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This is an opinion paper about the strengths and weaknesses of Deep Nets.
They are at the center of recent progress on Artificial Intelligence and are of
growing importance in Cognitive Science and Neuroscience since they enable
the development of computational models that can deal with a large range
of visually realistic stimuli and visual tasks. They have clear limitations but
they also have enormous successes. There is also gradual, though incomplete,
understanding of their inner workings. It seems unlikely that Deep Nets in
their current form will be the best long-term solution either for building general
purpose intelligent machines or for understanding the mind/brain, but it is likely
that many aspects of them will remain. At present Deep Nets do very well on
specific types of visual tasks and on specific benchmarked datasets. But Deep
Nets are much less general purpose, flexible, and adaptive than the human visual
system. Moreover, methods like Deep Nets may run into fundamental difficulties
when faced with the enormous complexity of natural images. To illustrate our
main points, while keeping the references small, this paper is slightly biased
towards work from our group.

Some History

We are in the third wave of neural network approaches. The first two waves –
1950s-1960s and 1980s-1990s – generated considerable excitement but slowly ran
out of steam. Despite some notable exceptions, the overall performance of neural
networks was disappointing both for machines (Artificial Intelligence/Machine
Learning), brains (Neuroscience), and minds (Cognitive Science, Psychology).
The third wave – 2000s-present – is distinguished because of the dramatic suc-
cess of Deep Nets on many large benchmarked problems and their industrial
application to real world tasks (e.g., face recognition on datasets containing
tens of millions of different people). It should be emphasized that several of
the most successful models were developed during the second wave, but their
strengths were not appreciated until the third wave due to the availability of

∗For those readers unfamiliar with Monty Python see: https://youtu.be/Qc7HmhrgTuQ
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Figure 1: Figure taken from Kokkinos (2017). A wide variety of vision tasks
can be performed by Deep Nets. These include: boundary detection, semantic
segmentation, semantic boundaries, surface normals, saliency, human parts, and
object detection.

big datasets and the ubiquity of powerful computers which can be used to train
them (e.g., GPUs).

As a side comment, the history of neural networks is a good illustration
of how science is often driven by intellectual fashions. Neural networks often
served as a counter-point to the more logic and structured-representation based
approaches to Artificial Intelligence and Cognitive Science which had dominated
in the 1960s-1980s. When representations were popular then deep networks
were not, and vice versa. Indeed it became hard to get neural network research
published during the gap between the second and third wave, and credit is
due to those neural network researchers who carried on despite discouragement.
Conversely other researchers whose work did not fit with neural network, or
connectionist ideas, had difficulty getting their work accepted during the second
wave of neural networks. We would argue for a middle way which combines the
strengths of both types of approaches.

The relationship between neural networks to real neurons in the brain is
extremely interesting since understanding real neural networks is a holy grain of
neuroscience. But this relationship should be treated with caution, unless expert
neuroscientists are involved. Real neurons are much more varied and complex
than artificial neurons (there are fifty different types of neurons in the retina
alone and also a range of different morphological structures) and important
properties such as the neural code are only partially understood. In the short
term, it may be best to think of artificial neural networks as a way of doing
statistics (as researchers at early neural network meetings started speculating
as we shared ski lifts), for example by interpreting Deep Nets as a sophisticated
form of probabilistic regression, instead of as models of real neurons. “Neuronal
plausibility” is a desirable property of a cognitive system but it is not always
easy to pin down.
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Figure 2: Figure taken from Qiu and Yuille (2016). UnrealCV allows vision re-
searchers to easily manipulate synthetic scenes, e.g. by changing the viewpoint
of the sofa. We found that the Average Precision (AP) of Faster-RCNN (Ren
et al., 2015) detection of the sofa varies from 0.1 to 1.0, showing extreme sen-
sitivity to viewpoint. This is perhaps because the biases in the training cause
Faster-RCNN to favor specific viewpoints.

1 The Successes: Specific vision tasks and on
specific benchmarked datasets

From the vision perspective, the performance of Deep Nets for classifying objects
(Krizhevsky et al., 2012) in ImageNet (Deng et al., 2009) was very dramatic and
persuaded researchers that Deep Nets should be taken seriously (many computer
vision researchers had previously been skeptical about neural nets). The object
classification task assumes a foreground object which is surrounded by a limited
background region and the goal is to classify the object. The input would be
similar to one of the red boxes of the bottom right image in Figure 1. The
performance of Deep Nets on ImageNet has kept increasing as researchers have
explored variants of Deep Net architectures (Simonyan and Zisserman, 2015; He
et al., 2016).

Deep Nets were soon adapted to other visual tasks such as object detec-
tion where the image contains one or more objects and the background is much
larger, e.g, the PASCAL challenge (Everingham et al., 2010). For this task,
Deep Nets were augmented by an initial stage which made proposals for possi-
ble positions and sizes of the objects and then applied Deep Nets to classify the
proposals (current methods train the proposals and objects together in what is
called “end-to-end”). These methods outperformed the previous best methods,
the Deformable Part Models (Felzenszwalb et al., 2010), for the PASCAL object
detection challenge (PASCAL was the main object detection and classification
challenge before ImageNet). Other Deep Nets architectures also gave enormous
performance jumps in other classic tasks like edge detection, semantic segmen-
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Figure 3: Figure taken from Wang et al. (2018). Adding occluders cause deep
network to fail. Left Panel: The occluding motorbike turns a monkey into a
human. Center Panel: The occluding bicycle turns a monkey into a human and
the jungle turns the bicycle handle into a bird. Right Panel: The occluding
guitar turns the monkey into a human and the jungle turns the guitar into a
bird.

tation, occlusion detection (edge detection with border-ownership), symmetry
axis detection. Major increases also happened for human joint detection, hu-
man segmentation, binocular stereo, 3D depth estimation from single images,
and scene classification. Many of these tasks are illustrated in Figure 1.

Two main points should be made: (1) Deep Nets are designed for specific
visual tasks (although “transfer learning” sometimes enables them to adapt
to other tasks, see later section). There is no single Deep Net which does
all of these tasks, but recent Deep Nets, like UberNet (Kokkinos, 2017), can do
several tasks. A Deep Net designed for object classification on ImageNet cannot
perform human parsing (i.e. joint detection) on the Leeds Sports Dataset (LSD).
(2) Deep Net performance on benchmarked datasets, no matter how large, may
fail to extend to good performance images outside the dataset. This is partly
due to the enormous complexity of natural images and the difficulty of having
datasets which are unbiased and which are representative of this complexity.
This is a very important and fundamental issue, which we will return to in
Section 6. As can be seen from Figure 2, a Deep Net trained to detect sofas
on ImageNet may fail to detect them if shown from certain viewpoints which
were underrepresented in the training dataset. In practice, when researchers
want to apply Deep Nets for object classification to a new dataset like PASCAL
then they will typically re-train the Deep Net (initializing its weights by the
results from ImageNet). Deep Nets can also fail if the context is changed by,
for example, giving a man-made object to a monkey as shown in Figure 3.

In short, when discussing Deep Net performance we need to take into ac-
count the dataset on which the Deep Net has been trained and tested as well
as the visual task being performed. In general, the larger the training datasets
the better the performance unless the dataset is badly biased. Hence high tech
companies have big advantages over universities since they have access to enor-
mous datasets and have the computer power to train increasingly complicated
Deep Nets.

4



Figure 4: Figure taken from Wang et al. (2015). The visual concepts obtained
by population encoding are visually tight and we can identify the parent object
class pretty easily by just looking at the mid-level concepts.

2 Towards Understanding Deep Nets

Although Deep Nets are difficult to understand there has been some success at
understanding the activities of the internal filters/features of the convolutional
levels of Deep Nets (recall that most Deep Net architectures have a sequence of
convolutional layers followed by a multi-layer perceptron). Early studies visu-
alized the activities of Deep Net filters and showed that several appeared to be
tuned to image properties (Zeiler and Fergus, 2014; Yosinski et al., 2015). In par-
ticular, if Deep Nets are trained for scene classification then some convolutional
layer filters correspond to objects which appear frequently in the scene, while if
the Deep Nets are trained for object detection, then some features correspond
to parts of the objects (Zhou et al., 2015). In detailed studies of a restricted
subset of objects (e.g., vehicles), researchers (Wang et al., 2015) discovered reg-
ular patterns of activity of the feature vectors, called visual concepts, which
corresponded approximately to the semantic parts of objects (with sensitivity
to viewpoint), see Figure 4.

This suggests the following rough conceptual picture of Deep Nets. The
convolutional levels represent the manifold of intensity patterns at different
levels of abstraction. The lowest levels represent local image patterns while the
high levels represent larger patterns which are invariant to the details of the
intensity patterns. From a related perspective, the feature vectors represent a
dictionary of templates of image patterns. The multi-layer perceptron, at the
top layers of the Deep Nets are harder to interpret, but it is plausible that
they make decisions based on the templates represented by the convolutional
layers. This “dictionary of templates” interpretation of Deep Nets suggests
they are very efficient to learn and represent an enormous variety of image
patterns, but cannot extrapolate much beyond the patterns they have seen in
their training dataset. This also suggests that they are less useful when applied
to model visual properties which are specified purely by geometry, where the
input consists of sparse edges (or binary valued patterns). Although the number
of possible sparse edge patterns are very large they are nowhere near as large
as the possible number of image intensity patterns.
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An alternative, and perhaps more standard, interpretation of Deep Nets is
that they act as universal function approximators (Hornik et al., 1989). This
interpretation that dates back to the second wave of neural networks is correct,
provided there are enough hidden units, but such results offer little intuition
and are of limited utility since for some functions the number of hidden units
needed would be truly enormous.

3 Transfer Learning, Learning with fewer exam-
ples and less supervision

A disadvantage of Deep Nets is that they typically need a very large amount
of annotated (i.e. fully supervised) training data, which restricts their use to
situations where big data is available. But this is not always the case. In
particular, “transfer learning” shows that the features of Deep Nets learned on
annotated datasets for certain visual tasks can sometimes be transferred to novel
datasets and related tasks. Thereby enabling learning with much less data and
sometimes with less supervision.

For example, as mentioned earlier, Deep Nets were first successful for object
classification on ImageNet but failed on object detection on the smaller PASCAL
dataset. This was presumably because PASCAL was not big enough to train
a Deep Net while ImageNet was (it was larger than PASCAL by almost two
orders of magnitude). But researchers quickly realized that it was possible to
train a Deep Net for object detection and semantic segmentation on PASCAL
by initializing the weights of the Deep Net by the weights of a Deep Net trained
on ImageNet (Girshick et al., 2014; Long et al., 2015; Chen et al., 2018). This
also introduced a mechanism for generating proposals, see Figure 1 (bottom
right).

More generally, researchers found that they could transfer features from
Deep Nets trained on one task on one dataset to perform related tasks on a
second dataset. In some cases, this consisted of simply using the first dataset to
initialize the weights when training on the second (so that the final values of the
weights, particularly for the higher levels, may have little to do with their initial
values) while in other situations, the weights changed little and were similar for
both tasks and/or datasets. For example, researchers showed that Deep Nets
trained for face verification could be transferred to the related task of facial
pain estimation (Wang et al., 2017). This is presumably because the two tasks
required fairly similar image representations capturing the fine-scale appearance
of facial features.

This ability to transfer Deep Net knowledge learned on another domain
relates intuitively to how children learn. A child initially learns rather slowly
compared to other young animals but at critical periods the child’s learning
accelerates very rapidly. From the “dictionary of templates” perspective, this
could happen because after a child has learned to recognize enough objects
he/she may have enough building blocks (i.e. deep network features/templates)
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to be able to represent new objects in terms of a dictionary of existing templates.
If so, only a few examples of the new object may be needed in order to do few-
shot learning.

Few-shot learning of novel object categories has been shown for Deep Nets
provided they have first been trained on a large set of object categories (Mao
et al., 2015; Vinyals et al., 2016; Qiao et al., 2018). Another strategy is to
train a Deep Net to learn similarity (technically a Siamese network) on the set
of object categories, hence obtaining a similarity measure for the new objects.
For example, Lin et al. (2017) trained a Siamese network to learn similarity for
objects in ShapeNet (Chang et al., 2015) and then this similarity measure was
used to cluster objects in the Tufa dataset (Salakhutdinov et al., 2012). Other
few-shot learning tasks can also be done by using features from Deep Nets
trained for some other tasks as ways to model the visual patterns of objects.

An alternative way to make Deep Nets more generally applicable is to weaken
the amount of supervision required. For example, to train object detection using
images where only the names of the objects in the image are known but their
locations and sizes are unknown. This is known as weakly supervised learning
and it can be treated as missing/hidden data problem which can be addressed by
methods such as Expectation-Maximization (EM) or Multiple Instance Learning
(MIL). Performance of these types of methods is often improved by using a small
amount of fully supervised training data which helps the EM or MIL algorithms
converge to good solutions, e.g., see Papandreou et al. (2015).

4 Cognitive Science and Neuroscience

Deep Nets offer the possibility of developing computational theories for Cogni-
tive Science and Neuroscience which can be tested on natural, or realistically
synthetic, images. This enables researchers to take advantage of the advances
in artificial intelligence and machine learning. It also offers the potential to
make theories for complex phenomena, e.g., social interactions and for visual
affordances, which can deal with the complexity of real world images.

In particular, Deep Nets have been used to predict brain activity, such as
fMRI and other non-invasive measurements, for a range of visual tasks. A
few examples are described in Cichy et al. (2016); Wen et al. (2017). Deep
Nets have also been applied to predicting neural responses as measured by
electro-physiology and, in particular, impressive results have been reported for
predicting the response of neurons in the ventral stream (Yamins et al., 2014).

But despite these successes some caveats apply. The ventral stream of pri-
mates is complex and there is evidence that it estimates the three dimensional
structure of objects and parts (Yamane et al., 2008), which relates to the clas-
sic theory of object recognition by component (Biederman, 1987). In general,
primate visual systems must perform all the visual tasks listed in Section 1,
namely edge detection, binocular stereo, semantic segmentation, object classi-
fication, scene classification, and 3D-depth estimation. The vision community
has developed a range of different Deep Nets for these tasks so it is extremely
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unlikely, for example, for a Deep Net trained for object classification on Ima-
geNet to be able to account for the richness of primate visual systems and, in
particular, the ventral stream.

It should also be emphasized that while Deep Nets perform computations
bottom-up in a feedforward manner there is considerable evidence of top-down
processing in the brain (Lee and Mumford, 2003), particularly driven by top-
down attention (Gregoriou et al., 2014). Researchers have also identified cortical
circuits (McManus et al., 2011) which implement spatial interactions (though
possibly in a bottom-up and top-down manner). These types of phenomena
require other families of mathematical models, such as the compositional models
described in Section 5.

It can also be questioned whether Deep Nets are really satisfactory as theo-
ries of Cognitive Science or Neuroscience. A common criticism is that they are
merely black boxes and hence do not capture or explain internal representations
or other cognitive processes. This echoes a similar criticism of their use for Ar-
tificial Intelligence applications. But, as with AI, this may only be a temporary
limitation and that better understanding of Deep Nets, perhaps along the lines
of Section 2, and the development of more interpretable, but equally effective,
models will help alleviate it. Similar views were expressed in the second wave
of neural networks (McCloskey, 1991). It remains possible that the best theory
of the brain, or any really complex physical system, may only be a black box.
But this seems too pessimistic and we would be very surprised if the long-term
solution to AI or Neuroscience is an uninterpretable black box (partly due to
scaling and diagnostic issues which will be discuss in Section 6).

One halfway measure, toward obtaining more interpretable theories, is to
restrict Deep Nets to low-level visual tasks like the detection of object parts
and use more explainable/understandable theories to model the relationships
between parts. This is reminiscent of the early days of Artificial Intelligence
when researchers like Minsky and Winston thought that high-level vision should
be modeled symbolically but this required as a pre-requisite the ability to break
the signal-to-symbol barrier to obtain elementary symbolic representations from
realistic images (a very difficult tasks which Minsky severely underestimated
and famously asked a summer student to solve). From this perspective, Deep
Nets give a possible solution to the signal-to-symbol problem hence enabling
researchers to build more interpretable symbolic models on top of them.

Perhaps most importantly, the use of Deep Nets offers the possibility to
develop Cognitive Science and Neuroscience theories which can be tested on
realistic images without having to restrict themselves to studying on simplified
stimuli. Experimental and theoretical findings on simplified stimuli were histori-
cally very important, due to the need for experimental controls and the immense
difficulty of working with natural stimuli. But they can also lead researchers
to restrict themselves to working in micro-worlds and concentrate on issues
that may not be most relevant when facing the core problem of vision: namely
how does the visual system convert the incoming patterns of light rays into
understanding the three-dimensional scene? Marr’s criticism of early Artificial
Intelligence – that it sometimes limited itself by a poor choice of micro-worlds
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Figure 5: Figure taken from Yuille and Kersten (2006). From (a) to (b) to (c),
an increasing level of variability and occlusion is used, yet humans can still do
inference and correctly interpret the image.

– is relevant here. Despite their many limitations, the enormous progress in
machine learning and Deep Nets in particular offer the possibility of developing
visual theories that can address the core problem of vision directly. Moreover,
it also offers tools to construct theories for complex visual phenomena, such as
social interactions, which are otherwise seem very difficult to address.

5 Compositional Models: Grammars and Gen-
erative Models

There has been a long history of compositional and grammatical models of vision
and the related idea of pattern theory (Zhu and Mumford, 2006; Mumford and
Desolneux, 2010). These have many desirable theoretical properties, perhaps
particularly from the Cognitive Science and Neuroscience perspective. But they
have been less successful on vision benchmarked datasets and so have far less
impact than Deep Nets.

Grenander (Grenander, 1996) was arguably the first to articulate modeling
statistically the types of patterns that occur in images and to interpret an
image by identifying the process that generated it, which he called analysis by
synthesis. This idea can be illustrated by the simple microworlds from Yuille
and Kersten (2006) shown in Figure 5. The three panels show microworlds
of increasing complexity from left to right. For each microworld there is a
grammar which specifies the possible images as constructed by compositions
of the elementary components. In the left panel the elementary components
are letters which do not overlap, and so interpreting the image is easy. The
center and right panels are generated by more complicated grammars – letters
of different fonts, bars, and fragments which can heavily occlude each other.
Interpreting these images is much harder and seems to require the notion that
letters are composed of elementary parts, that they can occur in a variety of
fonts, and the notion of “explaining away” (to explain that parts of a letter are
missing because they have been occluded by another letter).

Humans have little difficulty interpreting the image in Figure 5(c) even if the
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Figure 6: Top: Figure taken from Zhu et al. (2010). Mean shapes from Recursive
Compositional Models at different levels. Bottom: Figure taken from Wang and
Yuille (2015). One learned mixture with corresponding landmark localization
of horse images.

letters are shown in fonts they have never seen before. Indeed images of these
types are used on CAPTCHAs to distinguish between humans, who can interpret
them, and robots who cannot. Recent work (George et al., 2017) describes
a compositional model for reading CAPTCHAs which factorize geometry and
appearances, enabling the geometry and appearance to be learned separately,
hence saving on training data. Letters are represented explicitly in terms of
parts so that they can still be detected even if some parts are occluded (this is
harder for a “black box” like a Deep Net). In addition, the inference algorithm
involves bottom-up and top-down processing which enables the algorithm to
“explain away” missing parts of the letters and to impose “global consistency”
of the interpretation to remove ambiguities. Intuitively, part detectors combine
to make bottom-up proposals for letters which can be validated or rejected in
the top-down stage. By contrast, the authors report that Deep Nets performed
poorly on these tasks.

Compositional models have many desirable properties, such as being inter-
pretable, and the ability to be generative so they can be samples from. This
means that they know everything about the object (or whatever entity is being
modeled) which makes them harder to fool than black box methods like Deep
Nets. Learning compositional models is much harder than learning Deep Nets
although researchers have been able to learn hierarchical dictionaries starting
from basic elements (like edges) enable part-sharing and efficient learning, rep-
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Figure 7: Figure taken from Xie et al. (2018). A deep network can correctly
classify the left image as king penguin. The middle image is the adversarial
noise magnified by 10 and shifted by 128, and on the right is the adversarial
example misclassified as chihuahua.

resentation, and inference (Zhu et al., 2010) (see Figure 6). As we will discuss
in Section 6, they offer a strategy to deal with the complexity problem of vision,
i.e. the ability to perform an enormous number of visual tasks on a vast range
of images. Theoretical studies (Yuille and Mottaghi, 2016) have analyzed the
complexity of compositional models.

But many technical challenges remain. Addressing more challenging stim-
uli than letters, such as animals or vehicles, requires having richer appearance
models which can factorize between shape and appearance, see Wang and Yuille
(2015). But the increasing realism of virtual worlds constructed using computer
graphics tools, e.g., see Figure 2, suggests we may soon have realistic generative
models which make analysis by synthesis possible.

6 The Limits of Big Data? Adversaries and Ex-
ponential Explosions

As stated earlier, the evaluation of Deep Nets has been performed using Machine
Learning evaluation protocols. These are based on the standard Statistics tech-
nique of checking performance of models by cross-validation (broadly speaking
seeing if the results of the model trained on some of the data predict the results
on the data on which the models have not been trained).

There are problems with these evaluation protocols which vision researchers
have long been aware of. If the dataset is biased, i.e. unrepresentative of real
world images, then algorithms which perform well on it will often fail to gen-
eralize to other datasets (unless they share the same biases). Several datasets
have been discarded by the vision community after their biases became apparent
(e.g., if object detection could be done by ignoring the objects and exploiting
properties of the background) and when models which performed well on that
dataset failed to generalize to other more challenging datasets (Torralba and
Efros, 2011). A related problem is that datasets often represent typical events
and do not adequately represent rare events. These rare events may be rela-
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Figure 8: Figure taken from Xie et al. (2017). The top row is the input (adver-
sarial perturbation already added) to the segmentation network, and the bottom
row is the output. The red, blue and black regions are predicted as airplane,
bus and background, respectively.

tively unimportant, like only having a few examples of a uncommon bird like a
ptarmigan in a bird dataset. But they may also be highly important, like an
infant running in front of a car in an autonomous driving dataset. Note that
careful experimental design is difficult for vision datasets due to the complexity
of visual stimuli and it is unclear how large datasets have to be to be repre-
sentative of real world images. As shown earlier, even a very large dataset like
ImageNet has biases and so “sofa-detectors” will fail if they are shown images
from viewpoints under-represented in ImageNet, e.g., Qiu and Yuille (2016).

Another problem for evaluating vision algorithms are the recent studies
showing that Deep Nets can be successfully attacked by tiny modifications of
the images which nevertheless cause the Deep Nets to make major mistakes for
object classification (Szegedy et al., 2014; Goodfellow et al., 2015), object detec-
tion, and semantic segmentation (Xie et al., 2017) (see Figure 7 and Figure 8).
This problem partly arises because of the infinite space of possible images. These
types of “attack images” almost never occur in real world datasets but these
datasets, though enormous, are still only an infinitesimal subset of all images.
To perform these attacks, the algorithm must exploit knowledge of the Deep
Net and deliberatively search for images which cause these types of errors. (It
is also possible that these attack images are extremely rare and only found be-
cause the researchers are looking for them). There are now strategies which
defend against these attacks. One strategy is to treat these “attack images”
as extra training data. A second recent alternative (Xie et al., 2018) is to in-
troduce small random perturbations into the images, exploiting the assumption
that the “attack images” are very unstable so small random perturbation will
defend against them. It should be acknowledged that adversarial attacks can be
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mounted against any vision algorithm and that is a compliment to Deep Nets
to study their ability to resist attacks (it would be much easier to successfully
attack earlier vision algorithms).

But current adversary attacks may only be the tip of the iceberg and there
may be even more serious problems in the evaluation of vision algorithms due
to the enormous complexity of natural images and visual scenes. Recall that
machine learning theory assumes that it is possible to have large, enormous
benchmarked datasets for visual tasks to be representative of performing these
tasks on the real world. But what happens if the nature of the tasks requires
datasets which are exponentially large?

It is easy to see that a single object can be occluded in an exponential
number of ways and real world scenes consist of large numbers of objects placed
in arbitrary positions in a large set of possible three-dimensional scenes. Humans
are very adaptive to changes in context and will have little difficulty detecting
a monkey if it is given a guitar (as illustrated in Figure 3) or if it is put in a
lecture room, or even hiding in a dinning room. But, by contrast, Deep Nets
appear more sensitive to context. Realize that the context of any object can
be changed in an infinite number of ways (although some contexts are certainly
more common). Note that this enormous variability of context does not hold in
certain applications, e.g., in medical images the different body organs have fairly
standard context (e.g., the Pancreas is always very close to the Duodenum).

These complexity considerations mean that certain visual tasks require deal-
ing with an exponential number of hypotheses. This is highly problematic from
a machine learning perspective, because such algorithms may require, in prin-
ciple, exponential amounts of data to train and test. In particular, standard
evaluation methods like cross-validation will break down. From an intuitive
perspective, there will be many rare events which will not be well represented
in the evaluation datasets.

Recall this underlying theory of machine learning, informally known as Prob-
ably Approximately Correct (PAC) (Valiant, 1984; Vapnik, 1998; Poggio and
Smale, 2003), gives theoretical bounds on the probability that a machine learn-
ing algorithm has learned the structure of the underlying data. A key insight is
that the amount of training data must be much larger than the set of hypothe-
ses that the learning algorithm is allowed to consider before seeing the data,
otherwise one of the models might fit the data by chance (which is arguably
how many conspiracy theories get started). This is one reason why experimen-
tal studies sometimes produce results which other researchers fail to replicate,
particularly if researchers only decide on their hypotheses after first inspecting
the data. Nevertheless it implies that if the set of hypotheses is exponentially
large then the amount of data must also be exponential.

In short, the standard vision evaluation methods will start having problems
as we develop increasingly complicated vision models. We may be faced with
trying to learn models with exponential complexity requiring potentially expo-
nential amounts of data. This is clearly impossible. It is time for a rethink to
see how we can better learn and test complex vision algorithms. In particu-
lar, how we should evaluate them if the standard evaluation procedures become
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inappropriate.
There are two aspects to this problem. The first is how to learn models

which are exponentially complex when there is only limited amounts of data
available. The second is how to test these algorithms if we only have limited
amounts of data to test (because it is impractical to test over the infinite set of
all possible images).

A possible solution to the first problem is to use compositional models be-
cause of their ability to share parts and to factorize between geometry and
appearance. They also seem to enable the types of “cognitive science” learning
whereby humans can generalize without difficulty to novel environments which
they have not been trained on. The work by George et al. (2017) gives an exam-
ple of this. In addition, studies of human infants suggest that they learn causal
models of the 3D world and exploit underlying knowledge of the physical prop-
erties of the real world. If these relationships can be captured then they enable
true generalization to novel situations. Recall that the Ptolemaic model of the
solar system gave very accurate predicts but required a large amount of data
to determines its details (i.e. the epicycles). By contrast, a scientist knowing
Newton’s Laws could deduce that the orbits of the planets were roughly ellip-
tical and could determine them from a much smaller number of observations.
Moreover if the solar system was altered, e.g., due to a rogue planet entering it,
Newton’s Laws would enable us to predict what would happen.

A possible solution to the second problem, of how to test vision theories, is to
magnify the importance of adversaries so that instead of corresponding merely to
small perturbations of images they allow other more complex operations which
cause reasonable changes to the image or scene, e.g., by occlusion, or changing
the physical properties of the objects being viewed (Zeng et al., 2017), but
without significantly impacting human perception. From another perspective
“to let your worst enemy test your algorithm” instead of testing on a random
set of images drawn from a dataset.

This, of course, is similar to how complex engineering (e.g., airplanes) or
software structures are tested by systematically identifying their weak points.
This is more reminiscent of Game Theory rather than decision theory (which
focuses on the average loss and which underlies Machine Learning theory) be-
cause it suggests paying attention to the worst cases instead of the average cases.
This makes sense if vision wants to develop algorithms for self-driving cars, or
diagnosing cancer in medical images, where failures of the algorithms can have
major consequences.

This also urges the development of vision theories which are understand-
able/interpretable because it will not only be easier to identify their failure
modes but, due to their explicit structure, it will be easier to correct them.
Scaling up attacks on vision algorithms is made easier by the growing avail-
ability of realistic synthetic visual stimuli where systematic changes of nuisance
factors can stress test algorithms, as shown in Figure 2.
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7 Conclusion

This opinion piece has been motivated by discussions about Deep Nets with
several researchers in different disciplines. We have tried to strike a balance
which acknowledges the immense success of Deep Nets but which does not get
carried away by the popular excitement surrounding them. We have often used
work from our own group to illustrate some of our main points and apologize
to other authors whose work we would have cited in a more scholarly review of
the field.

A few years ago Aude Oliva and the first author co-organized a NSF-sponsored
workshop on the Frontiers of Computer Vision. The meeting was highly stim-
ulating and there were some very frank exchanges about the future of vision
and, in particular, there was considerable disagreement about the potential for
Deep Nets. But a few years later, as Yann LeCun predicted, everybody is using
Deep Nets to learn their features. The successes have been extraordinary and
have helped vision become much more widely known, dramatically increased
the interaction between academia and industry, lead to application of vision
techniques to a large range of disciplines, and have many other important con-
sequences. But despite their successes there remain enormous challenges to
overcome in order to achieve the goal of general purpose Artificial Intelligence
and to understand the Mind and the Brain. While Deep Nets, and other big
data methods, will surely be part of the solution we believe that we will also
need complimentary approaches which can build on their successes and insights.
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