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large over-parametrization which allows perfect fitting of the training data. In this paper, 
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Abstract

This paper is motivated by an open problem around deep networks, namely, the apparent absence of over-
fitting despite large over-parametrization which allows perfect fitting of the training data. In this paper, we
analyze this phenomenon in the case of regression problems when each unit evaluates a periodic activation func-
tion. We argue that the minimal expected value of the square loss is inappropriate to measure the generalization
error in approximation of compositional functions in order to take full advantage of the compositional structure.
Instead, we measure the generalization error in the sense of maximum loss, and sometimes, as a pointwise error.
We give estimates on exactly how many parameters ensure both zero training error as well as a good general-
ization error. We prove that a solution of a regularization problem is guaranteed to yield a good training error
as well as a good generalization error and estimate how much error to expect at which test data.

Keywords: Deep learning, generalization error, interpolatory approximation

1 Introduction

The main problem of machine learning is the following. Given data (x, y) sampled from an unknown probability
distribution µ, the goal is to find a function P that minimizes the generalization error Eµ((y − P (x))2) among
all functions in some function class that is thought to represent the prior information about the distribution.
Since we do not know µ, classical machine learning paradigm expresses the generalization error as a sum of three
components: the variance, the approximation error, and the sampling error. The variance is a lower bound on
the generalization error, and the estimation typically focuses on the other two errors. The sum of these two is
given by E((f − P (x))2), where the expectation is with respect to the marginal distribution of x and the target
function f is the conditional expectation of y given x. If the marginal distribution of x is known, then the
split between approximation and sampling errors is no longer necessary, and one can obtain estimates as well as
constructions directly from characteristics of the training data (e.g., [11, 14, 18]). In the classical paradigm where
this distribution is not known, the approximation error decreases as the number of parameters in P increases to
∞. However, this makes the empirical risk minimization problem harder to solve; making it essential to choose the
number of parameters in P to balance the two errors. In turn, this explains a commonly observed phenomenon that
if one achieves a zero empirical risk on the training data by over-parametrized model P , the test error is generally
not good.

There are several recent papers that demonstrate that this phenomenon is often not observed (e.g., [10, 22, 25,
29, 2, 23]). There are a few recent papers that address this issue in the case of classification problems. Belkin,
Hsu, and Mitra [1] analyze the “excess error” in least square fits by piecewise linear interpolants over that obtained
by the optimal Bayes’ classifier. In [23, 24], the question is analyzed from the perspective of the geometry of the
error surface with respect to different loss functions near the local extrema. In particular, it is shown in [23] that
substituting the ReLU activation function by a polynomial approximation exhibits the same behavior as the original
network.

In this paper, we focus on regression problems. We wish to consider from the point of view of approximation
theory the overfitting puzzle for universal approximation in a more intrinsic and theoretical manner, independent
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of the training mechanism used. This paper does not seek to “explain” the overfitting phenomenon as observed.
Such an explanation needs to involve not just the analysis of the approximation problem itself, but also an analysis
of the training algorithms used for this purpose. It is obvious that a network (or any other model) using a number
of parameters that is less than the number of training data points cannot in general produce a zero training error
in the absence of some strong prior knowledge about the target function that generated the training data, no
matter what training algorithm is used. Our goal is to study the fundamental problem of function approximation
to examine what characteristics of the data and how much overparametrization will give theoretical guarantees
that the generalization error can be controlled while achieving a zero training error. We will do this without any
prior assumption about the target function apart from continuity or at most differentiability.

We wish to address the following issues about the phenomenon of zero/small training error and small test error
for universal approximation:

1. What characteristics of the data govern a zero training error and a good generalization error?

2. How much over-parametrization will give a mathematical guarantee of the model to exhibit this behavior?

3. Propose a regularization scheme whose solution will guarantee a good (but not necessarily zero) training error
while maintaining a good generalization error at the same time. The emphasis here is on an estimation of
how much over-parametrization is necessary to get theoretical guarantees.

4. What bounds on the generalization error can be guaranteed by the solution of the (global) regularization
scheme at each point in the test data (rather than a global error estimate), compared to the nearest
neighbor in the training data?

In recent years, convolutional neural networks (CNNs) have achieved a revolution in machine learning. A good
survey can be found in [12]. From a practical point of view, the central features of CNNs are locality and weight
sharing. From a strictly mathematical point of view, convolution is a very special operation that requires a group
structure on the data. According to the book [8], the CNNs “are a specialized kind of neural network for processing
data that has a known, grid-like topology. Examples include time-series data, which can be thought of as a 1D grid
taking samples at regular time intervals, and image data, which can be thought of as a 2D grid of pixels.” For this
kind of data, it is customary to treat it either as data on the whole real line/plane with zero-padding, or otherwise
use a symmetrical extension to treat it as data on a circle/torus so that the standard group operations on these
spaces can be used to define the operation of convolution.

In this paper, we will focus on function approximation on the torus. The most fundamental class for this purpose
is the class of all trigonometric polynomials. Accordingly, we will study the problem of the lack of overfitting in the
context of approximation by trigonometric polynomials. We will explain in Section 2.2 the theoretical relationship
between trigonometric polynomials and neural/RBF networks in the periodic setting. In Section 3, we will show
how the theorems about trigonometric approximation translate into theorems about shallow networks with arbitrary
periodic activation functions.

In the study of approximation error in deep learning, it is observed in [20] that the compositional structure of
the target function can be utilized effectively via a property called good propagation of error to obtain substantially
better error bounds allowing us to overcome the curse of dimensionality observed in shallow networks. This allows
us to “lift” many results on approximation by shallow networks to those on deep networks. However, there are a
few barriers that prevent a straightforward extension.

One is that we do not know the functions evaluated at each node in the intervening layers; just the input/output
relations between the data and output of the ultimate layers. There are some recent efforts in the direction of
designing deep networks in some special applications using domain knowledge (e.g., [9, 19]). It is conceivable that
this problem does not appear in these contexts.

The other problem is even more fundamental, requiring a change in the traditional notion of generalization
error. For example, suppose we wish to approximate a function f∗ = f(f1(x1), f2(x2)) by a network of the form
P ∗ = P (P1(x1), P2(x2)), where x1,x2 ∈ Rd. Without the compositional structure, f∗ has to be treated as a
function of 2d variables. The compositional structure allows us to treat the approximation problem as a set of three
approximation problems: approximating functions f1, f2 as functions of d variables each, and a function f of 2
variables.

How do we define generalization error? Defining it in terms of the original distribution of ((x1,x2), y) is not
sensitive to the compositional structure. On the other hand, the input (f1, f2) to the function f is not the same
(even may not have the same distribution) as the input (P1, P2) to the approximation P .

Therefore, we measure in this paper the errors in the uniform norm rather than searching for appropriate L2

norms suitable for the compositionality structure of the target function. Thus, we define the generalization error as
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the maximal error between the target function and the model at all possible test points. One consequence is that the
decomposition of the generalization error into three parts breaks down. Therefore, new ideas are required to achieve
the approximation in terms of the training data alone. The approximation errors themselves are studied in [20, 15],
but the techniques suggested there require the data points xj to be sufficiently dense in the domain (Euclidean
space, sphere, cube, etc.). When the data is not dense, it is clearly not expected to get a good approximation on
the whole domain. However, if the data does become denser and denser on some subset of the domain, one can
expect a good approximation at points close by to the training data. Thus, we will establish pointwise bounds for
the generalization error obtained by a solution of a regularization scheme suggested for this purpose.

In Section 2, we develop some notation and provide some background information that has motivated our current
paper. In Section 3, we state our theorems for the case of shallow networks. In Section 4, we state the analogues
of the results in Section 3 in the case of deep networks. The proofs of the results in Sections 3 and 4 are given in
Section 5.

2 Background

The purpose of this section is to explain the connection between trigonometric polynomials and neural networks
(Section 2.2) as well as to explain a classical theorem which provides a motivation for our theorems in this paper
(Section 2.3). In order to do so, we need first to develop some notation. This is done in Section 2.1.

2.1 Notation

Let q ≥ 1 be an integer, Tq be the q dimensional torus (=Rq/(2πZ)q). For x,y ∈ Tq,

|x− y| = max
1≤i≤q

|(xi − yi)( mod 2π)|.

For a multi-integer k, |k|p is the `p norm of k.
The space of all continuous functions f : Tq → R, equipped with the supremum norm will be denoted by C∗

(or C∗(Tq) if we wish to emphasize the input dimension to the functions). The norm on C∗(Tq) will be denoted by
‖ · ‖ or ‖ · ‖q if it is important to identify the dimension. For n > 0, the space Hqn of trignometric polynomials in q
variables with (spherical) degree < n is defined by

Hqn = span{exp(ik · ◦) : |k|2 < n}.

The dimension of Hqn is ∼ nq. If f ∈ C∗(Tq), then its Fourier coefficients are defined by

f̂(k) =
1

(2π)q

∫
Tq

f(x) exp(−ik · x)dx, k ∈ Zq, (2.1)

and its degree of approximation from Hqn is defined by

En(f) = En(q; f) := inf
T∈Hq

n

‖f − T‖.

When our models are trigonometric polynomials in Hqn, the quantity En(f) denotes the ideal generalization error
for the target function f .

Let h : R→ [0, 1] be an infinitely differentiable, even function such that h(t) = 1 if |t| ≤ 1/2, h(t) = 0 if |t| ≥ 1.
We define

ΦN (x) =
∑
k∈Zq

h

(
|k|2
N

)
exp(ik · x), x ∈ Tq, N > 0. (2.2)

For f ∈ C∗, we define

σN (f)(x) =
∑
k∈Zq

h

(
|k|2
N

)
f̂(k) exp(ik · x), x ∈ Tq, N > 0. (2.3)

We note that the sums in both (2.2) and (2.3) are finite sums, although they are written as infinite sums for
convenience of notation.
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For any finite subset C ⊂ Tq, we define its minimal separation by

η(C) = min
x,y∈C,x6=y

|x− y|. (2.4)

We assume a training data of the form D = {(xj , yj)}Mj=1, where C = {xj}Mj=1 ⊂ Tq, and yj = f(xj) + εj for some
f ∈ C∗. We denote

ε = max
1≤j≤M

|εj |. (2.5)

The quantity ε plays the role of variance in our theory in this paper. In regression problems, where numerical
accuracy is expected in the supremum norm, the errors εj all need to be small. Thus, even though the quantity ε
seems to increase with M , it remains small as M → ∞. One example is when the values of f are not computed
exactly (as they rarely are), but only through a numerical computation (for example, f is the ideal solution of a
differential equation, but the data is obtained by solving this equation numerically at the grid points). The quantity
ε then represents the maximal error in this numerical computation.

The constant convention
The symbols c, c1, · · · will denote generic positive constants, depending on such fixed parameters of the problem as q,
h, G, and S (to be introduced later), etc. and other quantities explicitly indicated, but their values may be different
at different occurrences, even within a single formula. The notation A ∼ B means that c1A ≤ B ≤ c2A.

2.2 Neural networks and trigonometric polynomials

The material in this section is based on [16]. For reasons that will become clear shortly, the term activation function

in this paper will mean φ ∈ C∗ such that φ̂(1) 6= 0. We note that a trigonometric polynomial is itself a neural
network with the activation function t 7→ cos t. There is a close connection between trigonometric polynomials and
networks with other activation functions. Let φ ∈ C∗(T) and φ̂(1) 6= 0. Then for k ∈ Zq and x ∈ Tq, it is not
difficult to verify that

exp(ik · x) =
1

2πφ̂(1)

∫
T
φ(t) exp (i(k · x− t)) dt =

1

2πφ̂(1)

∫
T
φ(k · x− t) exp(it)dt.

Discretizing the integral expression above, it can be shown (cf. [13, Proposition 4.2.1]) that for any integer N ≥ 1,
k ∈ Zq, ∥∥∥∥∥∥exp(ik · (◦))− 1

(2N + 1)φ̂(1)

2N∑
j=0

exp

(
2πij

2N + 1

)
φ

(
k · (◦)− 2πj

2N + 1

)∥∥∥∥∥∥ ≤ 4

|φ̂(1)|
EN (1;φ). (2.6)

In particular, if T is a trigonometric polynomial, let

GN (φ, T )(x) =
1

(2N + 1)φ̂(1)

2N∑
j=0

exp

(
2πij

2N + 1

)(∑
k∈Zq

T̂ (k)φ

(
k · (◦)− 2πj

2N + 1

))
, (2.7)

where it is understood that T̂ (k) = 0 if |k|2 exceeds the degree n of T . The number of neurons involved in the
network GN (φ, T ) is ∼ Nnq. The estimate (2.6) leads to

‖T −GN (φ, T )‖ ≤ 4

|φ̂(1)|
EN (1;φ)

∑
k∈Zq

|T̂ (k)|. (2.8)

Thus, a trigonometric polynomial can be approximated by a neural network with activation function φ and the error
bounds can be obtained by keeping track of the degree of approximation of the target function by trigonometric
polynomials, the magnitude of its Fourier coefficients and the bound in (2.8) (cf. [16] for some examples). This
leads to the following proposition, which will be proved in Section 5.
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Proposition 2.1 Let φ ∈ C∗(T), φ̂(1) 6= 0, f ∈ C∗. Then for n,N ≥ 1, we have

‖f −GN (φ, σn(f))‖ =

∥∥∥∥∥∥f − 1

(2N + 1)φ̂(1)

2N∑
j=0

exp

(
2πij

2N + 1

) ∑
|k|2<n

h

(
|k|2
n

)
f̂(k)φ

(
k · (◦)− 2πj

2N + 1

)∥∥∥∥∥∥
≤ c(φ)

{
En/2(q; f) + nq/2EN (1;φ)‖f‖

}
.

(2.9)

Example 2.1 For example, we consider the smooth ReLU function t 7→ log(1 + et) = t+ + O(e−|t|). Then the

function ψ(t) = log

(
(1 + et+π)(1 + et−π)

(1 + et)2

)
is integrable on R. The periodization

φ(t) =
∑
j∈Z

ψ(t+ 2πj), t ∈ R, (2.10)

is an analytic function on T. So, Bernstein approximation theorem [28, Theorem 5.4.2] shows that there exists
ρ1 < 1 with EN (1;φ) ≤ ρN1 for all N ≥ c(φ). In Proposition 2.1, if f satisfies En(q; f) = O(n−γ) for some γ, then
we may choose N ∼ log n to get a network with O(nq log n) neurons to obtain an estimate O(n−γ) on the right
hand side of (2.9). �

This idea is generalized to many other settings, and algorithms are known to find the approximation to the
target function using the training data, without assuming any prior on the target function (see, e.g. [13]
for an early construction). However, formulating the problem directly as a minimization of the supremum norm
error between the function and the neural network model may not work. The theory implies certain relationships
between the coefficients and the weights and thresholds.

Conversely, one can approximate φ by trigonometric polynomials. Therefore, if one can obtain or assume some
bounds on the coefficients of a neural network with φ as the activation function, then these bounds can be translated
to bounds on the degree of approximation by trigonometric polynomials. This part is hard to do on the torus with
neural networks, but has been done in a far more general setting with kernel based approximation [14], where
Mercer expansions satisfying certain technical conditions are known.

In view of this close relationship between general neural networks and trigonometric polynomials (i.e., networks
with activation function t 7→ cos t), we will focus in this paper on trigonometric polynomials, and demonstrate in
Section 3 how these results are translated to those with other neural networks.

2.3 Interpolatory approximation

In the language of classical approximation theory, the problem of achieving a zero training error is the problem of
interpolation. In the context of trigonometric polynomials, for any data of the form {(θj , yj)}2nj=0, yj ∈ R, θj ∈ T,

and θj 6= θk if j 6= k, there exists T ∈ H1
n such that T (θj) = yj for j = 0, · · · , 2n [30, Chapter X, Theorem 1.2].

Thus, it is easy to obtain a zero training error with a minimal number of free parameters. As we argued in the
introduction, the test error in this context should be measured in terms of uniform approximation to the target
function. A well known theorem attributed in [21] to Faber and Bernstein states that for any system of interpolation
nodes, there exists a function f ∈ C∗(T) for which the sequence of interpolatory trigonometric polynomials (with
minimal degree as above) does not converge uniformly to f .

In 1943, Erdős [6] initiated (in the context of algebraic polynomials) a study of the question whether one can
get a convergent sequence of interpolatory polynomials if one allows a polynomial of higher than minimal degree.
A positive answer was given by Szabados in [27]. Although the answer is given in terms of algebraic polynomials,
Szabados remarks that the same is clearly true for trigonometric polynomials as well. An explicit statement to this
effect is the following [17, Theorem 3.1(a)].

Theorem 2.1 Let θ1, . . . , θN be distinct points in [−π, π], θN+1 := θ1 + 2π, α > 0, and

min
1≤k≤N

|θk+1 − θk| =: η.

Then for f ∈ C∗(T1), there exists a trigonometric polynomial T of degree at most (1 + 2/α)(π/η) such that
f(θj) = T (θj), 1 ≤ j ≤ N , and

‖f − T‖ ≤ (2 + α)Em(1; f) (2.11)

where m = (1 + 2/α)(π/η).
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Remark 2.1 A curious feature of Theorem 2.1 is that one obtains the bound (2.11) on the generalization on the
entire torus T1 without requiring that the training data C be “dense” in T1.

3 Shallow networks

Our first theorem in this section shows the connection between the structural properties of the training data and the
construction of a trigonometric polynomial T#

N (D) that can interpolate the noisy data (i.e., achieve a zero training
error), as well as achieve a good generalization error in the sense defined in Section 1.

Before stating our main results, we first discuss two straightforward ideas. The first of these is to construct a
trigonometric interpolatory polynomial I(D) of minimal degree. The other is to use a larger degree N , and solve
the system of equations (cf. (2.2))

M∑
j=1

ajΦN (x` − xj) = y`, ` = 1, · · · ,M. (3.1)

For a sufficiently large value of N , one can show that this sytem of equations has a unique and stable solution. We
denote the corresponding polynomial by

LN (D)(x) =

M∑
j=1

ajΦN (x− xj). (3.2)

We examine these constructions using a univariate example. We consider f(x) = | cosx|, and consider only the case
when exact samples of f are known at 128 points. We note that for x ∈ T,

f(x) =
2

π

{
1−

∞∑
k=1

(−1)k

4k2 − 1
cos(2kx)

}
.

Therefore, the sequence {(k2 + 1)s/2f̂(k)} represents a sequence of Fourier coefficients of a continuous function for
all s < 1, but not if s = 1 (and of course, not for any s > 1). In particular, there is no “optimal” class with which
to use the results of [3] for this function.

Example 3.1 We consider M = 128, xj = −π + 2πj/M , j = 0, · · · , 127, and denote the corresponding data by
D1. We will refer to this choice as the dense case. Figure 1 shows the errors at 1024 points on [−π, π] for the
operators I(D1) ∈ H1

64 and LN (D1) ∈ H1
128 with N = 128. It is noted that the collocation matrix for computing

I(D1) is very ill-conditioned, but the matrix for computing LN (D1) is well-conditioned. Of course, in this very
special example, one can compute I(D1) explicitly without having to solve a system of equations, but the intent of
this example is to demonstrate the need to have methods more sophisticated than a straightforward interpolation.
�

The situation is quite different when the data is not dense on [−π, π).

Example 3.2 We consider M = 128, xj = π/4 + πj/(2M), j = 0, · · · , 127, and denote the corresponding data by
D2. We will refer to this choice as the non-dense case. Figure 2 shows the errors at 1024 points on [−π, π] for
the operators I(D2) and LN (D2) with N = 128, and N = 256. As before, the collocation matrix for computing
I(D2) is very ill-conditioned, but the matrix for computing LN (D2) is well-conditioned. However, a comparison
between the middle and right figure of Figure 2 shows the critical importance of choosing a degree higher than the
minimal possible, commensurate with the minimal separation among the interpolation nodes. Also, we note in the
right figure that the polynomial L256(D2) is highly localized, so that the errors on the interval [π/4, π/2) are small,
but those away from this interval are not; in fact, the polynomial is close to 0 away from this interval. �

As remarked in Remark 2.1, it is not possible to achieve a bound analogous to (2.11) unless the training data
is sufficiently dense on Tq or unless more information about the target function is used in addition to its values at
the training data. Therefore, let us now assume that the Fourier coefficients f̂(k) are known for all k with |k|2 < n

6



Figure 1: With xj = −π+ 2πj/M , j = 0, · · · , 127, the differences at 1024 equidistant points of [−π, π) between the
true values | cosx| and the interpolatory polynomial of minimal degree, I(D1)(x) (left), and interpolation obtained
by a higher degree localized kernel L128(D1)(x) (right). The errors are magnified 1000 times and the points on the
x-axis are multiples of π. The errors are similar near ±π/2, but decrease rapidly to 0 away from these in the figure
on the right.

Figure 2: With xj = π/4 + πj/(256), j = 0, · · · , 127, the differences at 1024 equidistant points of [−π, π) between
the true values | cosx| and the interpolatory polynomial of minimal degree, I(D2)(x) (left), interpolation obtained
by a higher degree localized kernel L128(D2)(x) (middle), and L256(D2)(x) (right). The errors are magnified 1000
times and the points on the x-axis are multiples of π.

for some n > 0. With this information, we can construct σn(f) using (2.3) with n in place of N . For a sufficiently
large value of N , we may solve a system of equations

M∑
j=1

ajΦN (x` − xj) = y` − σn(f)(x`), ` = 1, · · · ,M. (3.3)

We then define

T #
n,N (D)(x) = σn(f)(x) +

M∑
j=1

ajΦN (x− xj). (3.4)

Example 3.3 We continue the examples with the target functions as in Examples 3.1 and 3.2. We estimate f̂(k)
using a 128 point discrete Fourier transform. In the dense case, this is done using only the training data. In the
non-dense case, the coefficients is the additional information we need, apart from the training data itself. In the
calculation of the operators T #

n,N , we use n = 128, N = 256. The resulting errors are reported in Figure 3. We note
that in the non-dense case, the errors are uniformly small on the entire interval [−π, π), in contrast to the errors
in the right-most figure in Figure 2. Also, the errors near the interpolation nodes are smaller than near the other
singularity of the target function at −π/2. In the non-dense case, we might as well use a larger number of Fourier
coefficients to make n = N . We did this using 1024 point discrete Fourier transform, and n = N = 256. The results
are shown in Figure 3 as well. �

Theorem 3.1 below is a generalization of Theorem 2.1, showing that the operators T #
N = T #

N,N yield the requisite
approximation. Our proof is much simpler than that of Theorem 2.1 in either [17] or [27].
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Figure 3: The errors at points of [−π, π) using T #
128,256(D1) on the upper left, T #

128,256(D2) in the upper middle.

The upper right figure is the error for T #
128,256(D2) at the interpolation nodes, to verify that the operator does the

interpolation correctly. The bottom left and bottom right figures are analogous to the upper middle and upper
right figures with T #

256,256(D2). All errors are maginfied 1000 times, and the x axis has multiples of π.

Theorem 3.1 There exists B > 0 with the following property: for f ∈ C∗ and N ≥ Bη(C)−1, the trigonometric

polynomial T#
N (D) = T #

N,N (D) ∈ HqN in (3.4) is well defined, and satisfies

T#
N (D)(xj) = yj , j = 1, · · · ,M, (Zero training error) (3.5)

and
‖f − T#

N (D)‖ ≤ c
{
ε+ EN/2(f)

}
. (Good generalization error). (3.6)

In view of the observations in Section 2.2, the proof of the above theorem can be modified with neural network
approximations at each stage to obtain the following version, where we overload the notation a bit for simplicity.

Suppose the following system of equations has a solution for some Ñ and N (cf. (2.7)):

M∑
j=1

ajGÑ (φ,ΦN )(x` − xj) = y` −GÑ (φ, σN (f))(x`), ` = 1, · · · ,M. (3.7)

We then define

G#

Ñ,N
(D)(x) = GÑ (φ, σN (f))(x) +

M∑
j=1

ajGÑ (φ,ΦN )(x− xj). (3.8)

Theorem 3.2 There exist B,α∗ > 0 with the following property. Let f ∈ C∗, φ ∈ C∗(T), φ̂(1) 6= 0, N ≥ Bη(C)−1.
Let Ñ be such that

‖ΦN −GÑ (φ,ΦN )‖ ≤ α∗. (3.9)

Then the network G#
N (D) = G#

Ñ,N
(D) in (3.8) is well defined and satisfies

G#
N (D)(xj) = yj , j = 1, · · · ,M, (Zero training error) (3.10)

and
‖f −G#

N (D)‖ ≤ c
{
ε+ EN/2(f) +Nq/2EÑ (1;φ)‖f‖

}
. (Good generalization error). (3.11)
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Remark 3.1 A volume comparison argument shows that the number M of data points satisfies M ≤ cη(C)−q.
Thus, Theorems 3.1 and 3.2 show that for a right configuration of the training data, a good generalization error
as well as zero training error can be achieved by choosing the number of parameters proportional to the number
of data points. It is demonstrated in [2] that for RBF approximation, this phenomenon seems to hold in many
applications with the number of parameters exactly equal to the number of data points.

Remark 3.2 In practice, the training data is high dimensional and sparse; i.e., η(C) is large. The requirement that
N ≥ Bη(C)−1 is therefore satisfied with moderate degrees N .

As demonstrated before, one cannot construct T#
N (D) based only on the training data C, unless C is sufficiently

dense on Tq. We have already discussed an effort in the form of the operators LN (D) in Example 3.2. An even
simpler approach of just considering

1

ΦN (0)

M∑
k=1

ykΦN (◦ − xk)

yields similar bounds on the generalization error as those obtained by LN (D). Of course, the training error for
this simple construction is not 0, but the localization properties of ΦN ensure that it is small. In general, if we
anticipate a scenario where the training data sets become increasingly dense on some compact subset K ⊂ Tq, then
we cannot expect convergence of trigonometric polynomials that interpolate a noisy data, where the noise level does
not decrease as well.

Another approach, described in [3], is to minimize a high order Sobolev norm of the trigonometric polynomial
subject to the interpolatory conditions. This approach has been used to great advantage for a numerical solution
of some notoriously hard partial differential equations in 2 or 3 dimensions. However, the calculations are very
ill-conditioned and require very carefully designed algorithms.

We describe a softer regularization scheme that does not require high order Sobolev norms, and yields both
good training and generalization errors. The generalization error is given point-wise, and is commensurate with the
estimates given in Theorem 3.1 when there is no noise.

The space W ∗ = W ∗(Tq) consists of all continuously differentiable functions f ∈ C∗. We define

‖f‖W∗ = ‖f‖W∗(Tq) =

q∑
j=1

‖Djf‖. (3.12)

For n > 0 and T ∈ Hqn, let

Rn(T ) = max
1≤j≤M

|yj − T (xj)|+
1

n
‖T‖W∗ . (3.13)

Theorem 3.3 Let f ∈W ∗, B be as in Theorem 3.1, N ≥ Bη(C)−1, and T ∗(D) = arg min
T∈Hq

N

RN (T ). Then

max
1≤j≤M

|yj − T ∗(D)(xj)| ≤ min
T∈Hq

N

RN (T ) ≤ c
{
ε+

1

N
‖f‖W∗

}
. (Good training error) (3.14)

Let x ∈ Tq, and δ = min
1≤j≤M

|x− xj |. Then

|f(x)− T ∗(D)(x)| ≤ c(1 +Nδ)

{
ε+

1

N
‖f‖W∗

}
. (Good generalization error). (3.15)

Remark 3.3 Theorem 3.3 makes no assumption on the target function except for differentiability. This is in
contrast to usual machine learning theory, where one has to assume that the target function belongs to a reproducing
kernel Hilbert space, with the kernel prescribed by the learning algorithm.

Remark 3.4 The estimate (3.15) shows that if x is very close to the training data so that Nδ < 1, then the
generalization error at x satisfies the same upper bound (3.14) that holds for RN (T ∗). As remarked earlier in
Remark 3.2, we have greater liberty in choosing N when the data is sparse. To take advantage of this fact, let x
be such that Nδ ≥ 1. Then (3.15) can be reformulated in the form

|f(x)− T ∗(D)(x)| ≤ cδ {Nε+ ‖f‖W∗} . (3.16)

The term δ‖f‖W∗ is clearly a customary bound from numerical analysis in view of the mean value theorem. If
ε ≤ η(C)‖f‖W∗ , it is possible to choose N ∼ η(C)−1 so that error bound is cδ‖f‖W∗ .
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Remark 3.5 It is well known (cf. [30, Chapter X, Theorem 7.28] for the univariate case) that for any T ∈ HqN ,

‖T‖ ∼ max
|m|∞≤3N−1

∣∣∣∣T (2πm

3N

)∣∣∣∣ . (3.17)

Therefore,

RN (T ) ∼ max
1≤j≤M

|y` −
∑
k

T̂ (k) exp(ik · xj)|+
1

N

q∑
j=1

max
|m|∞≤3N−1

∣∣∣∣∣∑
k

kj T̂ (k) exp

(
2πi

k ·m
3N

)∣∣∣∣∣ .
If we replace RN (T ) by the expression on the right hand side of the above equation, we get an optimization problem
directly in terms of the coefficients T̂ (k). The theoretical results are not affected except for the actual values of the
constants involved.

Remark 3.6 In this remark, let T ∗ = T ∗(D). In view of (2.8), the estimates (3.14) and (3.15) imply for any
activation function φ,

max
1≤j≤M

|yj −GÑ (φ, T ∗)(xj)| ≤ c
{
ε+

1

N
‖f‖W∗

}
+

4EÑ (1;φ)

ˆφ(1)

∑
k

|T̂ ∗(k)|,

and

|f(x)−GÑ (φ, T ∗)(x)| ≤ c(1 +Nδ)

{
ε+

1

N
‖f‖W∗

}
+

4EÑ (1;φ)

ˆφ(1)

∑
k

|T̂ ∗(k)|

respectively. In particular, for the activation function obtained from the smooth ReLU function, the extra error
terms decrease exponentially rapidly with Ñ . It is therefore tempting to set up the regularization functional
(3.13) directly with neural networks with free coefficients, weights, and thresholds to be determined by a suitable
optimization technique. However, the estimate (2.8) implies a strong connection between these parameters for the
network approximating a trigonometric polynomial. Therefore, the solution to such a direct approach with neural
networks is not guaranteed to give the right training and testing errors.

4 Deep networks

The following discussion regarding the terminology for deep networks, including Figure 4, is based on the discussion
in [20], and elaborates upon the same.

A commonly used definition of a deep network is the following. Let φ : R→ R be an activation function; applied
to a vector x = (x1, · · · , xq), φ(x) = (φ(x1), · · · , φ(xq)). Let L ≥ 1 be an integer, for ` = 0, · · · , L, let q` ≥ 1 be an
integer (q0 = q), T` : Rq` → Rq`+1 be an affine transform, where qL+1 = 1. A deep network with L hidden layers is
defined as the compositional function

x 7→ TL(φ(TL−1(φ(TL−2 · · ·φ(T0(x)) · · · ). (4.1)

This definition has several shortcomings. First, a function may have more than one compositional representation, as
we will demonstrate shortly, so that the affine transforms and L are not determined uniquely by the function itself.
Second, this notion does not capture the connection between the nature of the target function and its approximation.
Third, the affine transforms T` define a special directed acyclic graph (DAG). It is cumbersome to describe notions
of weight sharing, convolutions, sparsity, skipping of layers, etc. in terms of these transforms. Therefore, we have
proposed in [20], to describe a deep network more generally as a directed acyclic graph (DAG) architecture.

Let G be a DAG, with the set of nodes V ∪S, where S is the set of source nodes, and V that of non-source nodes.
A G-function is defined as follows. Each of the in-edges to each node in V ∪ S represents an input real variable.
For each node v ∈ V ∪ S, we denote its in-degree by d(v). A node v ∈ V ∪ S itself represents the evaluation of a
real valued function fv of the d(v) inputs. The out-edges fan out the result of this evaluation. Each of the source
nodes obtains an input from some Euclidean space. Other nodes can also obtain such an input, but by introducing
dummy nodes, it is convenient to assume that only the source nodes obtain an input from the Euclidean space.

The notion of the level (or height) of a node is defined as follows. The level of a source node is 0; it represents
a shallow network. The level of v ∈ V is the length of the longest path from the nodes in S to v. The level of v will
be denoted by H(v).
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In [20], we have argued that deep networks display better approximation properties than shallow networks
because they can take advantage of a compositional structure in the target function which shallow networks cannot.
However, compositionality is the property of an expression for the function; not an intrinsic property of a function
itself. A simple example in the univariate case is the constant function f(x) ≡ 2, x ∈ [0, 1], that can also be
expressed as a compositional function

f(x) = (x+ 1) cosh

(
log

(
2 +
√

3− 2x− x2
x+ 1

))
, x ∈ [0, 1].

It is not clear whether two different DAG structures can give rise to the same function. Even if we assume a certain
DAG, it is not clear that the choice of the constituent functions is uniquely determined for a given function on Rq.
For example, one can write

cos4 x = ((cosx)2)2 = (cos2 x)2 = (1/4)(1 + cos(2x))2.

The second expression above has the structure h1(h2(h3(x))), and the other two have the structures g1(g2(x)) or
f1(f2(x)), both representing the same DAG but with different constituent functions. Thus, the question of whether
a given multivariate function is in fact compositional cannot be answered. Of course, for a given DAG, it is possible
to use inverse/implicit function theorem (in theory) in some cases to decide whether a family of functions are
compositional according to the given DAG.

For our mathematical analysis, we therefore find it convenient to think of a G-function as a set of functions
f = {fv : Rd(v) → R}v∈V ∪S, rather than a single function on Rq. For example, the DAG G in Figure 4 ([20])
represents the compositional function

f∗(x1, · · · , x9) = h19(h17(h13(h10(x1, x2, x3), h11(x4, x5)),

h14(h10, h11), h16(h12(x6, x7, x8, x9)), h18(h15(h11, h12), h16)). (4.2)

The G-function is {h10, · · · , h19 = f∗}. The individual functions fv will be called constituent functions.
We assume that there is only one sink node, v∗ (or v∗(G)) whose output is denoted by f∗ (the target function).

Technically, there are two functions involved here: one is the final output as a function of all the inputs to all source
nodes, the other is the final output as a function of the inputs to the node v∗. We will use the symbol f∗ to denote
both with comments on which meaning is intended when we feel that it may not be clear from the context. A
similar convention is followed with respect to each of the constituent functions as well. For example, in the DAG
of Figure 4, the function h14 can be thought of both as a function of two variables, namely the outputs of h10 and
h11 as well as a function of five variables x1, · · · , x5. In particular, if each constituent function is a neural network,
h14 is a shallow network receiving two inputs.

In this paper, we are interested only in the case where each of the inputs to each of the source nodes is in T
rather than R. Although this is no longer true for the non-source nodes, it is possible to accomplish this in the
case when each of the constituent functions is continuous, as follows. We observe first that there is a one-to-one
correspondence between functions on [−1, 1]d and functions on Td that are even in each variable, given by

F ◦(θ1, · · · , θd) = F (cos θ1, · · · , cos θd), (θ1, · · · , θd) ∈ Td.

Let fu be one of the constituent functions. With a re-normalization, we may assume that the range of fu is a subset
of [−1, 1]. If u1, · · · , ud(v) are children of v (i.e., if there is an edge from each u1, · · · , ud(v) to v), then fv can be seen

as a function on [−1, 1]d, from which one can construct an even function f◦v on Td as just explained : informally,
think of fv as an even function of the points (± arccos(fu1

), · · · ,± arccos(fud(v)
)) ∈ Td. Rather than complicating

our notations, we will therefore assume in this paper that the domain of each constituent function is a torus, and
the range is a subset of T. In particular, we may assume that every constituent function fv ∈ C∗(Td(v)).

We adopt the convention that for any function class X(Td), the class G-X denotes the set of G-functions f =
{fv}v∈V , where each constituent function fv ∈ X(Td(v)). We define

‖f‖X,G =
∑

v∈V ∪S

‖fv‖X(Td(v)). (4.3)

Thus, for example, G-W ∗ is the set of all G-functions f = {fv}v∈V , where each constituent function fv ∈ X(Td(v)),
and we write

‖f‖W∗,G =
∑

v∈V ∪S

‖fv‖W∗(Td(v)).
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Figure 4: An example of a G-function (f∗ given in (4.2)). The vertices of the DAG G are denoted by red dots. The
black dots represent the input to the various nodes as indicated by the in–edges of the red nodes, and the blue dot
indicates the output value of the G-function, f∗ in this example.

For a vector N = (Nv), the symbol G-HN denotes the set of G-functions {Tv}v∈V , where each Tv ∈ Hd(v)Nv
, and for

a G-function f = {fv}v∈V ,

EN,G(f) =
∑

v∈V ∪S

ENv
(d(v); fv). (4.4)

To make precise the various inputs to the constituent functions, we introduce some conventions. Let S =

{v1, · · · , vs}, q =
∑s
j=1 d(vj). The input x can be viewed as a vector in Rq, but also as an element of

s∏
j=1

Rd(vj); i.e.,

x = ((x)v1 , · · · , (x)vs) so that (x)vj ∈ Rd(vj). We note that in making this statement, we have tacitly introduced
some possible dummy variables here: for example, the function with the compositional structure

F (x1, x2, x3) = f(f1(x1, x2), f2(x2, x3))

is viewed as a function of 4 variables

F̃ (x1, · · · , x4) = f(f1(x1, x2), f2(x4, x3))

although F is the restriction of F̃ to the hyper-plane x2 = x4. In our opinion, it is a very deep question to figure
out what domains the functions in practice are defined on, and to some extent, manifold learning addresses this
issue. Much of the approximation theory literature is however limited to approximation on cubes, spheres, and
other known domains, torus in the present paper. From a purely mathematical point of view, this is justified by an
appeal to Stein’s extension theorem [26, Chapter VI]. Therefore, making this tacit introduction of dummy variables
allows us to simplify notation and results without any theoretical loss of generality.

Correspondingly, we define the sets

Cvj = {(x)vj : x ∈ C}, j = 1, · · · , s.
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Thus, Cvj is the training data “seen” by the source node vj . This notion is extended recursively to other nodes of
G. Let v not be a source node, u1, · · · , ud(v) be the children of v, Cu1 , · · · , Cud(v)

be the training data seen by these
nodes. Thus, for any x ∈ C, the components given by (x)uj

are seen by uj , and

Cv =
{

(fu1
((x)u1

), · · · , fud(v)
((x)ud(v)

)) : x ∈ C
}
.

For example, in the DAG of Figure 4, the children of h14 are h10 and h11. For each x ∈ R9, h10 sees the components
(x1, x2, x3), while h11 sees the components (x4, x5). We have

Ch10
= {((x)1, (x)2, (x)3) : x ∈ C}, Ch11

= {((x)4, (x)5) : x ∈ C},
Ch14

= {((h10((x)1, (x)2, (x)3), h11((x)4, (x)5)) : x ∈ C}

In this section, we state our theorems only for networks with activation function t 7→ cos t; i.e., networks that
evaluate trigonometric polynomials. The transition to networks with other activation functions is obtained by
approximating these by trigonometric polynomials using (2.8) as in Section 3. This only adds to an additional
complication in the notation without adding anything new conceptually.

The analogue of Theorem 3.1 is the following.

Theorem 4.1 Let G be a DAG with sink node v∗. There exists C = C(G) > 0 with the following property: Let
f = {fv}v∈V ∪S be a G-function such that each of the constituent functions {fv}v∈V is Lipschitz continuous with

Lipschitz constant ≤ L. If Nv ≥ C(G)η(Cv)−1, for each v ∈ V , and N = (Nv), the G-function T#
N (D) ∈ G-HN

defined in (5.36) satisfies

(T#
N (D))v∗(xj) = yj , j = 1, · · · ,M, (Zero training error) (4.5)

and
‖f − T#

N (D)‖C∗,G ≤ c(G, L)
{
ε+ EN/2,G(f)

}
. (Good generalization error). (4.6)

We recall that the polynomials in Theorem 3.1 and hence, in Theorem 4.1 are constructed using the Fourier
coefficients of the various functions involved. One could use the polynomials LN (D) defined in (3.2) instead to get a
construction based only on the values of the various functions computed using the training data. However, since we
do not know the constituent functions, this construction is not as constructive as with shallow networks. Besides,
as with shallow networks, such a construction does not yield a uniform error bound analogous to (4.6).

In contrast, Theorem 3.3 can be extended in a purely constructive manner, so as to yield a good training error
and to keep the gradient of the resulting approximation under control so that pointwise generalization error bounds
can be obtained. Even though one does not know the constituent functions, one can construct a DAG trigonometric
polynomial knowing the DAG structure and the training data alone.

For n = (nv) and T ∈ G-Hn, let

Rn,G(T ) = max
1≤j≤M

|yj − Tv∗(xj)|+
∑
v∈V

1

nv
‖Tv‖W∗(Td(v)). (4.7)

In this definition, it is understood that Tv∗ is thought of as a function of the q-dimensional vector x, but is computed
using the all the constituent functions in T using DAG structure prescribed by G.

Theorem 4.2 Let G be a DAG with sink node v∗. Let f = {fv}v∈V ∪S ∈ G-W ∗, and maxv∈V ∪S ‖fv‖W∗(T(d(v)) ≤ L.

There exists C(G) > 0 with the following property: If Nv ≥ C(G)η(Cv)−1, for each v ∈ V , and N = (Nv),

min
T∈G-HN

RN,G(T ) ≤ c(G, L)

{
ε+

∑
v∈V

1

Nv
‖fv‖W∗(Td(v))

}
. (Good training error) (4.8)

Let x ∈ Tq, δ = min
1≤j≤M

|x− xj |, N = maxv∈V Nv. Then with

T ∗(D) = arg min
G-HN

RN,G(T ),

we have

|fv∗(x)−(T ∗(D))v∗(x)| ≤ c(G, L)

{
ε+

∑
v∈V

1

Nv
‖fv‖W∗(Td(v))

}
+c(G, L) (1 +Nε)

H(v∗)
δ. (Good generalization error).

(4.9)
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Remark 4.1 The theorems in this section indicate that the superiority of deep learning over shallow learning comes
from two factors. One is that the compositional structure of the target function allows us to study the problem in a
cascade of low dimensional problems. The other is that this structure might allow us to sparsify the training data
as we move up the cascade; noting that the minimal separation is defined only among the distinct points in a set.

5 Proofs

5.1 Preliminary results on trigonometric approximation

We recall first some essential properties of the kernels and operators defined in (2.2) and (2.3). Since the proofs of
these facts are scattered among several of our publications, we will sketch the proof in some detail for the sake of
completion.

Proposition 5.1 Let S > q be an integer. For N ≥ 1,

|ΦN (x)| ≤ cNq

max(1, (N |x|)S)
, x ∈ Tq, (5.1)

and
|ΦN (0)| ≥ cNq. (5.2)

Proof. Our proof summarizes that of [3, Theorem 6.1]. We consider the function H(t) = h(|t|2), t ∈ Rq. Since
0 ≤ H(t) ≤ 1 for all t ∈ Rq, and H(t) = 1 for |t|2 ≤ 1/2, it is clear that

|ΦN (x)| ≤ ΦN (0) ∼ Nq. (5.3)

In particular, this proves (5.2). Since h is constant in a neighborhood of 0, it is easy to see that H is S times
continuously differentiable as well, so that its Fourier transform satisfies

|Ĥ(u)| ≤ c(H)

|u|S
, u 6= 0. (5.4)

Hence, the Poisson summation formula yields

ΦN (x) = Nq
∑
j∈Zq

Ĥ(N(x + 2jπ)), x ∈ Tq. (5.5)

For x 6= 0, j 6= 0,
|x + 2jπ| ≥ 2|j|∞π − |x| ≥ (2|j|∞ − 1)|x|.

Therefore, (5.4) and (5.5) show that for x 6= 0,

|ΦN (x)| ≤ Nq

|Ĥ(Nx)|+
∑

j∈Zq,j 6=0

|Ĥ(N(x + 2jπ))|

 ≤ c(H)Nq

 1

(N |x|)S
+

∑
j∈Zq,j 6=0

1

((2|j|∞ − 1)N |x|)S

 .

Since S > q, the infinite series converges. Therefore,

|ΦN (x)| ≤ c Nq

(N |x|)S
, x 6= 0. (5.6)

Together with (5.3), this leads to (5.1). �

Proposition 5.2 Let S > q be an integer.
(a) There exists a constant B > 0 with the following property: If C = {x1, · · · ,xM}, and N ≥ Bη(C)−1 then for
x ∈ Tq,

M∑
j=1

|ΦN (x− xj)| ≤ cNq. (5.7)
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and ∑
j:|xj−x|≥η(C)

|ΦN (x− xj)| ≤ (1/2)ΦN (0) = (1/2)ΦN (x− x) ≤ cNq. (5.8)

(b) If T ∈ HqN/2 then σN (T ) = T . Further,

‖σN (f)‖ ≤ c‖f‖, f ∈ C∗. (5.9)

Consequently,
EN (f) ≤ ‖f − σN (f)‖ ≤ cEN/2(f), f ∈ C∗. (5.10)

The two parts of the proposition are proved along the same lines. It is convenient to prove the following lemma
(cf. [14, Proposition 5.1]), which we will use once with ν being the measure that associates the mass 1 with each
xj for part (a), and once with ν being the Lebesgue measure µ∗ on Tq for part (b).

Lemma 5.1 Let ν be a positive measure on Tq, d ≥ 0, and for some Aν > 0,

ν(B(x, r)) ≤ Aν(r + d)q, r > 0, x ∈ Tq. (5.11)

Then for r ≥ 1/N , ∫
Tq\B(x,r)

|ΦN (x− u)|dν(u) ≤ cAν(Nr)q−S(1 + d/r)q, (5.12)

where c is a positive constant depending only on q, S, and h but not on r, d, or ν.

Proof. In this proof, we assume by re-normalization that Aν = 1. Also, we write Ak = B(x, 2k+1r) \ B(x, 2kr).
Then (5.11) shows that ν(Ak) ≤ (2k+1r + d)q ≤ 2q2kq(r + d)q. Using (5.6), we conclude that∫

Tq\B(x,r)
|ΦN (x− u)|dν(u) ≤

∞∑
k=0

∫
Ak

|ΦN (x− u)|dν(u) ≤ c2q(Nr)q−S(1 + d/r)q
∞∑
k=0

2(q−S)k.

�
Proof of Proposition 5.2.
To prove part (a), let ν be a measure that associates the mass 1 with each xj , j = 1, · · · ,M , and let η = η(C).
We claim that ν satisfies (5.11) with d = η and Aν = cη−q for some c > 0 depending only on q. Fix x and r.
If r < η/2, then B(x, r) ∩ C can contain at most 1 point. Therefore the claim is satisfied trivially. Let r ≥ η/2,
and B(x, r) ∩ C = {x1, · · · ,xJ}. We observe that µ∗(B(y, s)) = csq for all y ∈ Tq and s ∈ (0, π). Since the balls
B(xj , η/3) are disjoint, we have

ν(B(x, r)) = |J | = cη−q
J∑
j=1

µ∗(B(xj , η/3)) = cη−qµ∗
(
∪Jj=1B(xj , η/3)

)
≤ cη−qµ∗(B(x, r + η/3)) ≤ c1η−q(r + η)q.

This proves the claim. Thus, we may use (5.12) with r = d = η, Aν = cη−q to obtain for N ≥ η−1 that∑
j:|x−xj |≥η

|ΦN (x− xj)| =
∫
Tq\B(x,η)

|ΦN (x− u)|dν(u) ≤ cη−q(Nη)q−S = cNq(Nη)−S ≤ cΦN (0)(Nη)−S .

We choose B > 0 such that if Nη ≥ B, c(Nη)−S ≤ 1/2. This proves (5.8). Further, since any ball B(x, η) contains
at most 2q points of C, (5.8) and (5.3) lead to (5.7).

To prove part (b), we use Lemma 5.1 with µ∗ in place of ν. Clearly, (5.11) is satisfied with d = 0, and Aµ∗ = c.
Therefore, using (5.3) and (5.12) (with r = 1/N) leads to∫

Tq

|ΦN (x− u)|dµ∗(u) =

∫
B(x,1/N)

|ΦN (x− u)|dµ∗(u) +

∫
Tq\B(x,1/N)

|ΦN (x− u)|dµ∗(u) ≤ c.

It is now easy to deduce (5.9). If T ∈ HqN/2, then T̂ (k) = 0 if |k|2 ≥ N/2, while h(t) = 1 if |t| ≤ 1/2. It follows

from the definition (2.3) that σN (T ) = T . For any f ∈ C∗ and T ∈ HqN/2, (5.9) leads to

EN (f) ≤ ‖f − σN (f)‖ = ‖f − T − σN (f − T )‖ ≤ c‖f − T‖.

This implies (5.10). �
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Proposition 5.3 Let C, B, and N be as in Proposition 5.2, Ψ ∈ C∗, and B be the matrix [Ψ(xj−xk)]Mj,k=1. There
exists α∗ > 0 such that if

‖ΦN −Ψ‖ ≤ α∗, (5.13)

then the matrix B is invertible, and ‖B−1‖`∞→`∞ ≤ cN−q. In particular, let b ∈ RM . Then there exists (uniquely)
a ∈ RM such that

M∑
j=1

ajΨ(x` − xj) = b`, ` = 1, · · · ,M, (5.14)

and
max

1≤j≤M
|aj | ≤ cN−q max

1≤`≤M
|b`|. (5.15)

Proof. When Ψ = ΦN , the proposition follows from (5.2), (5.8), and standard facts from linear algebra, (cf. [14,
Proposition 6.1]). In this proof, the matrix norm ‖ · ‖ will refer to the norm ‖ · ‖`∞→`∞ , and we write η = η(C).
Denoting the matrix [ΦN (xj − xk)]Mj,k=1 by A, we have observed that ‖A−1‖ ≤ cN−q. Also, it is easy to see that

M ≤ cη−q. Therefore, recalling that Nη ≥ B,

‖A−B‖ = max
j

M∑
k=1

|ΦN (xj − xk)−Ψ(xj − xk)| ≤M‖ΦN −Ψ‖ ≤ cη−q‖ΦN −Ψ‖

≤ cB−qNq‖ΦN −Ψ‖ ≤ cB−q

‖A−1‖
‖ΦN −Ψ‖.

We now choose α∗ so that (5.13) implies

‖A−B‖ ≤ 1

2‖A−1‖
.

A perturbation theorem from linear algebra [7, Theorem 2.3.4] then shows that

‖A−1 −B−1‖ ≤ ‖A−1‖ ≤ cN−q.

This shows that ‖B−1‖ ≤ cN−q. �
We also need some results about approximation of a function and its derivatives. We recall a theorem from [5,

Theorem 1◦]. Per Section 2.1, the notation ‖ ◦ ‖1 indicates the univariate supremum norm.

Theorem 5.1 Let q = 1, f ∈W ∗(T), n ≥ 1 be an integer, E > 0, and T ∈ H1
n satisfy

‖f − T‖1 ≤ E. (5.16)

Then
‖f ′ − T ′‖1 ≤ c {nE + En(f ′)} . (5.17)

In the multivariate case, we take the derivatives one variable at a time to deduce the following corollary of
Theorem 5.1.

Corollary 5.1 Let f ∈W ∗, N ≥ 1 be an integer, E > 0, and T ∈ HqN satisfy

‖f − T‖ ≤ E. (5.18)

Then

‖f − T‖W∗ ≤ c

NE +

q∑
j=1

EN (Djf)

 . (5.19)

In particular,

‖T‖W∗ ≤ cN
{
E +

1

N
‖f‖W∗

}
. (5.20)

We note also the direct theorem of trigonometric approximation [28, Section 5.3].

Proposition 5.4 If f ∈W ∗ then

EN (f) ≤ c

N
‖f‖W∗ . (5.21)
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5.2 Proof of Proposition 2.1.

Using (2.8) and Schwarz inequality, we obtain that

‖σn(f)−GN (φ, σn(f))‖ ≤ c(φ)EN (1;φ)
∑
k∈Zq

∣∣∣∣h( |k|2n
)
f̂(k)

∣∣∣∣
≤ c(φ)EN (1;φ)

{∑
k∈Zq

(
h

(
|k|2
n

))2
}1/2{∑

k∈Zq

|f̂(k)|2
}1/2

.

(5.22)

Since h(t) = 0 if t ≥ 1, and 0 ≤ h(t) ≤ 1 for all t,

∑
k∈Zq

(
h

(
|k|2
n

))2

≤ cnq.

In view of Bessel inequality, (5.22) now implies

‖σn(f)−GN (φ, σn(f))‖ ≤ c(φ)EN (1;φ)nq/2
(∫

Tq

|f(x)|2dx
)1/2

≤ c(φ)EN (1;φ)nq/2‖f‖.

Together with (5.10), this leads to (2.9). �

5.3 Proof of the theorems in Section 3.

Proof of Theorem 3.1.

In this proof, let B be as in Proposition 5.2(a). N ≥ Bη(C)−1, and for ` = 1, · · · ,M , z` = y` − σN (f)(x`).
Proposition 5.3 then guarantees that there exist aj ∈ R such that

M∑
j=1

ajΦN (x` − xj) = z` = y` − σN (f)(x`), ` = 1, · · · ,M, (5.23)

and (cf. (5.15) and (5.10))

max
1≤j≤M

|aj | ≤ cN−q max
1≤`≤M

|z`| = cN−q max
1≤`≤M

|y` − σN (f)(x`)|

≤ cN−q
{

max
1≤`≤M

|y` − f(x`)|+ max
1≤`≤M

|f(x`)− σN (f)(x`)|
}

≤ cN−q
{
ε+ EN/2(f)

}
. (5.24)

We now recall that

T #
N (D)(x) = σN (f)(x) +

M∑
j=1

ajΦN (x− xj), x ∈ Tq. (5.25)

Clearly, T #
N (D) ∈ HqN , and T #

N (D)(x`) = y`, ` = 1, · · · ,M . This proves (3.5).
Moreover, for every x ∈ Tq, (5.25) and (5.10) lead to

|f(x)− T #
N (D)(x)| ≤ |f(x)− σN (f)(x)|+

{
max

1≤j≤M
|aj |
} M∑
j=1

|ΦN (x− xj)|

≤ c

EN/2(f) + cN−q
{
ε+ EN/2(f)

} M∑
j=1

|ΦN (x− xj)|

 .

(5.26)

In view of (5.7), this leads to (3.6). �
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Proof of Theorem 3.2.

This proof is very similar to that of Theorem 3.1. The condition (3.9) and Proposition 5.3 ensure that the
system of equations (3.7) has a unique solution satisfying (5.15). The same argument as in (5.26) then works with
the operators as in Theorem 3.2 replacing those in Theorem 3.1; we use (2.9) in place of (5.10). �

Proof of Theorem 3.3.

In this proof, let T # = T#
N (D) be as in Theorem 3.1, and

E = ε+ EN/2(f). (5.27)

In view of (3.6), we may use Corollary 5.1 to deduce that

‖f − T #‖W∗ ≤ c

NE +

q∑
j=1

EN (Djf)

 ≤ cN
{
E +

1

N
‖f‖W∗

}
. (5.28)

and in particular,

‖T #‖W∗ ≤ cN
{
E +

1

N
‖f‖W∗

}
. (5.29)

Using (3.5), (5.27) and (5.29), we obtain:

min
T∈HN

RN (T ) ≤ RN (T #) ≤ max
1≤j≤M

|yj − T #(xj)|+
1

N
‖T #‖W∗

=
1

N
‖T #‖W∗ ≤ c

{
E +

1

N
‖f‖W∗

}
. (5.30)

In view of Proposition 5.4,

E ≤ c
{
ε+

1

N
‖f‖W∗

}
.

Together with (5.30), this proves (3.14).
Next, let x ∈ Tq, and δ = min

1≤j≤M
|x− xj | = |x− x`|. For brevity, we write

Ẽ = ε+
1

N
‖f‖W∗ .

Using (3.14) and Corollary 5.1, we deduce that

|f(x)− T ∗(x)| ≤ |f(x)− f(x`)|+ |f(x`)− T ∗(x`)|+ |T ∗(x`)− T ∗(x)|

≤ |x− x`|‖f‖W∗ + cẼ + |x− x`|‖T ∗‖W∗ ≤ Nδ
1

N
‖f‖W∗ + cẼ +NδẼ

≤ c(1 +Nδ)Ẽ. (5.31)

This proves (3.15). �

Remark 5.1 If δ = min1≤j≤M |x− xj | = |x− x`|, then we have∣∣∣∣∣f(x)− 1

ΦN (0)

M∑
k=1

ykΦN (x− xk)

∣∣∣∣∣
≤ |f(x)− f(x`)|+

∣∣∣∣∣ 1

ΦN (0)

M∑
k=1

(yk − f(xk))ΦN (x− xk)

∣∣∣∣∣+

∣∣∣∣∣f(x`)−
1

ΦN (0)

M∑
k=1

f(xk)ΦN (x− xk)

∣∣∣∣∣
≤ δ‖f‖W∗ + ε+

1

ΦN (0)
|f(x`)(ΦN (x` − x`)− ΦN (x− x`))|+

1

ΦN (0)

∑
k 6=`

|f(xk)||ΦN (x− xk)|

≤ δ‖f‖W∗ + cε+ cNδ‖f‖+
1

ΦN (0)

∑
k 6=`

|f(xk)||ΦN (x− xk)|.
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Hence, if 2π ≥ δ ≥ 1/N , Lemma 5.1 used with ν as in the proof of Proposition 5.2(a), d = η(C), r = δ shows that

1

ΦN (0)

∑
k 6=`

|f(xk)||ΦN (x− xk)| ≤ c(Nδ)−S(δ + η(C))q‖f‖ ≤ c(Nδ)−S‖f‖.

Therefore, if 1/N ≤ δ ≤ 2π,∣∣∣∣∣f(x)− 1

ΦN (0)

M∑
k=1

ykΦN (x− xk)

∣∣∣∣∣ ≤ c{δ‖f‖W∗ + ε+ cNδ‖f‖}. (5.32)

A similar bound can be proved with the polynomial LN (D). �

5.4 Proofs of the theorems in Section 4.

The induction argument given in the proof of Theorem 4.1 allows us to “lift” results about shallow networks to
deep networks. We will refer to this argument as good propagation of error.

Proof of Theorem 4.1.
We observe that each node in V ∪ S can be thought of as the sink node of an appropriate sub-DAG Gv of G.
Moreover, in the definitions such as (4.3), ‖f‖X,G ∼

∑
v∈V ∪S ‖fv‖X,Gv , and similarly for (4.4). So, the statement of

this theorem should be true also for each such sub-DAG. Let C = maxv∈V ∪SB(d(v)) where B(d(v)) is the constant
introduced in Proposition 5.2 applied with d(v) in place of q.

Theorem 4.1 applied to a vertex in S is the same as Theorem 3.1.
Suppose the theorem is proved for every node of level up to ` for some ` ≥ 0, v be a node at level ` + 1, and

u1, · · · , ud(v) be its children. The sub-DAG with the outputs of these children as the input to the sink node v is of
course a shallow network, to which we may apply Theorem 3.1. Since Nv ≥ Cη(Cv)−1 , Theorem 3.1 implies that

there is T#
v ∈ Hd(v)Nv

satisfying1

T#
v (x) = fv(x), x ∈ Cv, ‖fv − T#

v ‖d(v) ≤ cENv/2(d(v); fv). (5.35)

Our induction hypothesis shows that the analogues of the estimates (5.35) and (5.33) are true for each of the
children u1, · · · , ud(v). Necessarily, v ∈ V , and so, each fv is Lipschitz continuous with Lipschitz constant ≤ L.
Using triangle inequality, we deduce that

|fv(fu1(xu1), · · · , fud(v)
(xud(v)

))− T#
v (T#

u1
(xu1), · · · , T#

ud(v)
(xud(v)

))|

≤ |fv(T#
u1

(xu1), · · · , T#
ud(v)

(xud(v)
))− T#

v (T#
u1

(xu1), · · · , T#
ud(v)

(xud(v)
))|

+|fv(fu1
(xu1

), · · · , fud(v)
(xud(v)

))− fv(T#
u1

(xu1
), · · · , T#

ud(v)
(xud(v)

))|

≤ sup
y∈Td(v)

|fv(y)− T#
v (y)|+ L

∥∥∥(fu1(xu1), · · · , fud(v)
(xud(v)

))− (T#
u1

(xu1), · · · , T#
ud(v)

(xud(v)
))
∥∥∥
1

≤ ‖fv − T#
v ‖d(v) + L

d(v)∑
j=1

‖fuj − T#
uj
‖C∗,Guj

.

In view of our dual interpretation of the constituent functions as functions of their immediate input as well as the
input seen by these functions and the induction hypothesis, this shows that Theorem 4.1 is valid for the sub-DAG
with v as the sink node. We define

T#
N (D) = {T#

v } ∈ G −HN. (5.36)

1Here, if v = v∗ is the sink node of the original DAG, the statement needs to be modified as follows: there is T#
v∗ ∈ Hd(v∗)

N that
satisfies (thought of as a function of all the inputs to the network)

T#
v∗ (xj) = T#

v∗ ((xj)v∗ ) = yj , j = 1, · · · ,M, (5.33)

and (thought of as a function on Td(v∗))

‖fv∗ − T#
v∗‖d(v∗) ≤ c

{
ε+ ENv∗/2

(d(v∗); fv∗ )
}
. (5.34)
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The equation (5.33) is the same as (4.5). The estimate (4.6) follows by induction as just explained. �

Proof of Theorem 4.2.

This proof is essentially the same as that of Theorem 3.3. We point out some considerations required in the
details which are different. Since each fv ∈ W ∗(Td(v)), the simultaneous approximation theorem Corollary 5.1
holds for each fv. We may assume that the perturbation exists only at the sink node, and the rest of the data
is exact. Finally, we use the good propagation of error to obtain (4.8). The proof of (4.9) involves an argument
similar to (5.31). The middle term on the first line of that chain of inequalities gives the first term on the right
hand side in (4.9). The other terms can be estimated as in (5.31), except that the chain rule of differentiation needs
to be used several times to get to the level of the source nodes. This is facilitated by our extra assumption that
maxv∈V ‖fv‖W∗(T(d(v)) ≤ L. �

6 Conclusions and open problems

We have explored the puzzle that deep networks (and sometimes also shallow ones) do not exhibit over-fitting
even though the number of parameters is very large and the training error is reduced to zero. We have initiated a
rigorous study of this phenomenon from the point of view of function approximation, giving estimates on how many
parameters are needed to exhibit a zero or good training error, which is also compatible with the generalization
error. Our estimates are given in terms of the data characteristics and the smoothness of the target function.

One obvious problem is to reduce the number of parameters to be trained in the regularization functional (3.13).
Expressing the trigonometric polynomials as linear combinations of the translates ΦN (◦ − 2πj/N) ensures that the
resulting solution will have coefficients that are small away from the training data. It is therefore reasonable to take
only some of these translates that are close to the training data. However, it is not clear that the theory will work
with the space defined by the span of only those translates which are kept. Also, there may be some numerical
instability problems with this basis.

A deeper and wider area of theoretical investigation is the following. Theorems 3.3 and 4.2 suggest that the
approximation error given by the trigonometric polynomials constructed there gives an estimate on the support of
the marginal distribution of the training and test data. In [4], the approximation errors of the convergent bounded
interpolatory polynomials constructed in [3] were used for texture detection and segmentation of images. What
would be the analogues for understanding the nature of the data using the approximation errors obtained here?
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polynome trigonométrique et par ses dérivées successives. Acta Math.,(Sweden), 99:33–51, 1958.
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