives.

Definition 3.6 (Sobolev norm). Let f œ L p(�). The Sobolev norm of a function
f œ L p(�) defined (if all weak derivatives exist) as:

ÎfÎp,m
def=

ÿ

0Æ|kkk|Æm

ÎDkkkfÎp (26)

Note that this sum has
!n+m

n

"
terms.

Definition 3.7 (Sobolev spaces). Given the space of functions L p(�), � ™ Rn. A
Sobolev space in Rn with Sobolev norm Î · Îm,p is the set of all functions f : Rn æ R
that can be weakly derived according to the multi integer kkk when |kkk| Æ m and that have
a Soolev norm smaller than one. Formally:

W n
p,m(�) def= {f œ L p(�) : ÎfÎp,m Æ 1} (27)
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This ensures that for a function in the Sobolev space with m derivatives, this function
must have derivatives up to order m in L p and consequently derivatives do not get ”too
large”.

3.3 Functional Operations within Sobolev Spaces: Convolu-
tion and Mollifiers

Definition 3.8 (Support, CŒ
0 (�)). Let f be a function defined in some domain � ™ Rn,

the support of f is defined as:

supp(f) def= � fl closure{xxx œ � : f(xxx) ”= 0} (28)

We say that a function f has compact support if its support is a compact subset of �.
The set of k times di�erentiable functions will be denoted as:

Ck
0 (�) def= {f œ Ck(�) : supp(f) is a compact set} (29)

It will be of special interest the case of k = Œ.

Definition 3.9 (Ball). Let xxx œ Rn and r > 0, we will denote B(xxx, r) the ball with
center xxx and radius r. Formally

B(xxx, r) def= {yyy œ Rn : |x ≠ y| < r} (30)

Example 3. The typical example of a function with compact support is:

÷(xxx) =

Y
]

[
ce

1
≠1

1≠|xxx|2

2

|xxx| Æ 1
0 |xxx| > 1

(c œ R) (31)

We can choose c =
A

s
B(000,1) e

1
≠1

1≠|xxx|2

2

dxxx

B≠1

so that the property
s
Rn

÷ = 1 is satisfied.

We can construct other examples from equation (31). Given Á < 0,

÷Á(xxx) def= 1
Án

÷

3
xxx

Á

4
(32)

has support B(000, Á) and also satisfies
s
Rn

÷Á = 1.

Definition 3.10 (Convolution). Let f, g be measurable functions in Rn. The convo-
lution of f and g is defined as

(f ú g)(xxx) def=
⁄

Rn

f(yyy)g(xxx ≠ yyy)dyyy (33)
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x

y

÷(x) = e
≠ 1

1≠x

2

Figure 3: Graph of ÷(x) for the unidimensional case

This integral may not exist depending on the shape of f and g. An interesting case, that
we will use, is when f œ C(R) and g œ CŒ

0 (R). In that case (f ú g)(xxx) exists for all xxx and is
infinitely di�erentiable by the following result

Lemma 3.1. Given two measurable functions f, g

i Convolution is commutative: f ú g = g ú f .
ii f œ Cj(R) and g œ Ck(R), then f ú g œ Cj+k(R).

PROOF.
(i) This follows directly from a change of variable in the integral zzz = x ≠ yx ≠ yx ≠ y:

(f ú g)(xxx) =
⁄

Rn

f(yyy)g(xxx ≠ yyy)dyyy (34)

=
⁄

Rn

f(x ≠ zx ≠ zx ≠ z)g(zzz)d(x ≠ zx ≠ zx ≠ z) = (g ú f)(xxx) (35)

(ii) This follows from the derivative property: ˆx
i

(f ú g) = (ˆx
i

f) ú g:

ˆx
i

(f ú g) =ˆx
i

3⁄

Rn

f(yyy)g(xxx ≠ yyy)dyyy

4
(36)

⁄

Rn

f(yyy)ˆx
i

!
g(xxx ≠ yyy)

"
dyyy f is constant with respect to xxx (37)

⁄

Rn

f(yyy)(ˆx
i

g)(xxx ≠ yyy)dyyy = f ú ˆx
i

g ˆx
i

(x ≠ yx ≠ yx ≠ y) = Id (38)

⌅
In particular, if either f or g is infinitely di�erentiable, f ú g becomes also infinitely

di�erentiable, regardless of the smoothness of the other.
The functions ÷Á are called mollifiers because they have the following property (see

Figure 4 for a numerical example)
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Figure 4: Graph of HÁ(x) for di�erent values of Á, being H(x) the rectangle function:
H(x) =

;
1 if |x|Æ1
0 if |x|>1

Lemma 3.2. Let f œ C(�) and fÁ = f ú ÷Á. Then:
1. supp(fÁ) ™ {xxx œ Rn : dist(xxx, supp(f)) < Á}
2. fÁ œ CŒ(�)
3. fÁ ≠≠≠æ

Áæ0
f uniformly in each compact K ™ Rn.

PROOF.
The proof is made following [42, Lemma 7.1].

(i) Let S = supp f . It su�ces to prove that if dist(x, S) Ø Á, then fÁ(xxx) = 0.
fÁ(xxx) =

s
Rn

÷Á(zzz)f(x ≠ zx ≠ zx ≠ z)dzzz =
s

B(000,Á) ÷Á(zzz)f(x ≠ zx ≠ zx ≠ z)dzzz because supp(÷Á) = B(000, Á).
If |zzz| < Á and dist(xxx, S) Ø Á, triangular inequality states that dist(x ≠ zx ≠ zx ≠ z, S) Ø dist(xxx, S) ≠

dist(zzz, S) > 0, then x ≠ zx ≠ zx ≠ z /œ supp f , so f(x ≠ zx ≠ zx ≠ z) = 0. From the definition of fÁ as an integral
with f(x ≠ zx ≠ zx ≠ z) as a factor, directly follows fÁ(xxx) = 0.

(ii) This is a direct consequence of Lemma 3.1 because ÷Á œ CŒ
0 .

(iii) Since
s
Rn

÷Á = 1, we can write

fÁ(xxx) ≠ f(xxx) =
⁄

Rn

÷‘(zzz) [f(x ≠ zx ≠ zx ≠ z) ≠ f(xxx)] dzzz (39)

In this form we can see that for any xxx œ �, we have that

|fÁ(xxx) ≠ f(xxx)| Æ sup
B(000,Á)

|f(x ≠ zx ≠ zx ≠ z) ≠ f(xxx)| (40)
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If we consider K ™ � compact, then f is uniformly continuous in K,
therefore supB(000,Á) |f(x ≠ zx ≠ zx ≠ z) ≠ f(xxx)| ≠≠≠æ

Áæ0
0 uniformly for xxx œ K. This uniform convergence

together with (40) gives the result that fÁ ≠ f ≠≠≠æ
Áæ0

0 uniformly in K. ⌅

3.4 Asymptotic Notation
Asymptotic notation is used in this paper and in many of the references. For the sake of
completeness and clearness, formal definitions are included next:

Definition 3.11 (O, o, �, Ê, �, ◊). Let g : R æ R be a real function and a œ Rfi {±Œ}.
We define the following sets of functions:

• O(g(x)) def= {f : R æ R : limxæa
f(x)
g(x) < Œ}

• o(g(x)) def= {f : R æ R : limxæa
f(x)
g(x) = 0}

• �(g(x)) def= {f : R æ R : limxæa
f(x)
g(x) > 0}

• Ê(g(x)) def= {f : R æ R : limxæa
f(x)
g(x) = Œ}

• �(g(x)) def= O(g(x)) fl �(g(x))

• ◊(g(x)) def= {f : R æ R : limxæa
f(x)
g(x) = 1}

These definitions are also applied for natural functions g : N æ N when a = Œ.
The mathematical sentence f œ O(g) is read as ”f is O(g)”, and is typically written as

f = O(g), an abuse of notation that is widely used and emphasizes the fact that we are not
interested in f but in its asymptotic behavior. This applies for all the classes defined above.

Typically the value a is omitted and it is understood to be either a = 0 or a = Œ
depending on the context.

4 Basic Behavior of Forgetting: Theorem of Non-
Instantaneous Forgetting and Theorem of Universal
Forgetting
In this section we will prove two results necessary for a realistic approach to the modeling of
forgetting by neural networks: that it is instantaneous and unavoidable in the long term. We
remark that for these results to hold our proof only assumes that the forgetting function Ï(t)
is continuous with respect to t and that limtæŒ Ï(t) = 0. In fact, both are direct results of
continuity, as we show in the detailed proof in the next subsections.
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4.1 Forgetting Is Not Instantaneous
In this subsection we prove that forgetting cannot happen instantaneously under our model.
Formally:

Theorem 4.1. (Theorem of non-instantaneous forgetting) Let � be a forgetting
deep network defined over the compact domain � with activation function ‡ œ C1(R).
For all Á > 0, there exists ”t > 0 such that:

Î�( · ; ”t) ≠ �( · ; 0)Î < Á (41)

when the norm used is the sup norm.

PROOF.
For a given xxx œ �, we define the function Dxxx(t) def= �(xxx; t).

In that case, Dxxx(t) is continuous with respect to t because it is the composition of contin-
uous functions (because the only dependence on t is on the functions Ï(t), which are clearly
continuous by hypothesis). If Ï(t) could jump discontinuously to 0, forgetting would too.

Given Á, continuity of Dxxx(t) implies ’xxx œ �, ÷”t, that depends on xxx and Á, such that

’t œ (≠”t, ”t) |Dxxx(0) ≠ Dxxx(”t)| < Á (42)

if we look now at Dxxx(t) as a function of xxx (with fixed t), since ‡ is continuously di�erentialbe,
Dx(t) is Lipshitz continuous with respect to xxx. This means that for all t œ R, there exists
Ct > 0 such that |Dxxx(t) ≠ Dyyy(t)| Æ CtÎxxx ≠ yyyÎ.

With these tools, we will prove that given Á > 0, for all xxx œ �, there exists rxxx > 0 and ”t,
such that for all yyy œ � and t œ R

!Îx ≠ yÎ < rxxx and |t| < ”t
"

=∆ |Dyyy(0) ≠ Dyyy(t)| < Á (43)

Continuity of Dxxx(t) with respect to t states that, considering Á/3, , there exists ”t fulfilling
equation (42). Let Ct be the Lipshitz constant of Dxxx(t) as stated before, we define C =

max
tœ[≠”t,+”t]

{Ct}. It is satisfied:

’t œ [≠”t, +”t] |Dxxx(t) ≠ Dyyy(t)| Æ CÎxxx ≠ yyyÎ (44)

Now if we define rxxx = Á
3C , we have, for all yyy, t such that Îxxx ≠ yyyÎ < rxxx and |t| < ”t:

|Dyyy(0) ≠ Dyyy(t)| = |Dyyy(0) ≠ Dxxx(0) + Dxxx(0) ≠ Dxxx(t) + Dxxx(t) ≠ Dyyy(t)| (45)
Æ |Dyyy(0) ≠ Dxxx(0)| + |Dxxx(0) ≠ Dxxx(t)| + |Dxxx(t) ≠ Dyyy(t)| Triangular inequality

(46)
Æ CÎxxx ≠ yyyÎ + Á/3 + CÎxxx ≠ yyyÎ Equations (44) and (42)

(47)

Æ Crxxx + Á/3 + Crxxx = C
Á

3C
+ Á

3 + C
Á

3C
= Á Definition of rxxx

(48)
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This proves equation (43). Now we will use the fact that � is compact. Consider the open
cover of �:

� =
€

xxxœ�
B(xxx, rxxx) (49)

where B(xxx, rxxx) is the open ball centered in xxx and radius rxxx as defined before. Since � is
compact, there exists N œ N and a finite number of elements xxx1, . . . ,xxxN such that

� =
N€

i=1
B(xxxi, rxxx

i

) (50)

For each xxxi consider (”t)xxx
i

that fulfills equation (43). We define 3 ”t = min
i=1:N

{(”t)xxx
i

}.
The proof is finished because given Á > 0, ”t as we have just defined fulfills

|�xxx(0) ≠ �xxx(t)| < Á ’xxx œ � if |t| < ”t (51)

Since we are using the sup norm, this is directly what we want to prove. ⌅
A good analogy for this is that forgetting can be seen as diming the light. In other words,

if you are in a place and clearly see everything, after a small diming of the light, you can see
clearly most of what you could see before.

4.2 Forgetting Is Unavoidable
In this section we prove that, if there is not reinforcement of a particular task, under our
model everything will be eventually forgotten. Formally:

Theorem 4.2. (Theorem of universal forgetting) Let � be a forgetting deep network
defined over the compact domain � with activation function ‡ œ C(R). Then

lim
tæŒ

Î�( ··· ; t)Î = 0 (52)

when the norm used is the sup norm.

PROOF.
This result is a direct consequence of continuity of Ï and ‡. We follow by induction on N the
number of nodes of the graph. The base case is n = 2, in which case the only dependence on
t if Ï(t) multiplying the network, so clearly the limit is zero.

Let G be the graph associated to � and let f be the constituent function of the only sink
node.

f(x1, . . . , xd
s

; t) =
N

sÿ

i=1
akÏ(t)‡

!Èxxx,wwwkÍ + bk

"
(53)

3In this step the importance of � being compact becomes clear. If it wasn’t, the minimum ”t may be zero.
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For each in-edge of the sink node, consider vk the vertex the edge is coming from. Since
the degree of the sink node is ds, there are ds di�erent vertices. For each of these vertices,
consider Gk the maximal subgraph of G such that Gk is a CDAG with vk as its only sink
node. If we consider the same constituent functions as in G this constructions gives rise
to deep networks �1, . . . , �d

s

each one of them with less nodes than the original network.
We will apply the induction hypothesis there. For any xxx œ Rn, let us denote the vector
XXX(xxx; t) =

!
�1(xxx1; t), . . . , �d

s

(xxxd
s

; t)
"
. With this notation:

�(xxx; t) =
N

sÿ

k=1
akÏ(t)‡

1+
XXX,wwwk

,
+ bk

2
(54)

The induction hypothesis implies that lim
tæ0

XXX(xxx; t) = 000. Taking limits when t æ 0 in �(xxx; t):

lim
tæ0

�(xxx; t) =
N

sÿ

k=1
ak lim

tæ0
Ï(t) lim

tæ0
‡

1+
XXX,wwwk

,
+ bk

2
Linearity of limits, if both exist

=
N

sÿ

k=1
ak lim

tæ0
Ï(t)‡

1+
lim
tæ0

XXX,wwwk

,
+ bk

2
Continuity of ‡

=
N

sÿ

k=1
ak lim

tæ0
Ï(t)‡(bk) Induction hypothesis

=
N

sÿ

k=1
ak · 0 · ‡(bk) = 0

3
lim
tæ0

Ï(t) = 0
4

⌅

5 Higher Frequencies Are Forgotten Faster: Uni-
versality Theorems and The Forgetting ”Center of
Mass Theorem”
A fundamental question that has been answered about neural networks is its representation
potential: are they able to approximate any function to any precision?

The proof depends on the graph G associated with the network and the activation func-
tion ‡. The main result of this section, obtained in [29, Th. 2.1] is that a shallow network
with activation function satisfying certain week hypothesis (the result even works for many
functions with essential discontinuities) are universal if and only if the activation function
‡ is not a polynomial. This is a very powerful result and its complete proof uses advanced
analysis, so we will prove the particular case of ‡ being continuous, which we consider illus-
trative enough for our purpose, and a wide enough result, since most learning algorithms use
continuous activation functions.
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As part of the proof we will show that forgetting deep neural networks forget ”higher
frequencies” faster, essentially ”generalizing” the examples, this is what we call the center of
mass theorem.

5.1 Center of Mass and Universality Theorems

Definition 5.1 (Density property). Let X be a space of functions with some domain
� ™ Rn, and let F ™ X be a family of functions in this space. We say that F is universal

or dense if for every g œ X and for every compact K ™ �, there exists a sequence of
functions {fi}iœN ™ F , such that

lim
iæŒ

Îg ≠ fiÎL Œ(K) = 0 (55)

We have defined density with the sup norm. An analogous definition can be stated with
any other p-norm, but we have chosen to fix the norm for the sake of simplicity.

In particular, latter in the section we will comment how our theorems generalize to p-
norms.

The two main theorems in this section are the following:

Theorem 5.1 (Universality theorem for ‡ œ C(R)). Shallow networks with an ar-
bitrary number of units and activation function ‡ œ C(R) are universal in C(Rn) ≈∆
‡ is not a polynomial.

Theorem 5.2 (Center of mass theorem). Considering shallow networks with the
forgetting hypothesis to be that only weights (w’s) are forgotten (i.e. Ïa(t) = Ïb(t) = 1
for all t) and a polynomial target function; then each monomial is forgotten as xk æ
(Ï(t) ·x)k, so high degree elements of the polynomial are forgotten much faster than small
degree elements.

5.2 Proof of the Center of Mass and Universality Theorems
Let xxx = (x1, . . . , xn), mmm = (m1, . . . , mn). be vectors in Rn. We use the following notation:

xmxmxm = xm1
1 · · · xm

n

n ; |mmm| = m1 + · · · + mn (56)

Let Hn
k be the set of homogeneous polynomials of n coordinates and degree k and P n

k be the
set of polynomials of degree at most k (for P n

k we include the case k = Œ). I.e.:

Hn
k =

Y
]

[
ÿ

|mmm|=k

ammmxmxmxm

Z
^

\ P n
k =

k€

i=0
Hn

i (57)
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Note that Hn
k is a vector space of dimension

!n≠1+k
k

"

The main result of this section is Theorem 5.7 and its corollaries. To arrive there, we will
need some previous results:

Lemma 5.3. Let ‡ : R æ R be an infinitely di�erentiable function. Then the following
conditions are equivalent:

i ‡ is not a polynomial.
ii There exists x œ R such that for all n œ N ‡(n(x) ”= 0.

The proof of this lemma is explained in appendix A, subsection A.1.

Lemma 5.4. Let � ™ Rn, let L(�) =
t

aaaœ� span{aaa}. If the only polynomial in P n
Œ that

vanishes in L(�) is the trivial one, then the set

M (�) = span{g(aaa · xxx) : aaa œ �, g œ C(R)} (58)

is dense in C(Rn).

PROOF.
We will prove that under the stated hypothesis, for any k, Hn

k ™ M (�). A generalized version
of this proof can be found in [30, Theorem 2.1]. Applying Stone-Weierstrass’s theorem [27,
Ch. 3] one can complete the proof.

First we prove that for any ddd œ L(�), (ddd · xxx)k œ M (�).
To do so, consider ddd œ L(�), by the definition of L(�), ddd œ span(aaa) for some aaa œ �, so

there exists y œ R such that ddd = yaaa. So the function (ddd · xxx)k can be written as: (ddd · xxx)k =
(yaaaxxx)k = g(xxx · aaa) œ M (�), with g(x) = (yx)k.

Now consider the dual space of Hn
k , defined as

Hn
k

ú = {‡ : Hn
k æ R : ‡ is a linear function} (59)

Since Hn
k is a finite vector space, Hn

k
ú is a finite vector space of the same dimension. A basis

of this space is V = {Dmmm : |mmm| = k} where

D : Hn
k æ R

p(xxx) ‘æ Dmmmp(xxx) = ˆ|mmm|p(xxx)
ˆxm1

1 · · · ˆxm
n

n

It is a basis because it has the right number of elements and they are mutually independent
since:

DmmmxmÕ
xmÕ
xmÕ =

I
0 if mmm ”= mmmÕ

m1! · · · mn! if mmm = mmmÕ (60)
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Since V is a basis of Hn
k

ú, any element can be written as a linear combination of elements
in V . Equivalently, any linear function that maps Hn

k to R can be written in terms of a
polynomial q œ Hn

k as

fq : Hn
k æ R

p ‘æ q(D)p

We want to study how this functions fq act on functions of the form (ddd · xxx)k. We first
study the case of q being a monomial, i.e. q(xxx) = xxxmmm for some mmm œ Zn

+, |mmm| = k. Applying
derivative properties:

q(D)(ddd ·xxx)k = Dmmm(d1x1 + · · · + dnxn)k = kd1D(m1≠1,...,m
n

)(ddd ·xxx)k≠1 = · · · = k!q(ddd) (61)

Using linearity, the previous result generalizes to all q œ Hn
k . With this result, we want to

study what happens when we apply fq functions to the linear subspace of polynomials

W = span{(ddd · xxx)k œ : d œ L(�)} ™ Hn
k (62)

If some fq œ Hn
k

ú annihilates all polynomials in W , in particular it annihilates all polynomials
of the form (ddd · xxx)k for all ddd œ L(�). Since fq(ddd · xxx)k = k!q(ddd), this means that q vanishes in
L(�). By hypothesis, q = 0 (as a polynomial). In terms of linear algebra, W is a subspace
of Hn

k with the property that any linear function ‡ : Hk
n æ R is trivial if and only if the

restriction ‡
--
W

: W æ R is trivial. This implies W = Hn
k . The proof is finished observing

Hn
k ™ W ™ M (�). ⌅

The next corollary follows immediately from the proof of this lemma and will be useful
for another result (Theorem 6.1).

Corollary 5.5. Let r = dim Hn
k =

!n≠1+k
k

"
and s = dim P n

k =
!n+k

k

"
. Then there exist

{aaai}i=1:r ™ Rn, {bbbi}i=1:s ™ Rn, {fi}i=1:r ™ Hn
k and {gi}i=1:s ™ P n

k such that

Hn
k =

I
rÿ

i=1
fi(aaai · xxx) : fi œ H1

k

J

P n
k =

I
sÿ

i=1
gi(bbbi · xxx) : gi œ P 1

k

J

(63)

PROOF.
Consider the case � = Rn of the previous lemma. For each j, we have that

Hn
j = span{(ddd · xxx)j œ : d œ Rn} (64)

As a consequence, there exist {aaai}i=1:r ™ Rn such that {(aaai · xxx)j}i=1:r is a basis of Hn
j . This

is equivalent to

Hn
j =

I
rÿ

i=1
gi(aaai · xxx) : gi œ H1

j ’i

J

(65)

The analogous version for non homogeneous polynomials follows directly because P n
k =tk

j=1 Hn
j ⌅
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Lemma 5.6. If S1(‡,R) is dense in C(R), then Sn(‡,Rn) is dense in C(Rn).

PROOF.
Let g œ C(Rn) and K ™ Rn compact. Lemma 5.4 states that M = span{f(aaa · xxx) : aaa œ
Rn, f œ C(R)} is dense in C(K). Thus given Á > 0, there exists k œ N and a sequence of
functions {fi}i=1:k ™ C(R) and a sequence of vectors {aaai}i=1:k ™ Rn such that for all xxx œ K:

-----g(xxx) ≠
kÿ

i=1
fi(aaai · xxx)

----- <
Á

2 (66)

Since K is compact, for all i = 1 : k there exists a finite interval [–i, —i] such that

{aaai · xxx : xxx œ K} ™ [–i, —i] (67)

Because S1 is dense in [–i, —i], there exists m1 œ N and constants cij , wij , ◊ij such that for all
y œ [–i, —i]: ------

fi(y) ≠
m

iÿ

j=1
cij‡ (wijy + ◊ij)

------
<

Á

2k
(68)

Applying both inequalities yields, for all xxx œ K:
------
g(xxx) ≠

kÿ

i=1

m
iÿ

j=1
cij‡ (wijy + ◊ij)

------
< Á (69)

⌅

Theorem 5.7 (Universality Theorem for ‡ œ CŒ(R)). Shallow networks with an
arbitrary number of units and activation function ‡ œ CŒ(R) are universal in C(Rn)
≈∆ ‡ is not a polynomial.

PROOF.
≈=

On behalf of Lemma 5.6, we only need to do the proof for n = 1.
Consider w and b fixed. For any h > 0, we have that

‡ (x(w + h) + b) ≠ ‡ (xw + b)
h

œ S1 (70)

Hence, the limit for h æ 0 is in its closure S1. This limit is ˆ
ˆw

!
‡ (xw + b)

"
. We can apply

an analogous argument using the same argument to prove that any k-th derivative is in S1
(see Figure 5 for a visual explanation). Applying di�erentiation rules we have that:

ˆk

ˆwk

!
‡(xw + b)

"
= xk‡(k(xw + b) œ S1 (71)
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x

‡‡

�

ww + h

≠ 1
h

1
h

x

‡‡

�

‡

w ≠ hw + h

1
h2

1
h2 ≠ 2
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w

x

‡‡

�

‡ ‡· · · · · ·

w ≠ k

2 h
w + k

2 h

(≠1)k

1
h
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1

h

k
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!
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k (≠1)i

!
k

i

" 1
h

k

Figure 5: Illustration of how the k-th derivative is obtained using networks with k neurons
(assuming ‡(k(0) ”= 0). The input is represented by x•, each arrow represents a product and
‡• and �• represent the activation and the sum functions respectively. So for example, the first
picture represents 1

h
‡

1
x(w + h)

2
≠ 1

h
‡(xw), which is the approximation for the first derivative

ˆ
ˆw

‡(xw) = x‡Õ(xw). We have explicitly added w, but in most cases we can suppose w = 0
(as explained in the proof of Theorem 5.7.

Since ‡ is not a polynomial, Lemma 5.3 guarantees that there exists a number b̃ such that
for any k, ‡(k(b̃) ”= 0. Taking w = 0 and b = b̃, we have that for any integer k, the monomial
xk œ �1. As a consequence, Sn contains all polynomials.

By Stone-Weierstrass’s theorem [27, Ch. 3], its closure contains all continuous functions.
=∆

We prove by contradiction. Suppose ‡ is a polynomial of degree k. Then ‡(Èxxx,wwwÍ + b)
is a polynomial degree at most k for any www and b. Thus, the family �n is contained in the
family of polynomials of degree at most k, which is not dense in C(Rn). This is a classical
density result, in appendix A, subsec:universalityShallow we give the details for the sake of
completeness,for the case n = 1.

⌅
The proof of the analogous theorem demanding the activation function only to be contin-

uous (Theorem 5.1) is explained in appendix A, subsection A.4.

Corollary 5.8 (Density of deep networks in internally continuous G-functions).
Let G be a CDAG. Then G-Deep networks with an arbitrary number of units and activation
function ‡ œ CŒ are universal in C(Rn) fl {internally continuous G-functions} ≈∆ ‡
is not a polynomial.

The proof is simply done by applying the theorem to each constituent function. We omit
more explicit details.
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x

‡‡

�

h

≠ 1
h

1
h

Figure 6: A special and interesting case happens when b = 0 and ‡Õ(0) ”= 0. In this case, setting
w = 0, the monomial x can be computed as 1/‡Õ(0) times the simple network of this figure.
We consider this case specially interesting because it needs one less connection. This could
be biologically more e�cient. Moreover, this little network depends only on h, the parameter
that gives the precision, so the same network could be used in many places of the brain where
the basic monomial x is needed.

We want to note that in real applications, for this result to apply, you need to guess the
compositional form of the function you want to approximate beforehand. As we already com-
mented in section 2, we conjecture that this is a critical point, since there are functions that
do not have a given compositional form when internal functions are forced to be continuous
(as it is the case for neural networks).

If this conjecture is true, then given a complex task (a function) with a concrete compo-
sitional structure (corresponding to a distribution of basic tasks), the ones which are in the
lower levels behave independently to the ones on the higher levels (see Figure 7).

We also want to highlight the following fact, that we will use in the proof of Theorem 6.1.

Corollary 5.9. Let H1
k be the set of single variable polynomials of degree most k. Then

H1
k ™ Sk+1,1. And in general, for polynomials of n variables and degree k, Hn

k ™
Ss( k+n

n

)n

,n, where s = dim Hn
k =

!n+k≠1
k

"
.

PROOF.
In the proof of Theorem 5.7 we have seen that P 1

k ™ S1 by saying that a multiple of the
monomial xk can be seen as a k-th derivative of ‡(wx + b) with respect to w for some b œ R.
This k-th derivative can be approximated by functions in S1. In particular, using the finite
di�erences approach (for a visual representation see Figure 5, and for a developed theory, see
[11, Ch. 3]) to approximate such derivative, a derivative of order k with can be approximated
with k + 1 evaluations of the function. In our context this means using k + 1 units.

For the multivariate case, we observe that in order to approximate the monomial x–1
1 · · · x–

n

n

we need at most
rn

i=1(–i + 1) units. This number follows from the subsequent reasoning:
for each variable xi, the monomial x–

i

i can be approximated by a suitable network of –i + 1
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Figure 7: Features of very di�erent kind (made of di�erent sets of variables x–, x“ for example)
behave independently and can only be aggregated in higher levels of the network, corresponding
to more abstract concepts.

x1 x2 x3 x4 x5

�

Input layer

Low level features

Mid level features

High level features

Output layer

Figure 8: Conceptual distribution of features into di�erent levels. In the case of vision, for
example, these levels may coincide with the three stages of vision described by David Marr
[32].
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units. If we do it for x1, we can apply the finite di�erences method cited in the univariate
case for the network obtained, so using (–1 + 1) · (–2 + 1) units the monomial x–1

1 · x–2
2 can

be obtained. The same argument can be extended to n variables for any n.
Now we know

qn
i=1(–i + 1) = k + n, so using the inequality between arithmetic and

geometric mean, we can find a bound for the number of units required for each monomial:
A

nŸ

i=1
(–i + 1)

B1/n

Æ k + n

n
=∆

nŸ

i=1
(–i + 1) Æ

3
k + n

n

4n

(72)

Since a base of Hn
k has exactly s monomials, that can be each approximated by networks

with at most
1

k+n
n

2n
units, we have that Hn

k ™ Ss( k+n

n

)n

,n as stated. ⌅

In this corollary the first of the bounds is optimum, because k-th derivatives cannot be
approximated by finite di�erences with less than k + 1 points. In contrast, the bound for the
multivariate case is highly non optimal for two reasons. First one, the bound for

rn
i=1(–i +1)

is pretty strong, and in fact the equality happens only in a small number of cases, and only
for k’s that are multiple of n. The second reason is because we are not sure that our method
for computing the multivariate derivative ˆk

ˆ–1 x1···ˆ–

n x
n

uses the minimum possible number of
neurons.

The method of the proof gives an easy rule to compute the number of neurons needed to
approximate a given polynomial. As an example, the number of neurons needed to compute
a simple polynomial as xy + xy2 would be 2 · 2 + 2 · 3 = 10.

Obviously, if one wants to generate all polynomials in n variables of degree at most k, the
previous corollary can be applied adding the result homogeneous polynomials of degree for
i = 0 : k. We think this number can be improved, and in fact, for the case of single variable
polynomials, we have that P 1

k ™ S2k+1,1. This is because the k-th derivative is obtained as
the limit when h æ 0 of

qk
i=0(≠1)i

!k
i

" 1
hk

‡
1
x

1
w + h

1
k
2 ≠ i

22
+ b

2
. The key observation is

that, if k is even, the value of the parameters needed to compute the k-th derivative contains
the values for all even numbers smaller than k, and if k is odd, contains all the values for odd
numbers smaller than k. Then the linear combination of units can be properly arranged to
compute any polynomial (see example below).
Example 4. We want to build a network that approximates f(x) = x3+3x2+x+1. Lemma 5.3
states that there exists b̃ such that ‡(k(b̃) ”= 0. In this example, for the sake of simplicity, we
suppose that b̃ = 0.

1. First we approximate each of the monomials:

(a) x3 ¥ 1
‡(3(0)h3

1
‡(3xh/2) ≠ 3‡(xh/2) + 3‡(≠xh/2) ≠ ‡(≠3xh/2)

2

(b) 3x2 ¥ 3
‡(2(0)h2

1
‡(xh) + 2‡(0) + ‡(≠xh)

2

(c) 2x ¥ 2
‡Õ(0)h

1
‡(xh/2) ≠ ‡(≠xh/2)

2

(d) 1 ¥ 1
‡(0)

1
‡(0)

2
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2. Write the linear combination of the monomials

x3 + 3x2 + x + 1 ¥ 1
‡(3(0)h3

1
‡(3xh/2) ≠ 3‡(xh/2) + 3‡(≠xh/2) ≠ ‡(≠3xh/2)

2
+

+ 3
‡(2(0)h2

1
‡(xh) + 2‡(0) + ‡(≠xh)

2
+

+ 2
‡Õ(0)h

1
‡(xh/2) ≠ ‡(≠xh/2)

2
+ 1

‡(0)
1
‡(0)

2

and rearrange the terms

x3 + 3x2 + x + 1 ¥ 1
‡(3(0)h3 ‡(3xh/2) + 3

‡(2(0)h2 ‡(xh) +
3

≠3 1
‡(3(0)h3 + 2

‡Õ(0)h

4
‡(xh/2)+

+
3

2 3
‡(2(0)h2 + 1

‡(0)

4
‡(0) +

3
3 1

‡(3(0)h3 ≠ 2
‡Õ(0)h

4
‡(≠xh/2)+

+ ≠3
‡(2(0)h2 ‡(≠xh) + ≠1

‡(3(0)h3 ‡(≠3xh/2)

The following figure provides a graphical representation

x

‡ ‡ ‡ ‡‡‡‡

� �� · · ·· · ·

0 h/2 h 3h/2≠h/2≠h≠3h/2

≠1
‡(3(0)h3

≠3
‡(2(0)h2

3
‡(3(0)h3 ≠

2
‡Õ(0)h

1
‡(3(0)h3

3
‡(2(0)h2

≠3
‡(3(0)h3 + 2

‡Õ(0)h

6
‡(2(0)h2 + 1

‡(0)

Figure 9: Approximation of f(x) = x3 + 3x2 + x + 1 using 7 units instead of 10. The other
�’s represent any other 3-order polynomial that can be generated with some combination of
the same set of 7 neurons. As long as ‡ is such that ‡(k(0) ”= 0 for every k the above 7
”basis” can generate any 3-order polynomial. In general, with 2N +1 neurons we can generate
any polynomial of order at most N . Similar constructs could be made for other function
representations such as radial basis functions ([10], [44], [3]) or Gröbner polynomials ([9]).
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PROOF.
(Of Theorem 5.2) The proof of Theorem 5.7 is based on the fact that polynomials can be used
to approximate any continuous function and than we can obtain any polynomial as a limit of
shallow networks (see equation (71)). If we consider the case of forgetting networks, substi-
tuting x by xÏw(t), where Ïw(t) is the forgetting function of the weights 4, the polynomial
we obtain is

(xÏw(t))k‡(k(xw + b) (73)

The e�ect of Ïw(t) increases with the degree of the resulting polynomial. ⌅
This theorem is directly related with forgetting high frequencies faster than lower ones

because from the perspective of polynomials, high frequencies are associated with high degree
polynomials.

Representations Other than Polynomials To prove the universality theorem we
have given a way to approximate a given function with a neural network: you build the
networks approximating each monomial, and with them you can build any polynomial, that
will approximate arbitrarily well your target function. We think other representations may
be useful, for example Göbner basis [9].

5.3 Generalization to Other Norms
Definition 5.1 can be generalized to a di�erent topology or convergence criterion saying that
a family F is dense in X if for every g œ X, there exist {fi}iœN ™ F such that fi ≠≠≠æ

iæŒ
g for

a given convergence criterion. Our previous definitions and theorems are for the topology of
uniform convergence on compacta.

We want to note that these results can be extended to any L p(�) space over a compact
domain � because C(�) is dense in L p(�) for any p œ [1, Œ] and � compact.

5.4 Forgetting High Frequencies in Deep Networks
Theorem 5.2 is stated only for shallow networks. In deep networks the modeling of forgetting
may be more complex since it can depend on the graph. Each layer may be forgotten in a
di�erent way, and even each neuron may have di�erent Ïa, Ïb, Ïw. However, if we consider
the forgetting hypothesis with Ïb(t) = Ïw(t) = 1 for all t, in the second layer we have a
phenomenon analogous to the forgetting hypothesis with Ïa(t) = Ïb(t) = 1 for all t in a
single layer, so Theorem 5.2 directly applies. These kind of arguments may be applied to
gain intuition in how some specific networks forget, regarding high and low frequencies.

4This is equivalent to substitute w by wÏ
w

(t) as stated in the new forgetting hypothesis.
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6 More Neurons Do Not Delay Forgetting: Curse
of Forgetting Theorem
From the previous section we know that both shallow and deep networks are universal, mean-
ing they can approximate any function to an arbitrary degree of accuracy if su�cient neurons
are added.

The problem of this result is that it is true when there is no limit to the number of units in
the network. In a real world situation, the number of units is constrained by computational
limitations.

In this section we present two fundamental results, one regarding shallow networks and
another showing that deep networks can avoid the curse of dimensionality.

6.1 Curse of Dimensionality and Forgetting

Theorem 6.1 (Curse of dimensionality). Let (X, Î · Îp) be a normed space with
p œ [1, Œ]. Let ‡ œ CŒ(R) and not a polynomial. For f œ W n

Œ,m([≠1, 1]n), the complexity
of the shallow networks that provide accuracy at least ‘ is

N = O
1
‘≠n/m

2
(74)

and it is the best possible among all reasonable methods of approximation. By reasonable
we mean the ones described after the definition of non-linear N -width.

We present also the impact of forgetting on this theorem in the form of another theo-
rem.

Theorem 6.2 (The curse of forgetting). Consider the forgetting version of the net-
work, with forgetting function Ï(t). If the network �f approximates f with accuracy Á,
then the corresponding network after time t, �f (·, t) approximates f with accuracy at
least

Á̃(t) = Á(2 ≠ Ï(t)) + (1 ≠ Ï(t)) (75)

and this is the best possible upper bound.

To study this size-constrained problem the following definition will be useful :
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Definition 6.1 (Approximation error). Let (X, Î · Î) be a normed space, W ™ X and
f œ X. The best approximation error of f in W is

E(f ; W ; Î · Î) def= inf
gœW

Îf ≠ gÎ (76)

Let V ™ X. The worst case approximation error of V in W is

E(V ; W ; Î · Î) def= sup
fœV

inf
gœW

Îf ≠ gÎ (77)

We will usually drop the norm when it is understood from the context which norm is
considered. In that case we will write E(f ; W ) instead of E(f ; W ; Î · Î).

In this section we will focus in the following problem: given ‘ > 0, given W ™ X, and
SN,n ™ X the set of neural networks with less or equal than N units, which is the minimum
N such that

E (W ; SN,n) < ‘ (78)
We will use asymptotic notation in this section. For example, if dist(f, SN,n) = O (N≠“)

for some “ > 0, then a network with complexity N = O
1
‘
≠ 1

“

2
is enough to guarantee an

approximation of accuracy at least ‘.
The results we present are based on [39] and rely on the fact that the space W of target

functions is somehow controlled. We will think of Sobolev spaces as in Definition 3.7 with the
sup norm and over � = [≠1, 1]n, so we will generally write W n

m instead of W n
Œ,m([≠1, 1]n).

To prove both theorems we will need four basic lemmas that we will cover next. First, a
classical result from approximation theory:

Lemma 6.3. Given P n
k the space of polynomials of degree at most k in n variables and

W n
m the Sobolev space as defined in Definition 3.7 with the sup norm, there exists a

constant C such that the following inequality holds:

E(Wn
m; P n

k ) Æ Ck≠m (79)

Since the proof is long and is not specially relevant, the reader is referred tosubsection A.3.
To prove that the complexity given is the best possible, we need to define the concepts of

Bernstein N-width and continuous non-linear N-width (see [1] and [37, Sec. 6])

Definition 6.2 (Bernstein N-width). Given X a normed linear space and K ™ X a
compact subset of it, the Bernstein N-width is:

bN (K; X) def= sup
X

N+1
sup{⁄ : ⁄S(Xd+1) ™ K} (80)

Where XN+1 is any (N + 1)-dimensional subspace of X and S(XN+1) is the unit ball of
XN+1.
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Definition 6.3 (Continuous non-linear N-width). Given X a normed linear space
and K ™ X a compact subset of it. Let PN : K æ RN be a continuous function and let
MN : RN æ X be any function. For each such PN and MN set

E(K; PN , MN ;X) def= sup
fœK

Îf ≠ MN (PN (f))Î (81)

and now define the continuous non-linear N-width as

hN (K;X) def= inf
P

N

,M
N

E(K; PN , MN ;X) (82)

The idea behind this definition is the following:
• A learning algorithm can be regarded as a function � : K æ X, because given a target

function f œ K, returns its approximating neural network, which is a function in X.

• This function � can be factorized into two functions � : K
P

N≠≠æ RN M
N≠≠æ X. PN maps

every function to a set of parameters, and given a set of parameters, MN returns its
corresponding neural network as a function in X.

• Given an approximating algorithm (i.e. given PN and MN ), E(K; PN , MN ;X) is the
worst case error of the considered algorithm.

• Given K and X, hN (K;X) represents the minimum E(K; PN , MN ;X) over all possible
algorithms (PN , MN ).

So our E(K, Sn,N ) is equal to h(n+2)N (K,X) when we restrict learning algorithms (PN , MN )
to be PN continuous and MN the exact one described in the definition of shallow networks.

Lemma 6.4. For any normed space X and K ™ X compact

hN (K;X) Ø bN (K;X) (83)

PROOF.
Let PN : K æ RN be a continuous function. Set

P̃N (f) = PN (f) ≠ PN (≠f) (84)

Thus P̃N : K æ RN is an odd continuous function. Given XN+1 an (N + 1)-dimensional
subspace of X and ⁄ > 0 such that ⁄S(XN+1) ™ K, then P̃N

---
ˆ(⁄S(X

N+1))
is an odd continuous

function from the boundary of an (N +1)-dimensional ball to RN . By Borsuk-Ulam theorem,
there exists an fú œ ˆ(⁄S(XN+1)) (in particular ÎfÎ = ⁄) for which P̃N (fú) = 0. As a
consequence, for any function MN : RN æ X

2fú = [fú ≠ MN (PN (fú))] ≠ [≠fú ≠ MN (PN (≠fú))] (85)

35 of 66



Theory of Intelligence with Forgetting

and therefore

max
)Îfú ≠ MN (PN (fú))Î, Î ≠ fú ≠ MN (PN (≠fú))Î* Ø ÎfúÎ = ⁄ (86)

Since both fú and ≠fú are in K, this implies that E(K; PN , MN ;X) Ø ⁄. Since this inequality
is valid for any choice of PN and MN and ⁄ Æ bN (K;X), we have that hN (K;X) Ø bN (K;X)
and the proof is done. ⌅

Lemma 6.5. With the notation previously defined, there exists a constant C such that

bN

!
W n

m; c
" Ø CN≠m/n (87)

PROOF.
Since bN is a supremum, it su�ces to prove that there exists a constant C and an (N + 1)-
dimensional linear space XN+1 such that CN≠m/nS(XN+1) ™ W n

m.
Let Ï be any nonzero function in CŒ(Rn) with supp Ï ™ [≠1, 1]n. For given n, m, we can

choose Ï satisfying ÎDkÏÎ Æ 1 for |k| Æ m. For l > 0 and j œ (2Z)n, set

Ïj,l(x1, . . . , xn) = Ï(x1l ≠ j1, . . . , xnl ≠ jn) (88)

The support of Ïj,l lies in
rn

i=1[(ji ≠ 1)/l, (ji + 1)/l]. Since we are working with sup norm,
we have that:

ÎÏj,lÎ = ÎÏÎ ÎDkÏj,lÎ = l|k|ÎDkÏÎ (89)

For any fixed l, we observe that for di�erent j œ (2Z)n, the supports of Ïj,l are disjoint.
Therefore, for any linear combination we have:

......

ÿ

j
cjÏj,l

......
= ÎcÎŒÎÏÎ

......
Dk

Q

a
ÿ

j
cjÏj,l

R

b

......
= l|k|ÎcÎŒÎDkÏÎ (90)

where ÎcÎŒ = maxj |cj|.

......

ÿ

j
cjÏj,l

......
m,Œ

=
ÿ

0Æ|k|Æm

......
Dk

Q

a
ÿ

j
cjÏj,l

R

b

......
= (See Definition 3.6) (91)

=
ÿ

0Æ|k|Æm

l|k|ÎcÎŒÎDkÏÎ Æ ÎcÎŒ
ÿ

0Æ|k|Æm

lm = (ÎDkÏÎ Æ 1 and lk Æ lm)

(92)

= ÎcÎŒ

A
n + m

m

B

lm =
A

n + m

m

B

lm

......

ÿ

j
cjÏj,l

......
The sum has

!n + m

n

"
terms.

(93)
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So for l large, the linear space generated by those Ïj,l whose support lie totally in [≠1, 1]n
is a linear space of dimension of the order of ln with the property that

......

ÿ

j
cjÏj,l

......
Œ

Æ 1 =∆ Cl≠m

......

ÿ

j
cjÏj,l

......
m,Œ

Æ 1 (94)

for some constant C independent of l. This implies that bN

!
W n

m; C([≠1, 1]n)
" Ø Cl≠m where

N ¥ ln. Thus we have proved the desired result

bN

!
W n

m; C([≠1, 1]n)
" Ø CN≠m/n (95)

⌅
PROOF.

(Of Theorem 6.1) The first proof of this result was given in [33]. We will proceed with a
slightly di�erent approach, following [37], we will prove that E(Wn

m; SN,n) Æ CN≠m/n for a
suitable constant C independent of N .

We begin recalling Corollary 5.5 and Corollary 5.9, that together tell us

P n
k =

I
sÿ

i=1
gi(ai · x) : gi œ Sk+1,n ’i

J

(96)

where s = dim P n
k =

!n+k
k

"
.

From this result it follows directly that:

P n
k ™ Ss(k+1),n (97)

Set N = s(k + 1). Then there exists a constant C Õ independent of N such that

E(Wn
m; SN,n) = E(Wn

m; SN,n) (98)
Æ E(Wn

m; P n
k ) equation (97) (99)

Æ C Õk≠m Lemma 6.3 (100)

For n fixed and k growing (k ∫ n), which corresponds to greater accuracy, we have that
N = �(kn), so from the last equation we can say there exists a constant C independent of
N such that

E(Wn
m; SN,n) Æ C Õk≠m Æ CN≠m/n (101)

We still have to prove that this is the (asymptotically) best possible complexity. As we
have explained before, this is equivalent to prove that:

h(n+2)N
!
W n

m; c
" Ø CN≠m/n (102)

for some constant C. This is a direct consequence of Lemma 6.4 and Lemma 6.5. The
application of both lemmas gives:

h(n+2)N
!
W n

m; c
" Ø C (N(n + 2))≠m/n = CN≠m/n(n + 2)≠n/m (103)

This extra factor (n + 2)≠n/m is asymptotically negligible because limnæŒ(n + 2)≠n/m = 1.
⌅
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Corollary 6.6 (Polynomials version). With the same hypothesis as Theorem 6.1
but restricting f œ P n

k , any f can be approximated with arbitrary accuracy by shallow
networks with exactly N = (k + 1)

!k+n≠1
k

" ¥ kn units.

PROOF.
This is a direct consequence of equation (97). ⌅

PROOF.
(Of Theorem 6.2)

Îf ≠ �f (·, t)Î Æ Îf ≠ �f (·, 0)Î + Î�f (·, 0) ≠ �f (·, t)Î Æ Á + Î�f (0)Î(1 ≠ Ï(t)) (104)

Now we can find an upper bound for Î�f (0)Î using f œ W n
m:

Î�f (0)Î = Î�f (0) ≠ f + fÎ Æ Î�f (0) ≠ fÎ + ÎfÎ Æ Á + 1 (105)

And with this result

Îf ≠ �f (·, t)Î Æ Á + (Á + 1)(1 ≠ Ï(t)) = Á(2 ≠ Ï(t)) + (1 ≠ Ï(t)) (106)

This is the best possible upper bound because for every n and N , there exists a function
f : Rn æ R and an approximating network �f œ Sn,N satisfying the equality case.

To build an explicit example, we pay attention to the equality cases of each inequality
used. In inequation (104) it is the triangular inequality and the fact that the accuracy is
better than Á, in inequation (105) it is a combination of the same conditions before and the
ÎfÎm,Œ = 1. Summarizing, we need an example where f and �f are colinear, ÎfÎm,Œ = 1
and Î�f ≠ fÎ = Á.

Taking everything said into consideration, given n and N , let f œ Sn,N , with suitable
parameters such that ÎfÎm,Œ = 1, and let �f = (1 ≠ Á)f . Then all equality cases are
satisfied. ⌅

We would also like to have a lower bound for the error, but we have not been yet able to
compute any relevant lower bound. A way of studying a lower bound would be to consider a
given network of approximating error Á that we know is the best approximating network of N
units. Then this network with a forgetting factor Ï(t) would also be an N -unit network, so
its error by definition could not be less than Á, but we have not found any stronger version.
We leave this for future work.

6.2 Deep Networks Avoid the Curse of Dimensionality

Definition 6.4 (K-ary tree, W n,K
m space). A CDAG is said to be a K-ary tree if each

node has no more than K in-edges. We define W n,K
m to be a subset of W n

m such that:

W n,K
m

def=
I

f œ Wn
m : f is a G-function with G a K-ary tree

and constituent functions h œ WK
m

J

(107)
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Note that a K-ary tree is a layered graph.
The analogous theorem for deep networks is presented and proved in [39] for the case of a

binary tree (K = 2). We state it in a more general form, but the ideas behind are essentially
the same.

Theorem 6.7. Let ‡ œ CŒ(R) and not a polynomial. For f œ Wn,K
m , the complexity of

the deep networks that provide accuracy at least ‘ with the sup norm is

N = O
1
(n ≠ 1) ‘≠K/m

2
(108)

PROOF.
We prove this theorem by induction on d the number of hidden layers of the associated graph.
The base case is equivalent to Theorem 6.1.

Consider it to be true for networks of less than d layers (induction hypothesis), we will
prove the theorem for networks of exactly d layers. By Theorem 6.1 each of the constituent
functions of f can be approximated up to accuracy ‘ with O

1
‘≠K/m

2
units.

We wish to remark that the constituent functions of the network are Lipschitz continuous
(since they are continuously di�erentiable in the compact set �). In fact, due to the norm
restriction of derivatives in W n

m and to mean value theorem, this Lipschitz constant is at most
1. We will use this fact in the proof.

If we take h to be the constituent function of the sink node, h1, . . . , hK the constituent
functions of the layer below (the last hidden layer) and P, P1, . . . , PK the shallow networks
approximating those mentioned constituent functions with accuracies

Îh ≠ PÎ Æ ‘

2 Îhi ≠ PiÎ Æ ‘

2K
(109)

Then using Minkowskii inequality we have:

Îh(h1, . . . , hK)≠P (P1, . . . , PK)Î = Îh(h1, . . . , hK)≠h(P1, . . . , PK)+h(P1, . . . , PK)≠P (P1, . . . , PK)Î
(110)

Æ Îh(h1, . . . , hK) ≠ h(P1, . . . , PK)Î + Îh(P1, . . . , PK) ≠ P (P1, . . . , PK)Î (111)
The second summand, by equation (109) is less or equal than ‘

2 . 5 The first one is bounded
as follows:

Îh(h1, . . . , hK) ≠ h(P1, . . . , PK)Î Æ Î(h1 ≠ P1, . . . , hK ≠ PK)Î (Lipschitz) (112)

Æ
Kÿ

i=1
Îhi ≠ PiÎ (Triangular inequality)

(113)

Æ K · ‘

2K
= ‘

2 (equation (109)) (114)

5It is interesting to note that here the sup norm is important. This statement will not be true in general for
another L p norm.
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From equation (110) it directly follows that

Îh(h1, . . . , hK) ≠ P (P1, . . . , PK)Î Æ ‘ (115)

as desired. Now by Theorem 6.1, the first approximation in equation (109) can be obtained
with O

1!
‘
2
"≠K/m

2
= O

1
‘≠K/m

2
units. Since the hi’s can be considered as deep networks

of d ≠ 1 hidden layers, each of the approximations to hi, by induction can be obtained with
O

1!
n
K ≠ 1

" !
‘

2K

"≠K/m
2

= O
1!

n
K ≠ 1

"
‘≠K/m

2
.

Because there are K nodes in the final layer, the total number of units needed is indeed
O

1
‘≠K/m

2
+ KO

1!
n
K ≠ 1

"
‘≠K/m

2
= O

1
(n ≠ 1)‘≠K/m

2
⌅

Both Theorem 6.1 and Theorem 6.7 are only valid for CŒ activation functions. The
Rectified Linear Unit (ReLU) function, which is one of the most used as an activation function,
does not fall into this category. We don’t believe this is a serious limitation because one can
find arbitrarily close functions to it. For the case of shallow networks, very similar results
have been proved for continuous (but not di�erentiable) activation functions considering the
L 2 norm, but they cannot be extended to deep networks using the techniques of Theorem 6.7
because the proof of Theorem 6.7 is only valid for the sup norm. We will not comment these
result, the interested reader is referred to [39, Section 4].

7 Ebbinghaus Linear Forgetting Models
In this section we consider that neuron parameters are forgotten individually at some rate.
We have only studied the case of two of the most used activation functions, the Rectified
Linear Unit (ReLU) and the perceptron.

We will study when this approach is equivalent to our definitions in section 3 and will
derive some results that give mathematically intuitive explanations about known facts in the
science of forgetting.

7.1 Deterministic Model
Suppose we have a neural network that has been trained and obtained some value for the
parameters (a’s, w’s and b’s), as in equation (116) we will denote each variable at these
”trained” values with an asterisk in the superscript (for example, aú

1).
Now we model the forgetting of the network as these parameters being time dependent,

with forgetting function Ï(t), for example: a1(t) = aú
1 · Ï(t). Typically we will think on

Ï(t) = e≠t/· as the Ebbinghaus hypothesis suggests [46], but we will also analyze briefly
what happens if we consider other functions instead of exponential decay.

We will assume the values of forgetting functions are between 0 and 1 as if they represent
either the fraction of knowledge that is remembered or the probability that some specific
knowledge is remembered.

This model is deterministic because we are not assuming that each neuron forgets at a
random rate, but rather they all forget following exactly the same rate.
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7.1.1 Shallow Networks: Equivalent Model
Since it is the most commonly used we will consider the activation function ‡ to be the ReLU
function, this is, ‡(x) = max(0, x). Since this function is linear with respect to positive
number (i.e. if a is a positive number, ‡(ab) = a‡(b)) and Ï(t) is always a positive number,
it directly follows that:

‡(Èx, w(t)Í + b(t)) = Ï(t)‡(Èx, wúÍ + bú) (116)

By analogy, a shallow network of the form of equation (3), becomes depending on time t
as:

�(x; t) =
Nÿ

k=1
ak(t)‡(Èx, wk(t)Í + bk(t)) (117)

=
Nÿ

k=1
aú

kÏ2(t)‡(Èx, wú
kÍ + bú

k) (118)

= Ï2(t)�(x; t = 0) (119)

In the case of Ï(t) = e≠t/· this means that the whole networks also forgets exponentially,
but with forgetting parameter ·/2, which is faster than the independent neurons forget.

7.1.2 Deep Networks
Now we want to generalize to deep networks. What we will show is that if in a deep network
one specific layer forgets at a given rate, say with a forgetting function Ï(t), that can be
any of the ones presented before, and all biases in the layers above are tunned with the same
forgetting function squared, then the whole network forgets at the same rate the specific layer
is forgetting.

We propose a reasonable and simple biological mechanism for this behavior. To explain
it, let us discuss the role of biases in the network. Biases can be seen as thresholds. In the
ReLU case, since a neuron is activated when the logit is positive, we may assume that biases
are generally negative, otherwise a neuron with null input would be activated. Therefore,
the e�ect of multiplying by a number between 0 and 1 (only possible values of Ï(t)) will
actually increase the value of the bias, or equivalently, setting a lower threshold. Biologically
speaking, when one layer of the network forgets with some rate, the following layers detect a
lower signal than before, and so they tune their biases in a similar way the signal is lowered,
to compensate the e�ect.

Now suppose we have a network of d layers, and the i-th layer forgets with a forgetting
function Ï(t). As we have shown before in equation (119), the output of that layer will be
multiplied by Ï2(t). This is the input of the following layer, so in the (i + 1)-th layer, the
input will be multiplied by Ï2(t). The bias will also be multiplied by Ï2(t) by hypothesis.
Using the symmetric property of the scalar product and an analogous reasoning as in equation
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(119), the output of the (i + 1)-th layer is multiplied by Ï2(t). Repeating this reasoning with
the layers above, we reach the conclusion that this Ï2(t) a�ects directly to the result of the
whole network.

One can prove that this behavior is additive, meaning that if another layer, say the j-th
one, forgets at a given rate ÏÕ(t) that could be di�erent from Ï(t), and all biases of layers
(j + 1), . . . , d are tuned by the way described before, then the output is multiplied by and
extra ÏÕ2(t). In general, if we have a di�erent forgetting function for each layer, Ïk(t) for
k = 1, . . . , d, then the whole network � behaves as:

�(x; t) =
A

dŸ

k=1
Ï2

k(t)
B

�(x; t = 0) (120)

7.1.3 Biological Insights
7.1.3.1 More Neurons Do Not Delay Forgetting We want to note that the
results obtained in this section are dependent on the number of layers, not on the number of
units. This means that an increase of the number of units of a network, although it is true
that improves accuracy (as seen in section 5), does not delay forgetting at all.

7.1.3.2 The Weakest Link in the Chain In the case of Ïk(t) being exponential
decay with a di�erent time constant for each layer ·k, equation (120) is transformed to

�(x; t) =
A

dŸ

k=1
e≠2t/·

k

B

�(x; t = 0) (121)

= e
≠t

1q
d

i=1
2
·

i

2

�(x; t = 0) (122)

This corresponds to an exponential forgetting in the whole network with equivalent time
constant

·eq = 1
qd

i=1
2
·

i

= 1
2d

d
qd

i=1
1
·

i

(123)

which is 1
2d times the harmonic mean of ·1, . . . , ·d. This mean gives a heavier weight to small

values than the common arithmetic mean, implying that the layers that forget faster (that
is, with smaller ·) are the ones to determine the final forgetting behavior of the network.

7.1.3.3 Elementary Concepts Are Strongly Remembered The result in (120)
may be biologically relevant to explain why it is easy for a person to forget a complex concept
(for example the equation E = mc2), but not to forget more basic ones (in our example,
the meaning of equality and of multiplication). In a deep network, complex concepts
correspond to the highest layers, those closer to the output, which generally have less units
than layers below. For a high layer to forget it is only needed that a few neurons forget at a
given rate, while for a basic layer to forget much many neurons need to be forgetting, making
it more probable for the high layer to start a forgetting process. Since each layer a�ects
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the same way to the final result, no matter the number of neurons involved, if the network
forgets some fraction of what it originally knew, we conjecture it is more probable that this
forgetting comes from a high layer than from a basic one.

7.2 Random Variables Model
Now let us consider that each trainable parameter in the neuron is multiplied by a Bernoulli
random variable with probability Ï. This means that if a neuron is trained to have some
parameters w and b, after training this neuron will have the same parameters with probability
Ï, or will have forgotten them and return 0 with probability 1 ≠ Ï. We will model forgetting
over time varying this probability Ï = Ï(t) with respect to time. This is a more realistic
model because now each neuron forgets independently and in a random way. We can prove
that in this model we get the same result as in the deterministic one in expected value.

We consider that each neuron is multiplied by a Bernoulli random variable. We want to
note that this is equivalent as to multiply every trainable parameter by the same Bernoulli
random variable because the ReLU activation function behaves as the identity function in
all possible values of a Bernoulli random variable (which are 0 and 1). We also add to the
result of each neuron a random variable, with expected value zero, to make it biologically
more accurate.

We consider that all these auxiliary random variables are independent in a probabilistic
sense. This hypothesis may be consistent with biological neural mechanisms related to neural
plasticity if we assume that a given layer is used simultaneously and therefore forgetting
mechanisms occur similarly.

On a first approach, let us consider a shallow network of N units, which results in a
function on the form:

�(x) =
Nÿ

k=1
ak

!
‡(Èx, wkÍ + bk)—k + ”k

"
(124)

where —k are the Bernoulli random variables and ”k are the ones with E(”k) = 0 . We
are interested in the expected value of �, which we denote as E(�). Using linearity of the
expected value on (125) and the expected values of —k’s and ”k’s on (126), it follows:

E
!
�(x; t)

"
=

Nÿ

k=1
ak (‡(Èx, wkÍ + bk)E(—k) + E(”k)) (125)

= Ï(t)
Nÿ

k=1
ak‡(Èx, wkÍ + bk) (126)

Since at Ï(t = 0) = 1, which corresponds to the original trained network, we can say that
�(x; t = 0) =

qN
k=1 ak‡(Èx, wkÍ + bk), and thus the previous result can be synthesized as:

E
!
�(x; t)

"
= Ï(t)E

1
�(x; t = 0)

2
(127)

In the generalization to deep networks, we will make an analogous hypothesis as in the
deterministic case for the biases. We consider that, whenever the i-th layer is forgotten with a
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forgetting function Ï(t), all biases in the layers above, (i+1)-th until the output layer, forget
their biases in a similar way. Mathematically, they are multiplied by a Bernoulli random
variable of probability Ï(t). We will not consider the random variables ”k’s for the deep
network case. Also, we need to assume that for layers i, . . . , d, the parameters ak’s and wk’s
are all non-negative.

The result we get is that, if a layer, say the i-th layer is forgotten with probability function
Ï(t), and biases fulfill the previous hypothesis, then the expected value of the whole network
fulfills the following inequality:

E
!
�(x; t)

" Ø Ï(t)�(x; t = 0) (128)

PROOF.
We prove this by induction on the number of layers of the network d. The base case corre-
sponds to d = 1, and has been already proved in (127).

Consider a network of d layers in which the i-th layer has been forgotten (for some i < d).
If i = d ≠ 1, the output of the network is:

�d(x) =
N(d≠1)ÿ

k=1
a

(d≠1)
k

1
‡

1e
�d≠1(x), w(d≠1)

k

f
+ b

(d≠1)
k

2
—

(d≠1)
k

2
(129)

Where the —
(d≠1)
k ’s are associated with the forgetting in the (d ≠ 1)-th layer, and �(d≠1)(x) is

not a random variable. By analogy with the shallow network case, E
1
�d(x; t)

2
= Ï(t)�d(x; t =

0), which is in fact an equality case.
If i < d ≠ 1, the output of such network will be of the form (the superscripts account for

the layer):

�d(x) =
N(d≠1)ÿ

k=1
a

(d≠1)
k ‡

1e
�d≠1(x), w(d≠1)

k

f
+ b

(d≠1)
k —

(d≠1)
k

2
(130)

In this equation, there are two types of random variables: �d≠1(x) and the —d
k ’s. The first

comes from the randomness in the layers below, and is only random if i < d ≠ 1, while the
—d

k ’s are just Bernoulli random variables of some probability Ï.
Applying linearity of expected value it follows that:

E
1
�d(x)

2
=

N(d≠1)ÿ

k=1
a

(d≠1)
k E

1
‡

1e
�d≠1(x), w(d≠1)

k

f
+ b

(d≠1)
k —

(d≠1)
k

2 2
(131)

Since i < d ≠ 1 and �(d≠1)(x) is the output of a network with d ≠ 1 layers, the induction
hypothesis tells us that E

!
�(d≠1)(x; t)

" Ø Ï(t)�(d≠1)(x; t = 0). In order to apply the induction
hypothesis, we want that E

1
‡

!+
�(d≠1), w(d≠1)

k

,
+ b

(d≠1)
k —

(d≠1)
k

"2
Ø ‡

!
E

!+
�(d≠1), w(d≠1)

k

,
+

b
(d≠1)
k —

(d≠1)
k

"2
, which is actually true as we will see.

As a notation convention, let us define the random variable Y as Y =
+
�(d≠1), w(d≠1)

k

,
+

b
(d≠1)
k —

(d≠1)
k . Since the randomness comes from the e�ect of a finite number of Bernoulli
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random variables, given the input x the variable Y can only take a finite number of values.
Let S be the (finite) set of all possible values for Y , let S+ be the set of all non-negative
members of S and S≠ the set of all negative values of S. Using the definition of expected
value in (132), the property that ‡(y) = 0 when y Æ 0 in (133), the linearity of ‡ for
non-negative values and the fact that the second sum is zero in (134), the property that
‡(a) + ‡(b) Ø ‡(a + b) in (135) results in:

E
1
‡

!
Y

"2
=

ÿ

yœS

Pr(Y = y)‡(y) (132)

=
ÿ

yœS+
Pr(Y = y)‡(y) (133)

= ‡

Q

a
ÿ

yœS+
Pr(Y = y) · y

R

b + ‡

Q

a
ÿ

yœS≠

Pr(Y = y) · y

R

b (134)

Ø ‡
1 ÿ

yœS+fiS≠

Pr(Y = y)y
2

(135)

= ‡
1
E

!
Y

"2
(136)

If we apply this result to (131) and the induction hypothesis as said the proof is done. ⌅
This tells us that under the stated hypothesis, forgetting does not happen faster than in

the deterministic case, but it could be slower, since we have not found an upper bound for
E

!
�(x; t)

"
in terms of E

!
�(x; t = 0)

"
.

8 Conclusion and Future Research
There is not conclusive evidence that all animal memory can be modeled as stored in deep
neural networks and there still exist apparently-unsurmountable di�erences between deep
neural networks and human memory (most notably, humans learn with few examples), how-
ever, we have proven forgetting deep neural networks can be part of the puzzle given the
remarkable similarities between how they forget and the way animals do it – in fact, in a
parallel review e�ort [46] we have found no single piece of evidence reviewed contradicting a
conjecture that our model is part of how the human brain forgets.

The similarities between deep forgetting neural networks and human memory forgetting
are remarkable as summarized here:
(1) It’s not instantaneous (see subsection 4.1)
(2) It’s unavoidable (see subsection 4.2)
(3) Reinforcement delays forgetting (see subsection 2.5)
(4) More neurons do not increase retention (see paragraph 7.1.3.1)
(5) Forgetting of “features” propagates to “concepts” (see paragraph 7.1.3.2)
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(6) “Concepts” are forgotten faster than “features” see (paragraph 7.1.3.3). Reference am-
nesia example – i.e. things are di�erent.

(7) “High frequency” memories are lost faster than “low frequency” ones (see subsection 5.4)
(8) Forgetting is isolated to areas without reinforcement (see subsection 2.5)
(9) Forgetting occurs at Ebingghaus speed.

(10) Some “genetic” knowledge may be “hard-wired” and never be forgotten.
This is certainly a partial list and is presented here just to illustrate the many potential

avenues of possible future research.
Our ultimate goal is to find a model of the learning and forgetting dynamics in the animal

brain. We postulate what we call a dynamic forgetting network, which consists on a triple
(N , Ï, A), where N is a regular neural network, Ï is a set of forgetting functions and A is a
learning algorithm (given an input (xxx, f(xxx)) modifies the parameters of N ). So far we have
shown that our model is somewhat consistent with 10 important characteristics of forgetting
in the human brain, known experimentally, and have not found any such characteristic that
is inconsistent with our model.

In the rest of this conclusion we present five areas of future research we believe will be
essential towards the goal above.

8.1 Optimizing Choice of Learning Algorithms in Forgetting
Networks
We have focused on forgetting mechanisms (not learning algorithms). There is a huge variety
of learning algorithms, and it is unclear which one of them could best be suited to a forgetting
model of the animal brain. We think modern learning techniques used in deep learning
algorithms can be introduced in our model, and hope this contributes to our understanding
of the human brain.

8.2 Modeling Forgetting beyond Weight Loss
We have conducted extensive experiments with real neural network implementations to demon-
strate the behavior of neural networks when weights are modified, and the results (to be re-
ported more elsewhere ([45]) are consistent with the notion that decreases in weight translate
into memory loss – however, our experiments also show that other possible mechanisms at
the neural level may be playing a role.

For example, in our empirical experiments, we have tested the impact of lowering the
bias as shown in Figure 10 6 or changing the percentage of neurons in a layer set to zero

6 The experiments where done on the MNIST dataset, where the input consists of 60000 one- channel 28x28
images, and the output of 10 values of probability, for each digit (ranging from 0 to 9). The model that has been
used is, from input to output:

• Convolutional layer of 3x3 kernel size and ReLU activation, with 32 filters.
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Figure 10: For some activation functions modifying the bias may also be a way of modeling
forgetting. This experiment was conducted on...

suggesting that perhaps more than one neural mechanism may be playing a role in forgetting
– further mathematical modeling is required to understand the impact on forgetting of the
various components of a forgetting deep neural network architecture.

• Convolutional layer of 3x3 kernel size and ReLU activation, with 64 filters.
• MaxPooling2D layer of 2x2 pool size, with a Dropout of 0.25 probability.
• Fully Connected layer with 128 units, tanh activation, and a Dropout of 0.5 probability.
• Fully Connected layer with 10 units and softmax activation, that produces the outputs.

This model, trained for 12 epochs, yields an accuracy of 99.07% on the test set, of 10000 images.
Keras has been used as the framework to develop the experiments. Because of its conventions when describing

the network, the following layers where used:
• First convolutional layer is #1.
• Second convolutional layer is #2.
• First FC layer is #6.
• Second FC layer BEFORE the softmax function is #8.
• Second FC layer AFTER the softmax function is #9.
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8.3 Stochastic Modeling of Forgetting
We also want to work towards a stochastic version of the model. In that direction, we have
explored the following basic model: consider that the activation function ‡ is a perceptron
with some threshold T

‡(x) =
I

1 if x Ø T
0 if x < T

(137)

Consider a network with input xxx œ Rn on the form of (3). Now consider that, given
an input xxx, Èxxx,wwwÍ is a random variable following a binomial distribution Bin(n, p), where
p = Ï(t) is the Ebbinghauss curve. We consider ‡ to have threshold n/2 and all biases set to
zero. We will call each neuron in this setup a synaptic vesicle sv(n, p, n/2). In this context
a shallow network becomes:

�(xxx) =
Nÿ

k=1
‡(Èxxx,wwwÍ) ≥ Bin(n, p̃) (138)

where p̃ is the probability that each neuron has to activate. Each neuron activates when the
value of the logit is greater or equal to n/2, thus

p̃ =
nÿ

k=Án/2Ë

A
n

k

B

pk(1 ≠ p)n≠k (139)

Although we have not found a more compact formula for p̃, we have found experimentally
that if p > 1/2, then p̃ > p, and if p < 1/2, then p̃ < p.

The generalization to deep networks is done by considering that the logits of the layer l fol-
low a binomial distribution Bin(n, pl), where pl = ˜pl≠1, which corresponds to the distribution
of the outputs of the previous layer. With such generalization, given p1 = p some probability
of forgetting, it ”radicalizes” as it goes through the network: if pinitial > 1/2, pfinal is close
to 1, whereas if pinitial < 1/2, pfinal is close to 0, meaning that there is a point (p = 1/2) at
which there is a strong change in behavior, corresponding to the time the network e�ectively
forgets.

In future research we want to model more complicated networks via addition of many
synaptic vesicles. We have proven the following rule: If you add N synaptic vesicles sv(n, p, n/2)
and then the result is passed through a perceptron of threshold 1, then the result follows a
Bernoulli distribution B(q) where q = 1 ≠ (1 ≠ p̃)N , where p̃ is the one in equation (139).

8.4 Explaining Practice Scheduling and Forgetting learning
Figure 11 illustrates various learning practices that have an impact on memory saliency. Fu-
ture research could try to pair observed retention in humans with alternative neural forgetting
mechanisms to help elucidate the aproppriate explanations for each case, including the role
of various forgetting functions and learning strategies.
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Figure 11: This figure illustrates various learning practices that have been reviewed, without
finding any evidence of a long-term retention experiment that links performance with a given
practice. The methodologies have been organized using a novel taxonomy presented in [46].

The forgetting curve may be shaped by factors that have not been reviewed in the liter-
ature, perhaps not even addressed or ever suggested including a more complex set of values
(e.g. a�ection and social interaction [36]), memory flaws [43], type of memory [41, 48]. Wixted
[49] suggests that perhaps there is a di�erent behavior between memories that have not con-
solidated and those that have. Another related aspect that has not been addressed is when
is memory “refreshed” or “practiced”, in other words, when should we re-set the clock to
zero. If we review derivatives, are we also implicitly reviewing integrals? If we review how
the Pythagoras theorem can be derived, are we also reviewing how it can be applied? Can
forgetting be accelerated? All of these possibilities may be incorporated in forgetting deep
learning networks to provide further insights into human forgetting and perhaps even more
connections between the two.

8.5 Explaining The Baby Forgetting Conjecture: “Babies Don’t
Really Learn and Mostly Forget”
There is some controversy as to what is learned versus what is pre-wired in the animal brain,
and more specifically in humans, especially as it relates to the first development phases of
a baby’s life. There are many experiments on several aspects of primate baby “learning”,
with no conclusive answers to basic questions such as why a baby “learns so quickly” and
more research is continually being proposed. We, instead, suggest what is really needed is a
di�erent theory.

Our suggested theory, which we call the “baby forgetting hypothesis” is that the key
mechanism behind many so-called “learning” early phenomena is, in fact, a forgetting one,
one which selects among many potential feature sets based on a model that corresponds,
to a certain extent, to a drawing similar to that of Figure 7, Figure 8 and Figure 9. We
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have shown that once the basis of a polynomial has been constructed, new polynomials re-
combining the basis can be constructed just with one neuron each (i.e. in a computationally
very e�cient way). This would mean that the baby brain may start at birth with, say, having
for a given sensory region one thousand polynomials of order 5 and then, over the first phases
of life, prune the ones that do not appear in the perceived feature set. A similar mechanism,
possibly with di�erent default ‡’s, “base” polynomials, and forgetting schedule may be at
stake in di�erent parts of the brain so that evolution may simply be selecting the number of
neurons and which of these few parameters to optimize in di�erent parts of the brain. There
is evidence supporting this embryonic hypothesis.

Hubel and Wisel’s cat experiments [21] are consistent with a model in which orientation
is ready to be detected when seen – but only until week twelve. Cats don’t perceive vertical
lines if they haven’t seen them but they can quickly learn to see them (in minutes) if they
are exposed to vertical lines, but only up until that week. In other words, after that time the
cat will never be able to develop that skill no matter how many examples it sees. A similar
phenomenon may happen with stereo or human face recognition. “Feature” selectivity may
in fact also be the same mechanism for higher level concepts. Recent evidence on primates
has shown they ignore faces unless they have been exposed to them [4, 40]. The limited
preference for faces over other stimuli in babies, only developed in non-pre-term babies [35],
may well be an artifact of the feature set babies are born with instead of a “two-process”
theory as suggested elsewhere [34]. The concept of minimal images [47] may also be based on
aggregating basic features into a composed representation. The behavior of neural nets and
humans has been shown [47] to be di�erent with minimal images, but if there was a feature
layer, the behavior could be the same. For this to be true, lower layers would calculate the
features that compose a minimal image and be useless for more degraded images. This could
result in a model where minimal images in forgetting neural networks could reproduce the
behavior of humans. This would also greatly improve the modeling power of such networks
since the catastrophic forgetting exhibited by neural networks raises a lot of questions [17, 23].

Vision is not the only domain where there may be support for the “baby forgetting hy-
pothesis”. In speech, it has been shown that, like in the case of cat’s or minimal images above,
humans first learn the accent and then the language [26]. Babies have also shown preference
for the sounds of the mother [[12] which may be the result of “forgetting” the other features
(instead of the perhaps more intuitive notion that they somehow “learn” the mother’s voice).
The rapid subliminal reaction to human expressions [13] may also be the result of inter-modal
connections at the early layers of perception based on feature selectivity across parts of the
brain.

We don’t mean to imply by our conjecture that the brain does not have any ”meta
learning” hability starting at birth, but instead that perhaps many of the evidence shown
experimentally can be explain by an underlying selection or forgetting mechanism that has
nothing to do with backpropagation and that may work on whatever experiments are avail-
able. We feel at this point we know to little to make any claims about where is the frontier
between what is selective forgetting versus what is learned via a di�erent mechanism in the
early stages of life. In fact, it is possible that even the developmnet of grit [14], perhaps one of
the most relevant open problems in learning science, is also based on some form of forgetting
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given that babies learn the value of e�ort early on [31] and there is evidence that they show
the grit they see in their parents already when they are 15 months [28] (the analogy with
Hubel and Weisel cat experiments being that the brain exhibits a response based on very
fewo examples of the behavior it perceives and ”forgets” the one it does not).

The forgetting theorems proven are consistent with a model where “learning” really starts
by “forgetting” in a well-planned, region-specific and structured way pre-programmed at
birth – this is only a ”directional” conjecture and more research is required to validate it
empirically, by implementing forgetting neural networks and, mathematically, by solving basic
open research problem such as “what may be the theoretically optimal basis upon which to
start a forgetting process”, and subsequently, “what are the associated techniques that can
prune available options” (which may be based on gradient descent, or who knows, in other
biologically more plausible mechanisms such as the ones described in [15, 16]). More research
is also necessary to understand whether neural selectivity and consistency across individuals
is an artifact of basic feature selectivity or, instead, a more pre-coded born-with skill [8].

Ultimately, no model of human learning will be complete if it does not take into account
the role of forgetting in the baby’s brain development.
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Appendices
A Proofs
A.1 Proof of Lemma 5.3
PROOF.

i =∆ ii
Let m be the degree of ‡, then its (m+1)-th derivative vanishes, so ’x œ R, ‡(m+1(x) = 0.
ii =∆ i

Let us define En
def= {x œ R : f (n(x) = 0}. This sets are closed due to the continuity of f

and finœNEn = R by hypothesis. We recall Baire’s category theorem ([7]) which in our case
states that for every numerable collection of dense open sets {Un}nœN ™ R, their intersection
is dense. In our case, let Un be the complementary set of En: Un

def= Ec
n. If all Un were dense,

by Baire’s theorem, its intersection would be dense. But taking into account De Morgan laws

‹

nœN
Un =

‹

nœN
Ec

n =

Q

a
€

nœN
En

R

b
c

= Rc = ÿ (which is not dense in R) (140)

As a consequence, there is one set Un not dense, equivalently, one set En with non-empty
interior, therefore it contains an interval I ™ En. So we have an interval I where f (n(x) =
0 ’x œ I, meaning that f is a polynomial of degree at most n in I.

Now let � be a set of indexes, and {I⁄}⁄œ� be the set of all maximal open intervals I⁄

such that f is a polynomial in I⁄. We have already seen that there exists at least one such
interval. We also observe that these intervals are mutually disjoint because they are maximal
(if two I⁄ and Iµ satisfy I⁄ fl Iµ ”= ÿ, then I⁄ fi Iµ is a larger interval).

Now we define
H

def= R \
€

⁄œ�
I⁄ (141)

H has empty interior. If it did not, it would contain an interval J ™ H and applying the
same argument with Baire’s theorem as previously to J instead of R we would find an interval
J Õ ™ J in which f is a polynomial, which generates a contradiction.

Now we prove that H has no isolated points. Suppose x œ H is an isolated point. For this
to happen, there would be two intervals I1, I2 œ {I⁄}⁄œ� such that x is the right endpoint
of I1 and the left endpoint of I2. There would then be also an integer n such that the n-th
derivative vanishes in I1 fi I2, and by continuity of f (n it would also vanish in x, and thus
I1 fi {x} fi I2 is a larger interval in which f is a polynomial.

H is a closed subspace of R, so if it is not empty, using Baire’s theorem again 7, there
7E

n

fl H are closed subsets of H and
t

nœN(E
n

fl H) = H, then there must be some of the E
n

having non-empty
interior in H.
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exists and interval J such that J fl H ”= ÿ and for some n

f (n(x) = 0 ’x œ J fl H (142)

Since H has non isolated points, any x œ J fl H is an accumulation point of J fl H, so using
only points in J fl H we can calculate

lim
hæ0

f (n(x + h) ≠ f (n(x)
h

(143)

This limit exists because f is infinitely di�erentiable and by construction it vanishes in J flH

f (n+1(x) = 0 ’x œ J fl H (144)

and repeating this argument,

f (m(x) = 0 ’x œ J fl H ’m Ø n (145)

Now we claim that there exists an interval I œ {I⁄}⁄œ� contained in J . If there were
no such interval, it would mean that the set J fl H contains an interval. But then H would
contain an interval in which f is a polynomial, that should have been included in {I⁄}⁄œ�.

Let I ™ J be such interval. Since f is a polynomial in I, there exists m such that f (m

vanishes in I. Suppose m > n. Since the endpoints of I are in J flH (therefore f (m vanishes at
the mentioned endpoints) and f (m = 0 in I, it is deduced that f (m≠1 vanishes in I. Applying
induction we deduce that f (n vanishes in I.

Choose a point x œ J fl H. We have seen that J fl H cannot contain an interval, so there
must exist two intervals I1, I2 œ {I⁄}⁄œ� such that x is the left endpoint of I2 and the right
endpoint of I1. Since f (n is continuous and is zero at I1 fi I2, it must be zero also in x, which
is a contradiction because then f is a polynomial in I1 fi{x}I2 which is a larger interval. This
contradiction comes from assuming H ”= ÿ, and f is then a polynomial in the only maximal
interval R. ⌅

A.2 Details of proof of Theorem 5.7
Suppose we have a sequence of polynomials of degree at most k: {Pi(·)}iœN, Pi(x) =

qk
j=1 ai

jxj

such that
Pi(·) ≠≠≠æ

iæŒ
f

We consider two possibilities:
i ’j, ÷aj œ R such that ai

j ≠≠≠æ
iæŒ

aj . In this case we will prove that f(x) = a0 + a1x +
· · · + akxk.

ii ÷j0 such that {ai
j0}iœN has no limit. We will prove this case is in contradiction with

{Pi}iœN being convergent.
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In the first case, let us define M = maxj=0,...,k ÎxjÎ. Given Á > 0, we can choose i0 such
that

|ai
j ≠ aj | <

Á

(k + 1)M ’i Ø i0 ’j = 0, . . . , k (146)

If we define g(x) = a0 + a1x + · · · + akxk, if follows ’i > i0:

Îg ≠ PiÎ = Î(a0 ≠ ai
0) + · · · + (ak ≠ ai

k)xkÎ (147)
Æ |a0 ≠ ai

0| + · · · + |ak ≠ ai
k|ÎxkÎ Triangular inequality (148)

Æ !|a0 ≠ ai
0| + · · · + |ak ≠ ai

k|"M Definition of M (149)

Æ
3

Á

(k + 1)M + · · · + Á

(k + 1)M

4
M = Á equation (146) (150)

In conclusion, Pi ≠≠≠æ
iæŒ

g, since the limit is unique, f = g.

In case (ii), since Pi ≠≠≠æ
iæŒ

f implies Pi(x) ≠≠≠æ
iæŒ

f(x) almost for any x, we can choose
k + 1 di�erent numbers y0, . . . , yk such that the convergence is pointwise, i.e.:

Y
___]

___[

ai
0 + ai

1y0 + · · · + ai
kyk

0 ≠≠≠æ
iæŒ

f(y0)
...

...
ai

0 + ai
1yk + · · · + ai

kyk
k ≠≠≠æ

iæŒ
f(yk)

(151)

Using properties of limits, we can make a linear combination of these limits to get:

ai
0

A
kq

j=0
“

j

B

+ ai
1

A
kq

j=0
“

j

y
j

B

+ . . . ai
k

A
kq

j=0
“

j
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j

B

≠≠≠æ
iæŒ

kq
j=0

“
j

f(y
j

) (152)

where “j are coe�cients of the linear combination. If we can choose these coe�cients such
that

kÿ

j=0
“jyl

j =
I

1 if l = j0
0 otherwise (153)

equation (152) becomes ai
j0 ≠≠≠æ

iæŒ

kq
j=0

“
j

f(y
j

) which is a contradiction.

It is indeed possible to choose {“j}j=0:k as in equation (153), because they are the solution
of the system of equations

Q

cccca

1 1 . . . 1
y0 y1 . . . yk
...

...
yk

0 yk
1 . . . yk

k

R

ddddb

Q

cccca

“0
“1
...

“k

R

ddddb
=

Q

ccccccca

0
...
1
...
0

R

dddddddb

Ω j0-th position (154)
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The matrix of this system of equations is a Vandermonde matrix, therefore it has a unique
solution if and only if all yj are di�erent.

We have proved that a sequence of polynomials of degree at most k can only have a
polynomial of degree at most k as a limit.

A.3 Proof of Lemma 6.3
Lemma 6.3 is a classical result whose proof is based on Jackson’s Theorem (see Theorem A.1).
It involves some concepts and previous results of approximation theory that will explained in
this section.

A.3.1 Derivation from Jackson’s Theorem
We begin by presenting the concepts of modulus of smoothness and best approximation

by a polynomial.

Definition A.1 (Modulus of smoothness). Given f : � ™ Rn æ R, with partial
derivatives up to order m, the modulus of smoothness of f of order m is a function
Êf,m : [0, Œ) æ [0, Œ) defined by

Êf,m(”) def= sup
|“““|=m

A

sup
|xxx≠yyy|Æ”

|D“““f(xxx) ≠ D“““f(yyy)|
B

(155)

Definition A.2 (Best approximation by polynomial). Given a function f : � ™
Rn æ R, its best approximation error by a polynomial of degree k in the compact K ™ �
is

Ek(f) def= inf
pœP n

k

Îf ≠ pÎK (156)

In this subsection we will always be using the sup norm for functions, and when it is not
clear from the context, we will use the subindex to specify where the supremum is taken. So
for example, if f is a function defined in K, ÎfÎK = supxœK |f(x)|.

Many results exist on upper bounds to this best approximation error. They are generally
called Jackson’s theorems (or Jackson’s inequalities) in honor to D. Jackson, who first proved
that type of results in [22].

The version of Jackson’s theorem we will use is the following:
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Theorem A.1. Let f œ Cm
0 (Rn) with supp f ™ K ™ Rn, and K compact, then

Ek(f) Æ C
1

km
Êf,m

3 1
k

4
(157)

where C is a constant depending only on n, m and K.

In our case K = [≠1, 1]n. Since f œ Wn
m, in particular for any ––– œ Zn

Ø, 0 Æ |–––| Æ m,
ÎD–––fÎ Æ Ô

n and therefore using triangular inequality, for any ”

Êf,m(”) Æ 2
Ô

n (158)

Since C can depend on n, this 2
Ô

n factor can be added to the constant C, and we directly
get the desired result.

A.3.2 Proof of Jackson’s Theorem
In [6], the following result is proved:

Theorem A.2. Let f œ Cm
0 (Rn) with supp f ™ K ™ Rn, K compact, and ––– œ Zn

Ø0, then
there exists a polynomial pk of degree at most k in n variables such that

ÎD–––(f ≠ pn)ÎK Æ C
1

km≠|–––| Êf,m≠–––

3 1
k

4
(159)

We are interested in the case ––– = 000. In the proof we will use some known concepts and results
from the theory of Fourier transform.

Definition A.3 (cf. Definition 7.1.2 in [20]). Let the set of functions S (Rn) be
defined by

S (Rn) = {Ï œ CŒ(Rn) : Îx———D–––ÏÎ < Œ ’–, —–, —–, — œ Zn
Ø0} (160)

Note that CŒ
0 (Rn) ™ S (Rn).

Notation. If g : � ™ Rn æ R is a function and Á > 0, g[Á] is the function defined by

g[Á](xxx) = 1
Án

g

3
xxx

Á

4
(161)

Also, if zzz œ Cn, we note its imaginary part as Im (zzz) = (Im (z1) , . . . , Im (zn)).

Lemma A.3. For any m, C, f, ”, the modulus of smoothness of f of order m has the
following property:

Êf,m(C”) Æ (C + 1)Êf,m(”) (162)
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PROOF.
Given a multi-integer “““,

sup
|xxx≠yyy|ÆC”

|D“““f(xxx) ≠ D“““f(yyy)| = sup
|xxx≠yyy|Æ”

|D“““f (xxxC) ≠ D“““f (yyyC)| (163)

Now the idea is to consider the interval that goes from xxx to yyy, that are the points txxx+(1≠t)yyy,
for t œ [0, 1], and apply triangular inequality for points in that interval. If C is integer, then
we can introduce

qC≠1
j=1 D“““f (Cxxx + (C ≠ j)yyy) and apply C times triangular inequality to get

|D“““f (xxxC) ≠ D“““f (yyyC)| Æ
C≠1ÿ

j=0

---D“““f
1
jxxx + (C ≠ j)yyy

2
≠ D“““f

1
(j + 1)xxx + (C ≠ (j + 1))yyy

2---

(164)
Since for every j, |jxxx + (C ≠ j)yyy ≠ (j + 1)xxx ≠ [C ≠ (j + 1)]yyy| = |xxx ≠ yyy|, and recalling equation
(163), for C integer we have:

Êf,m(C”) Æ CÊf,m(”) (165)
Now if C is not integer, let ÁCË be the smallest integer which is greater than or equal to C.
It is trivially satified:

Êf,m(C”) Æ Êf,m(ÁCË”) Æ ÁCËÊf,m(”) Æ (C + 1)Êf,m(”) (166)
⌅

Lemma A.4. Let r be a nonnegative integer and f œ Cr
0(Rn). For any pair of points

x, hx, hx, h œ Rn, the quantity R(x, hx, hx, h) defined by

f(x + hx + hx + h) =
ÿ

0Æ|–––|Ær

D–––f

–––! h–h–h– + R(x, hx, hx, h) (167)

where –––! =
rn

i=1 –i! and h–h–h– =
rn

i=1 h–
i

i , satisfies

|R(x, hx, hx, h)| Æ nr|hhh|rÊf,r(|hhh|)
r! (168)

PROOF.
Let us define the function u : R æ R by u(t) def= f(xxx+ thhh). Applying chain rule for derivatives,
the l-th derivative of u is

u(l(t) = l!
ÿ

|–––|=l

D–––f(xxx + thhh)
–––! h–h–h– (169)

In addition:
Êu,r(”) = sup

|t1≠t2|Æ”

---u(r(t1) ≠ u(r(t2)
--- (170)

= sup
|t1≠t2|Æ”

r!
ÿ

|–––|=k

----
h–h–h–

–––!
#
D–––f(xxx + t1hhh) ≠ D–––f(xxx + t2hhh)

$---- By (169) (171)

(172)
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Each term in the sum of (171) is less or equal than the supremum for the first inequality and
the supremum is taken only in one of the directions in Êf,r for the second one we get:

Êu,r(”) Æ r!|hhh|r
Q

a
ÿ

|–––|=k

1
–––!

R

b sup
|t1hhh≠t2hhh|Æ”|hhh|

sup
|–––|=k

|D–––f(xxx + t1hhh) ≠ D–––f(xxx + t2hhh)| (173)

Æ r!|hhh|r
Q

a
ÿ

|–––|=k

1
–––!

R

b Êf,r(”|h|) (174)

(175)

And finally, using
q

|–––|=r
r!
–––! = rn we have that

Êu,r(”) Æ nr|hhh|rÊf,r(”|hhh|) (176)

Observe that

R(xxx,hhh) = f(xxx + hhh) ≠
ÿ

0Æ|–––|Ær

1
|–––|! |–––|!D

–––f(xxx)
–––! h–h–h– = u(1) ≠

rÿ

l=1

u(l(0)
l! (177)

Taylor’s theorem with the mean-value form of the reminder states that there exists a › œ [0, 1]
such that u(1) ≠ qr≠1

l=1
u(l(0)

l! = u(r(›)
r! . Applying this and (176) with ” = 1 we finish the proof:

|R(xxx,hhh)| =
-----
u(r(›)

r! ≠ u(r(0)
r!

----- Æ Êu,r(1)
r! Æ nr|hhh|rÊf,r(|hhh|)

r! (178)

⌅

Lemma A.5. Let ” be a fixed positive constant. Then there exists an holomorphic
function G : Cn æ C and a positive constant A satisfying

|G(zzz)| Æ Ae”|Im(zzz)| ’zzz œ Cn (179)

Such that the restriction g = G
--
Rn

satisfies:
a) g œ S (Rn)
b) For any integer r Ø 0, let

Ir = nr

r!

⁄

Rn

|www|r(|www| + 1)|g(www)|dwww (180)

then for all f œ Cr
0(Rn) and Á > 0 it is satisfied that

Îf ≠ g[Á] ú fÎ Æ IrÁrÊf,r(Á) (181)
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PROOF.
Let � œ CŒ

0 (Rn) such that
(i) 0 Æ � Æ 1

(ii) There exists an open neighborhood of 0 such that � = 1 in it.
(iii) supp � ™ B(000, ”) (closed ball of radius ” around the origin)
We define G(zzz) as a Fourier transform of �:

G(zzz) def= 1
(2fi)n

⁄

Rn

�(›››)e≠i›·z›·z›·zd››› zzz œ Cn (182)

where xxx · › is the ordinary scalar product. Since � has compact support, G is well defined
for all zzz œ Cn. Moreover, the smoothness of � lets us exchange derivatives by integrals and
gives G is holomorphic in all Cn. Since ››› is real, we can do the following decomposition:

e≠i›·z›·z›·z = e≠i›››(Re(zzz)+iIm(zzz)) = e›››·Im(zzz)e≠i›››·Re(zzz) (183)

where the second factor has modulus 1. Using this decomposition and the triangular inequal-
ity we get:

|G(zzz)| Æ 1
(2fi)n

⁄

Rn

�(›››)e›››·Im(zzz)d››› (184)

By property (iii) of �, (179) is satisfied with A = 1
(2fi)n

s
Rn

�(›››)d›››. Since � œ CŒ
0 (Rn),

its Fourier transform is also in S (Rn) (this implies g œ S (Rn)), and applying the Fourier
inversion formula [20, Th. 7.1.5]:

�(›››) =
⁄

Rn

g(xxx)eix·›x·›x·›dxxx ››› œ Rn (185)

Note that by setting ››› = 0 in (185) and using (ii) we get that
⁄

Rn

g(xxx)dxxx = 1 (186)

If previously we di�erentiate in (185) with respect to the multi-integer jjj = (j1, . . . , jn) œ Zn
Ø0,

jjj ”= 000, we get ⁄

Rn

xj1
1 · · · xj

n

n g(xxx)dxxx = 0 (187)

We now move to prove property (b). For xxx œ Rn and Á > 0:

(g[Á] ú f ≠ f)(xxx) = 1
Án

⁄
f(xxx ≠ www)g

3
www

Á

4
dwww ≠ f(xxx) (188)

Applying a change of variables yyy = www/Á, the first term becomes
s
Rn

f(xxx ≠ Áyyy)g(yyy)dyyy and
applying (186), so f(xxx) =

s
Rn

f(xxx)g(www)dwww we get

(g[Á] ú f ≠ f)(xxx) =
⁄

Rn

[f(xxx ≠ Áwww) ≠ f(xxx)]g(www)dwww (189)

=
⁄

Rn

R(xxx, Áwww)g(www)dwww Definition of R(xxx,hhh) and (187) (190)
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Now using Lemma A.4 and Lemma A.3 we have that

|R(xxx, Áwww)| Æ nrÁr

r! Êf,r(Á)|www|r(|www| + 1) (191)

from which it directly follows

Îg[Á] ú f ≠ fÎ Æ nrÁr

r! Êf,r(Á)
⁄

Rn

|wwwr|(|www| + 1)|g(www)|dwww (192)

which finishes the proof. ⌅

Definition A.4 (McLaurin polynomials). For any ––– œ Zn
Ø0, let a––– be its correspond-

ing coe�cient on its McLaurin series, so if f is holomorphic in an open neighborhood
of 0 fulfills f(zzz) =

q
––– a–––z–z–z–. Then for any nonnegative integer k, the k-th McLaurin

polynomial of f is defined as
pf,k =

ÿ

0Æ|–––|Æk

a–––z–z–z– (193)

Let R Ø 0, we define ER as the disk of radius R in Cn, namely ER = {zzz œ Cn : |zi| Æ
R ’i}

Lemma A.6. Let 0 < R < S. Let f be an holomorphic function in an open neighborhood
of ES satisfying ÎfÎE

S

Æ M . Then

Îf ≠ pf,kÎE
R

Æ M

1 ≠ R/S

3
R

S

4k+1
(194)

PROOF.
We first prove it for n = 1. In that case, let f(z) =

qŒ
–=0 a–z–. Using the definition of a–

and the standard bound for the integral, the hypothesis ÎfÎE
S

Æ M implies

|a–| =
-----

1
2fii

j

|z|=S

f(z)
z–+1 dz

----- Æ 1
2fi

· (2fiS) M

S–+1 = M

S–
(195)

Now we observe that (f ≠ pf,k)(z) =
qŒ

–=k+1 a–z–. Combining both results:

Îf ≠ pf,kÎE
R

= sup
|z|ÆR

------

Œÿ

–=k+1
a–z–

------
(196)

Æ sup
|z|ÆR

Œÿ

–=k+1
|a–||z–| Triangular inequality (197)

Æ
Œÿ

–=k+1

M

S–
R– (195) and |z| Æ R (198)

= M

1 ≠ R/S

3
R

S

4k+1
Geometric series formula (199)
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as required.
For the case of n general, consider a fixed point ZZZ = (Z1, . . . , Zn) œ Cn such that |Zj | Æ 1

for j = 1 : n. Let ÷ : C æ C be defined by ÷(⁄) = f(⁄ZZZ). By the chain rule, the k-th
derivative of ÷ is

÷(k(⁄) =
ÿ

0Æ|–––|Æk

Z–Z–Z–D–––f(⁄ZZZ) (200)

and because |Zj | Æ 1, the k-th McLaurin coe�cient of ÷ is

a÷
k = 1

2fii

j

|z|=S

÷(k(⁄)
zk+1 (201)

and from this it can be derived that p÷,k(⁄) = pf,k(⁄ZZZ), so the result for n = 1 can be applied.
⌅

Corollary A.7. Let R > 0, S > R + 1 and f be an holomorphic function in an open
neighborhood of ES such that ÎfÎE

S

Æ M . Then

Îf ≠ pf,kÎE
R

Æ M

1 ≠ R/(S ≠ 1)

3
R

S ≠ 1

4k+1
(202)

PROOF.
If S > R + 1, then S ≠ 1 > R, so we can apply Lemma A.6 to S ≠ 1 and R instead of S and
R, and directly get the result. ⌅

Lemma A.8. Let R > 0 and f œ Cm(Rn) with supp f ™ [≠R, R]n. Then for all positive
integer k the following inequality holds:

ÎfÎ Æ Rm(kR + 1)Êf,m

3 1
k

4
(203)

PROOF.
First we prove that

ÎfÎ Æ Rm sup
|–––|=m

ÎD–fÎ (204)

The case m = 0 is obvious. For the case m = 1, for each r œ [≠R, R], consider the intervals
Ir of length R as the intervals [r ≠ R, r] ◊ {0}n≠1 for r œ [≠R, 0] (see Figure 12). Integrating
ˆx1f along Ir we get:

⁄

I
r

ˆx1f = sgn(r)f(r)
----
⁄

I
r

ˆx1f

---- Æ R sup
[r≠R,r]◊[≠R,R]n≠1

|ˆx1f | (205)
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Making an analogous construction for intervals Ir defined as [r, r+
R] ◊ {0}n≠1 for r œ [0, R], and the analogous construction for the
rest of the partial derivatives ˆx

j

f for j = 2 : n we get the case
m = 1. The case for m > 1 is proved by applying the case m = 1
repeatedly.

555

≠R +R

666

r

ËËË ÈÈÈ≠æ Ir

Figure 12: Partial
sketch of the proof.

Now by the definition of modulus of smoothness, since supp f ™ [≠R, R]n, it is clear that

sup
|–|=m

ÎD–fÎ Æ Êf,m(R) = Êf,m

3
k · R

k

4
Æ (kR + 1)Êf,m

3 1
k

4
(206)

where the inequality comes from applying Lemma A.3. Equations (204) and (206) together
yield to the desired result. ⌅

PROOF.
(Of Theorem A.2) Let f œ Cm

0 (Rn). Let R be the diameter of K. Wlog (by a suitable
translation in Rn) we can assume K ™ [≠R, R]n. Let ” > 0 be a fixed real number such that

Ô
n(2R + 1)” < ln 2 (207)

where ln 2 is the natural logarithm of 2.
Let G and g = G

--
Rn

be the functions of Lemma A.5 associated with ” and for any integer
r Ø 0, let Ir be as in Lemma A.5. From (207) we see that there exists a constant k0 such
that for all k Ø k0

(kR + 1)(2Rk)ne
Ô

n(2R+1)”k2≠k Æ Ir

kr
(208)

Therefore there exists a constant C Ø Ir such that for all k Ø 1

(kR + 1)(2Rk)ne
Ô

n(2R+1)”k2≠k Æ C

kr
(209)

For the rest of the proof, k will be a fixed positive integer.
Let H : Cn æ C be the function such g[ 1

k

] ú f = H
--
Rn

,

H(zzz) def= kn
⁄

Rn

G
!
k(zzz ≠ www)

"
f(www)dwww zzz œ Cn (210)

From the above results it follows:

sup
E2R+1

|H(zzz)| Æ kne
Ô

n(2R+1)”k
⁄

Rn

|f(www)|sdwww Lemma A.5 (211)

Æ A(2Rk)nRm(kR + 1)e
Ô

n(2R+1)”kÊf,m

3 1
k

4
Lemma A.8 (212)
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From Lemma A.5 it follows:

sup
Rn

|f ≠ g[ 1
k

] ú f | Æ C

km
Êf,m

3 1
k

4
(213)

And from Lemma A.6 with S = R + 1 it follows

sup
[≠R,R]n

|H ≠ pH,k| Æ ARm(kR + 1)(2Rk)ne
Ô

n(2R+1)”k2≠kwf,m

3 1
k

4
(214)

Now the result comes directly from the concatenation of previous inequalities (214), (213)
and (209). ⌅

A.4 Proof of Theorem 5.1
PROOF.
The left-to-right implication is analogous as in Theorem 5.7. We will focus in the other
implication and prove it by contradiction.

We define, for each Ï œ CŒ
0 (R), the function ‡Ï = ‡ ú Ï.

‡Ï(x) =
⁄ Œ

≠Œ
‡(x ≠ y)Ï(y)dy (215)

Since ‡, Ï œ C(R) and Ï has compact support, the integral converges for all x. Using
Lemma 3.1, ‡Ï œ CŒ(R). Taking Riemann sums, ‡Ï œ Sn(‡). Using this fact and that

‡Ï(wx + b) =
⁄ Œ

≠Œ
‡(wx + b ≠ y)Ï(y)dy (216)

we have that Sn(‡Ï) ™ Sn(‡). Because ‡Ï œ CŒ(R), we have from the proof of Theorem 5.7,
that xk‡

(k
Ï (b) œ Sn(‡Ï) for all b œ R and all k œ N.

Suppose Sn(‡) is not dense in C(R), we will find a contradiction. In that case, there exists
k such that tk /œ Sn(‡). Since for each Ï œ CŒ

0 (R), Sn(‡Ï) ™ Sn(‡), tk /œ Sn(‡Ï) for each Ï.
This implies that ‡

(k
Ï (b) = 0 for all b œ R and all Ï œ CŒ

0 (R). Thus ‡Ï is a polynomial of
degree at most k ≠ 1 for each Ï. If we set Ïn = ÷1/n as in Lemma 3.2, the sequence {‡Ï

n

}nœN
tends to ‡ uniformly (by Lemma 3.2) and by the proof of the left-to-right implication in
Theorem 5.7, a sequence of polynomials of degree at most k ≠ 1, if it converges, the limit is a
polynomial of degree at most k ≠1. Thus ‡ is a polynomial, which is a contradiction. ⌅
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