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Abstract 

Computational models of vision have advanced in recent years at a rapid rate, rivaling in some 

areas human-level performance. Much of the progress to date has focused on analyzing the visual 

scene at the object level – the recognition and localization of objects in the scene. Human 

understanding of images reaches a richer and deeper image understanding both ‘below’ the object 

level, such as identifying and localizing object parts and sub-parts, as well as ‘above’ the object 

levels, such as identifying object relations, and agents with their actions and interactions. In both 

cases, understanding depends on recovering meaningful structures in the image, their components, 

properties, and inter-relations, a process referred here as ‘image interpretation’. 

In this paper we describe recent directions, based on human and computer vision studies, 

towards human-like image interpretation, beyond the reach of current schemes, both below the 

object level, as well as some aspects of image interpretation at the level of meaningful 

configurations beyond the recognition of individual objects, in particular, interactions between two 

people in close contact. In both cases the recognition process depends on the detailed 

interpretation of so-called 'minimal images', and at both levels recognition depends on combining 

‘bottom-up’ processing, proceeding from low to higher levels of a processing hierarchy, together 

with ‘top-down’ processing, proceeding from high to lower levels stages of visual analysis. 
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Abstract:  

Computational models of vision have advanced in recent years at a rapid rate, rivaling in some areas human-

level performance. Much of the progress to date has focused on analyzing the visual scene at the object 

level – the recognition and localization of objects in the scene. Human understanding of images reaches a 

richer and deeper image understanding both ‘below’ the object level, such as identifying and localizing 

object parts and sub-parts, as well as ‘above’ the object levels, such as identifying object relations, and 

agents with their actions and interactions. In both cases, understanding depends on recovering meaningful 

structures in the image, their components, properties, and inter-relations, a process referred here as ‘image 

interpretation’. 

In this paper we describe recent directions, based on human and computer vision studies, towards 

human-like image interpretation, beyond the reach of current schemes, both below the object level, as well 

as some aspects of image interpretation at the level of meaningful configurations beyond the recognition of 

individual objects, in particular, interactions between two people in close contact. In both cases the 

recognition process depends on the detailed interpretation of so-called 'minimal images', and at both levels 

recognition depends on combining ‘bottom-up’ processing, proceeding from low to higher levels of a 

processing hierarchy, together with ‘top-down’ processing, proceeding from high to lower levels stages of 

visual analysis. 
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1. Introduction 

Substantial progress has been made in recent years in visual recognition, mainly at the level of 

recognizing individual objects. However, image understanding goes beyond individual objects, and 

requires understanding both below and above the object level. Below the level of individual objects, 

image understanding requires the recognition of object parts and fine-level details, which may be 

impossible to recognize on their own, such as a door handle in a full car image, or a belt-buckle in a full 

person's image. Above the object level, image understanding includes dealing with complex 

configurations, and interactions between objects, including interactions between agents (e.g., ‘hugging’) 

or between an agent and an object (e.g., ‘playing the violin’). Common to scene understanding both above 

and below object recognition is the use of semantic structural representation, including relations between 

internal parts of a single object (e.g., Fig. 1B), as well as relations between multiple objects in a complex 



scene (Fig. 1C). As will be discussed below in sections 2,3, such structural representation is a 

fundamental aspect of human visual understanding at all levels. 

The process of acquiring semantic structure from raw sensory input (pixels) is termed here ‘image 

interpretation’, and it involves a mapping between image pixels to familiar components and relations in 

our world. Semantic components of interest in the world may be small details such as a crease in a shirt or 

a thin ring on a finger, or complex multi-object configurations such as an orchestra or a chessboard, and 

the interpretation process needs to span all levels. The term ‘image understanding’ as used here depends 

on the image interpretation process, but it can be more abstract, in the sense of using concepts which go 

beyond components of the physical world and relations between them, for example, goals, moods, 

judgments such as ‘dangerous’ and others. In Fig. 1C, for instance, the interpretation process can identify 

certain image structures as corresponding to human bodies, or parts such as face of fingers. It can also 

identify relations between body parts, such as ‘touching’ ‘covering face’, and the like. Image 

understanding will depend on results of this interpretation process, but will include higher, more abstract 

aspects, such inferring the ‘consolation’ interaction in the image. In the next sections, we describe our 

recent modeling studies of human interpretation processes, which are below (Sec. 2) and above (Sec. 3) 

object recognition. We conclude in Sec. 4 by discussing approaches and future directions in the study of 

human understanding of complex scenes.  

2. Image understanding below object recognition 

When looking at an object image, humans can identify not only the object label (or class), but also a 

set of semantic features and relations corresponding to the object’s internal parts (e.g., as in Fig. 1B). This 

capability of humans is a part of image understanding below the object level, and the process of finding 

the parts and relations from pixels is called here ‘full object interpretation’. This local level of image 

interpretation is discussed below in the context of so-called ‘minimal images’.  

The process of full object interpretation is difficult to replicate in computational models, since an 

object may contain a large number of identifiable components in highly variable configurations. We 

approach the modeling of this process by decomposing the full object or scene image into smaller, local, 

regions containing recognizable object components. There are several advantages to perform the 

interpretation first in limited local regions, and then combine the results. First, as exemplified in Fig. 1B, 

Figure 1. Below and above object recognition. (A). Object recognition: labeling images by basic level object classes (Rosch et al., 

1976), e.g. cars, people, horses, and ships. Current computational models deal successfully with this level of recognition (e.g., the 

ImageNet data set, Deng et al., 2012). (B). Image understanding below object recognition: In addition to the object label, humans 

can identify a large number of semantic features and parts within an object image. In the image of a person’s face, local features such 

as eyebrow, lid, or iris, are identified by humans, among many others. (C). Image understanding above object recognition: 

Humans can identify object configurations and interactions between objects and agents. In this image, humans can identify objects 

(two human bodies, a bench) and their parts, but also understand aspects of the configuration, e.g. an interaction of consolation. 
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in such local regions the task of full interpretation is still possible (Ullman et al., 2016), but it becomes 

more tractable, since the number of semantic recognizable components is highly reduced, making 

effective interpretation more feasible (Ben-Yosef et al., 2018). At the same time, when the interpretation 

region becomes too limited, observers can no longer interpret or even identify its content, as illustrated in 

Fig. 2B, placing a limit on the locality of the interpretation process.  

A second advantage of applying the interpretation locally is that variability of configurations taken 

from the same object class, but limited to local regions, is often significantly lower compared with 

complete object images. Finally, as discussed further below, the image of a single object typically 

contains multiple, partially overlapping regions, where each one can be interpreted on its own. Due to this 

redundancy, performing the interpretation locally and then combining the results increases the robustness 

of the full process to local occlusions and distortions. Based on these considerations, we present in the 

next section a model for local image interpretation, which is applied to local regions that are small, yet 

interpretable on their own by human observers. 

In performing local interpretation, a question that naturally arises is: how should an object image 

be best divided into local regions? The approach we take in our studies is to develop and test the 

interpretation model on regions that can be interpreted on their own by human observers, but at the same 

time are as limited as possible. We used for this purpose a set of local recognizable images derived by a 

study of minimal recognizable images (Ullman et al., 2016). We briefly describe below how these 

minimal images were obtained, and then describe a model for their interpretation.  

2.1 Minimal recognizable and interpretable configurations 

 A minimal image (also termed Minimal Recognizable Configuration, or MIRC) is defined below 

as an image patch that can be reliably recognized by human observers, which is minimal in the sense that 

further reduction by either size or resolution makes the patch unrecognizable. To discover minimal 

configurations, an image patch was presented to observers: if it was recognizable, 5 descendants were 

generated by either cropping at one corner, or reducing resolution of the original patch. A recognizable 

patch is identified as a minimal image if none of its 5 descendants reach recognition criterion (50%). The 

process is illustrated in Fig. 2A. A search started with images from different object classes, and identified 

their minimal configurations over all possible positions, sizes and resolutions. Each subject saw a single 

patch only from each original image, requiring over 15,000 subjects. Testing was therefore done online 

using Amazon’s Mechanical Turk platform (MTurk), combined with laboratory controls. At the end of 

the search, each object class was covered by multiple minimal configurations at different positions and 

sizes. Minimal configurations were on average about 15 image samples in size; some contained local 

object parts, others were more global views at a reduced resolution. Examples of identified minimal 

configurations are shown on the top row of Fig. 2B.  

A notable aspect of the results for the purpose of the current study, is the presence of a sharp 

transition for almost all minimal configurations from a recognizable to a non-recognizable minimal 

image: a surprisingly small change at the minimal-configuration level can make it unrecognizable. 

Examples are shown in Fig. 2B, bottom row, together with their respective recognition rates. The small 

changes between minimal vs. sub-minimal configurations that cause large drop in recognition are used 

below to identify features and relations used in the interpretation model. Ullman et al. (2016) also found 

that the large gap in human recognition rate between minimal and sub-minimal images is not reproduced 

by current computational models of human object recognition (Serre et al., 2007) and recent deep network 

models (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). As was shown in Ben-Yosef et al. 

(2018), the full interpretation model can provide at least a partial explanation to this sharp drop in 

recognition. 

Minimal configurations are minimal in the sense that when further reduced, humans can no longer 

recognize them. Still, when humans recognize minimal configurations, they can also identify internal 



parts and components in them (Ullman et al., 2016). Further tests (Ben-Yosef et al., 2018) have shown 

that the number of recognizable parts in minimal images is small (example in Fig. 2C), and that humans 

can consistently identify internal components in a large set of tested minimal configurations. Naturally, 

humans cannot identify any of the internal parts in the slightly reduced, but non-recognizable sub-

minimal configurations. These results provide an empirical indication that in the human visual system 

recognition and interpretation go hand in hand, and that recognition is combined with the understanding 

of internal structures.   

2.2 Object interpretation in related work 

Image object interpretation can take place at different levels of details, from full objects and their 

main parts, to fine details of objects' structure. In modeling human visual recognition, as well as in 

computer vision, much of the work to date has focused on relatively coarse levels, rather than full object 

interpretation considered here. For example, in the Recognition by Components (RBC) model of human 

object categorization (Biederman, 1987), objects are represented in terms of a small number of 3-D major 

parts. A leading biological model on the human object recognition system, the HMAX model 

(Riesenhuber & Poggio, 1999; Serre et al., 2007) produces as its output general category labels of full 

objects, rather than a detailed interpretation. 
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Figure 2. Minimal recognizable and interpretable configurations. (A). A search for minimal images started from a 

fully-viewed object image, which was gradually reduced in small steps, by slightly cropping corners or slightly 

reducing resolution. A minimal image is an image region that is recognizable on its own (green check mark), but is 

no longer recognizable when reduced further (red X mark). (B). Minimal (Top row), and their slightly reduced sub-

minimal versions (bottom row) images. Numbers below each image show correct recognition rate by 30 human 

observers. Small changes to the local image at the minimal configuration level can have large effect on recognition.  

(Adapted from Ullman et al., 2016). (C). Full human interpretation of minimal images. Arrows point to the parts and 

features that humans can reliably identify in a minimal image. (Adapted from Ben-Yosef et al., 2018). 
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 A model for human image interpretation (Epshtein et al., 2008) was shown to provide partial 

interpretation by a combination of bottom-up with top-down processing. The model uses a hierarchy of 

informative image patches to represent object parts at multiple levels. The model below also uses a 

combination of bottom-up and top-down processing, but it provides a significantly richer interpretation, 

and based on computational and psychophysical considerations, it uses an extended set of elements and 

relations.  

In computer vision, there has been rapid progress in different aspects of object and scene 

recognition, based primarily on deep convolutional neural networks and related methods (Hinton, 2007; 

LeCun et al., 2015; Yamins et al., 2014; Krizhevsky et al., 2012). Such methods have also been adapted 

successfully for image segmentation, namely the delineation of image regions belonging to different 

objects. For example, recent algorithms (e.g., Long et al., 2015; Chen et al., 2017) can identify image 

regions belonging to different objects in the PASCAL (Everingham et al., 2010) or CoCo (Lin et al., 

2014) benchmarks; however, they do not locate the precise object boundaries, and do not identify the 

object’s semantic components.  

 A number of studies have begun to address the problem of a fuller object interpretation, including 

methods for part-based detectors, object parsing, and methods for so-called fine-grained recognition. 

Recent examples include modeling objects by their main parts, for example an airplane’s nose, tail, or 

wing (Vedaldi et al., 2014), or modeling human-body parts such as the head, shoulder, elbow, or wrist 

(e.g., Felzenszwalb et al., 2010; Girshick et al., 2015). Related models provide segmentation at the level 

of object parts rather than complete objects (applied e.g. to animal body parts such as head, leg, torso, or 

tail, e.g., Chen et al., 2017). Another form of interpretation has been the detection of key-points within an 

object, such as key-points of the human body (e.g., Chen & Yuille, 2014; Cao et al., 2017) and within the 

human face (e.g., Yang et al., 2015). 

  The goal of interpretation models, such as those above, is to produce the semantic structure in an 

image region. The model is usually constructed during learning by supplying a set of training images 

together with their interpretation, i.e., a set of semantic elements within each image, and the goal of the 

model is to identify similar elements in a novel image. In a correct interpretation, the internal components 

are expected to be arranged in certain consistent configurations, which are often characterized in the 

model by a set of spatial relations between components. The task of producing the semantic interpretation 

can therefore be naturally approached in terms of locating within an image region a set of elements 

(primitives) arranged in a configuration that satisfies relevant relations. The term ‘relations’ also includes 

properties of single elements (e.g., the curvature, location, or size of a contour), which can be considered 

as unary relations.  

 A number of algorithms have been developed and used in the field of machine vision under the 

general term ‘structured prediction’ to deal with problems related to the learning and discovery of image 

structures, such as Conditional Random Field (Lafferty et al., 2001), or Structured Support Vector 

Machine (Joachims et al., 2009). These models are given the set of possible relations to use, and then 

learn the specific parameters from examples. In terms of properties and relations, in most visual models 

that deal with image structures, such as the ones above, part properties (unary relations) are limited to 

local, deep CNN-based features, and binary relations are limited to relative displacements of components 

(parts or keypoints). As elaborated below, results of the present modeling show that the capacity to 

provide full interpretations requires the use of features and relations, which go beyond those used in most 

current recognition models. 

 2.3 A model for full interpretation of minimal object images 

 To study the process of human object interpretation, a model for full interpretation of minimal 
images was developed in (Ben-Yosef et al. 2015;2018), and below we briefly describe the design and 

results of this model. The interpretation scheme has two main components: in the learning stage, it learns 



the semantic structure of an image region in a supervised manner, and in the interpretation stage, it 

identifies the learned structure in similar image regions.  

The semantic features to be identified by the model (e.g., ‘ear’, ‘tie knot’, etc.) were features that 

human observers label consistently in minimal images, identified by using an MTurk procedure (the 

average number of consistently identified elements within a single minimal image was 8). The semantic 

features were then represented by three types of visual primitives: points (e.g., a horse eye), one-

dimensional contours (for borders, e.g., a tie border), and two-dimensional region primitives. Given these 

semantic elements, we prepared a set of annotated images, in which the semantic components were 

marked manually on multiple examples of the minimal image, and then used in a structured learning 

framework based on a random forest classifier. The learning scheme computes a set of relations between 

elements in the structure for both positive and negative examples, and then learns the contribution of each 

relation to the identification of valid interpretations. A critical component in this scheme is therefore the 

types of relations that were used to identify correct local structures.  

At inference time, the interpretation process starts with a candidate image region and its proposed 

category (e.g., that it contains a horse-head). The process then used the learned model of the region’s 

internal structure to identify within the region a structure that best approximates the learned one. This 

process proceeds in two main stages. The first is a search for the local primitives, including points, 

contours, and region parts in the image, to serve as potential candidates for the different components of 

the expected structure. The second stage searches for a configuration of the components that best matches 

the learned structure. 

2.4 Structural representations for full object interpretation 

Figure 3. Useful features and relations for full interpretation. Each panel shows a relation when exists (top) and when 

not exist (bottom). Further details about the way they were inferred and implemented are in Ben-Yosef et al., 2018. 

Length ratio between 
contours 

Parallelism between 
contours 

Connectedness 
between contours 

Inside/Outside Contour ends in 
region 

Continuity  
between contours 

Deviation from 
circular arc 

Relative location 
between parts 



The model 

described above 

belongs to the 

general approach 

of structured 

vision models. 

There is a rich 

history to the use 

of structural 

models in the 

computational 

study of vision, 

including visual 

recognition and 

interpretation 

(e.g., 

Felzenszwalb et 

al. 2010; Ferrari 

et al., 2010; Zhu 

& Mumford, 

2007; Chen et al., 

2017; Arnab et 

al., 2016). 

Models differ in 

the shape 

components used to create structured configurations, the relations used to represent configurations 

(including attributes of a single element as unary relations), and the algorithms used to learn structures 

from image examples, and to identify similar structure in novel images. The relations used in these 

models were mostly simple, including unary features of part resemblance (based on CNN features), and 

binary features of relative displacement (e.g., Felzenszwalb et al. 2010; Chen et al., 2017). We term these 

features and relations the ‘basic relations’. As described below, our modeling showed that the usual set of 

basic relations is insufficient for interpretation, and minimal images were used to identify additional 

relations, which contribute to correct interpretation.   

In the human and primate vision literature there has also been an extensive body of work on relations 

between elements in the visual field. These studies have shown sensitivity of the visual system to known 

principles of perceptual organization such as proximity, similarity, connectivity, symmetry and continuity 

between visual elements, and also to parallelism, curvature, convexity, co-linearity, co-circularity, 

connectedness of contours, and inclusion between elements (see review in Ben-Yosef et al., 2018). The 

availability of minimal images (sec. 2.1) allowed us to examine whether local appearance and basic 

relations are sufficient for producing an accurate ‘full’ interpretation by our model. Minimal 

configurations are by construction non-redundant visual patterns, and therefore their recognition and 

interpretation depend on the effective use of all the available visual information. It consequently becomes 

of interest to examine the performance of a model that uses a limited set of relations (e.g., the basic 

relations above) when applied to the interpretation of minimal images, and compare to interpretation 

produced by a model with a richer set of relations. 

In the recognition of minimal images, the sharp drop in human’s ability to recognize and interpret a 

minimal configuration when the image is slightly reduced, provided a tool for identifying useful relations 

for modeling human interpretation. A minimal image was compared with its similar, but unrecognizable 

sub-image, to identify either a missing component (e.g., a contour part) or a relation (e.g., between two 

Figure 4. Evaluating predictions of the interpretation model.  Left column:  novel examples of minimal 

images of the horse-head type. On these examples, we show the predictions of two versions of our 

interpretation model, and compare between them. Middle column:  a version with the ‘basic set’ of 

relations. Right column: a version with an ‘extended set’ of relations, which includes connectivity, 

continuity, inside/outside, ‘Ends in’, and others. The average overlap between the predicted interpretation 

and true human interpretation (shown at the bottom    for each version), shows a significant improvement 

when the interpretation includes the extended set over basic set, but still a significant gap between the 

interpretation model and human interpretation.  
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contours parts), which were present in the minimal image but not in the sub-minimal configuration. For 

each candidate component or relation, we tested its consistent effect on other pairs of minimal and sub-

minimal images, and we evaluated its statistical contribution to the interpretation process, by adding it to 

the set of relations, training a new interpretation algorithm, and measuring the difference in interpretation 

performance, with and without this relation. A list and illustrations of the most contributive relations are 

in Fig. 3 (hereinafter, the ‘extended’ set of relations), further details in (Ben-Yosef et al., 2018). 

Interpretations produced by the model were compared with the ground truth annotations supplied by 

human annotators. To assess the role of the extended relations derived from minimal and sub-minimal 

pairs, we compared results from two versions of our model, which differed in the relations included in the 

model: one using only the basic, and the other using the extended set of relations (namely, the basic 

relations and the relations in Fig. 3). Fig. 4 shows examples of the interpretations produced by the model 

with the basic and extended sets for novel test images. To assess the interpretations, we matched the 

model output to human annotations for multiple examples. Our training set contained 120 positive 

examples, and 25,000 negative examples for each interpretation model. Our test set contained 120 

examples of minimal images or more (480 examples for the horse-head minimal image). We 

automatically matched the ground truth annotated primitives to the interpretation output by the so-called 

overlap index (Intersection over Union of two regions. See Tan et al., 2006). Our results show a 

significant improvement in interpretation results when using the extended set of relations, but still a 

significant gap between the model and human interpretation. As an example, for the horse-head model in 

Fig. 4, the average overlap was 0.40 for the basic set, 0.61 for the extended relations set, and 0.75 overlap 

between different two human annotators (which served as an upper bound for comparing interpretations).  

2.5 A two-stream view for recognition and interpretation in the human visual system 

So far we presented a model for the interpretation of minimal images, and discussed the types of 

features that it uses and the type of predictions that it can provide. In this section, we discuss how the 

interpretation model can be used to predict human recognition, including the sharp drop in recognition at 

the minimal image level. As a first step, we tested a baseline recognition model based on deep 

convolutional networks, including multi and binary classification networks, which were pre-trained on 

ImageNet but fine-tuned for recognition of minimal images (Ullman et al., 2016; Ben-Yosef et al., 2018). 

For example, a binary classification network in Ben-Yosef et al. (2018) was trained to recognize a horse-

head minimal image, based on the VGG19 network model (Simoniyan and Zisserman, 2015). It was 

trained on 120 minimal image examples of a horse-head (the positive train set), and 200,000 examples 

from non-horse images of the same size as the horse-head minimal image (the negative train set). 

Experimental results showed that the network was unable to replicate human behavior in two aspects: (i) 

it was often confused by examples that look similar to the horse-head, but were not confusable for 

humans (termed ‘hard negatives’), and (ii) it could not predict the sharp gap in human recognition 

between the minimal and sub-minimal images.  

Next, we examined whether the interpretation model described above can explain the sharp drop in 

recognition between minimal images and similar, but slightly reduced sub-minimal images. The results 

regarding human interpretation of minimal images suggest that humans combine the recognition of local 

image regions with the interpretation of their internal structure (Sec. 2.1). As a result, a false detection by 

the recognition model can be rejected if it does not contain the internal structure expected by the 

interpretation process. We therefore tested whether an integrated scheme, which combines recognition 

and interpretation, will also exhibit the sharp transitions found in human recognition. In the combined 

scheme, we used the confidence score provided by the interpretation model, for making the final 

recognition decision. In this manner, high-confidence interpretation, for instance in interpreting a horse-

head image, is required for a positive recognition decision. 

The interpretation model was trained with the same training set used for the VGG19 binary classifier 

(in the interpretation model, the positive examples were also annotated with the different parts). The 



match to human recognition on novel examples was 

then compared between the two schemes: with and 

without the interpretation model. The comparison 

showed that the recognition results using the 

interpretation model are much closer to human 

behavior on the set of confusable examples (i.e., 

hard negatives; see more details in Ben-Yosef et al., 

2018). Furthermore, the interpretation model could 

predict the human recognition gap between minimal 

and sub-minimal images, and replicated the sharp 

drop in recognition when minimal images are 

reduced. The reason for the sharp drop is likely to be 

that even a small reduction of a minimal images can 

cause components of the internal structure (e.g., a 

horse’s ear), as well as some pairwise relations, to 

be disrupted. The conclusion from these 

experiments is that the interpretation features 

discussed in Sec. 2.4 are not only useful to predict 

human interpretation, but also to predict human 

recognition of minimal images. 

The results and conclusions above lead us to 

suggest a two-stage view for recognition and interpretation in the human visual system. The first stage is 

based on a hierarchical feed-forward process in the visual ventral pathways, which may be roughly 

similar to the way that existing deep convolutional networks are operating (Reisenhuber & Poggio, 2001; 

Hinton, 2007; Yamins & Dicarlo, 2016). Results of the first stage then trigger a second stage, which 

performs the full interpretation process. The computational model suggests that the interpretation task 

relies on more complex and higher-order features compared with the first stage, to achieve fine 

localization of internal parts as well as their inter-relations. Computations performed by the second stage 

include in the model relations such as connectedness and enclosure. In the model, these computations are 

applied selectively at relevant image locations, rather than the parallel processing across the image used 

by convolutional deep networks. We suggest that in human vision this stage is likely to be applied at least 

in part by top-down processes, where object models stored in higher-level areas direct the application of 

the required processes to selected image locations. On this view, human object recognition is followed by 

an interpretation process at selected locations, and the interpretation process is also used to resolve 

ambiguous examples and reject false detections by the initial stage. 

3. Recognition above the object level  

The tasks of visual recognition and image understanding extend ‘above’ the object level, to include 

meaningful configurations of objects, agents, and their interactions. In this section, we discuss some 

aspects of this complex task. In particular, we focus on the problem of recognizing different types of 

interactions between two objects, two agents, or an agent and an object. Examples of agent-object 

interactions are transitive actions such as ‘holding a book’, ‘playing the violin’, or ‘smoking a cigarette’.  

Examples of agent-agent interactions we consider include ‘hugging’, ‘shaking hands’ or ‘helping’. The 

interaction of ‘stealing’ is an example for a configuration involving both agents and an object. Humans 

can not only understand the type of interactions from images, but also their tone and manner. For 

example, humans can tell if a violin player is holding the instrument correctly or not, or if two people are 

having a warm or a more formal hug (Fig. 6B), and the like. 

Meaningful configurations can include complex interactions, involving multiple objects and agents, 

but the focus here will be on pairwise agent-object and in particular agent-agent interactions. The 

A. Recognizing agent-agent (social) interactions 

B. Recognizing agent-object interactions 

Figure 5. The role of interpretation in recognizing social 

interactions. (A). The location and shape of the hand of one 

person touching is essential to distinguish between 

recognition of a friendly or more aggressive type of social 

interaction. (B). The exact location of the hand relative to the 

horse head contours and parts is critical to judge if the 

interaction is ‘feeding a horse’ or ‘petting a horse’.  



recognition of the type and tone of such interactions often depends on detailed analysis of subtle cues, in 

particular at the locations of contact between the interacting agents and objects. The fine localization of 

parts within the interacting objects, and the understanding of relations between these parts, are critical to 

judge the nature of the interactions. For example, the difference between the social interaction images in 

Fig. 5A depend on details of the shape and contact between agents and objects. As another example, a 

hand placed on a horse’s mouth can tell us that the interaction is ‘feeding a horse’ (Fig. 5B). However, if 

the hand is placed slightly above the mouth, then we are more likely to understand the interaction as 

‘petting a horse’. As these examples illustrate, recognizing the type and tone of interactions often depends 

on a detailed interpretation of the participating agents and objects, with focus on the locations of contact 

between them. Detailed local interpretation discussed in the previous section is therefore also a key 

element for understanding interactions between objects and agents.  In the sections below, we focus 

therefore on the use of a detailed local interpretation in the recognition of interactions. We further chose 

to focus in particular on social interactions, for several reasons: understanding social interactions from 

visual input is an important cognitive task, it is highly challenging from a modeling standpoint, and the 

ability to perform this interpretation task automatically is at present severely restricted.  

In a recent study, we have started to develop parts for a computational model for interpreting social 

interactions between agents. In approaching the problem, we used a similar approach to that of Sec. 2.2, 

namely, focusing on the minimal interaction configurations and their interpretation in terms of parts and 

relations. The approach and results are discussed in the next sections. We begin in section 3.1 with a brief 

list of related computational work. Section 3.2 describes our psychophysical data and computational 

models for the interpretation of social interaction images. Section 4 discusses the relevance of the 

proposed framework using detailed local interpretation to the understanding of interactions in full-scale 

real-world images.  

3.1 Image understanding above object recognition in recent computational work 

Recognizing interactions between objects and agents is an active research area in current computer 

vision. As in the recognition of objects (e.g., ImageNet by Deng et al., 2012), the dominant approaches 

for recognizing interactions are based on training with ‘big-data’, and an effort to collect large datasets of 

interaction images and videos is currently under way (e.g., Stanford40 by Yao et al., 2011; HICO by Chao 

et al.,  2015; Visual Genome by Krishna et al., 2017; the Kinetics dataset by Kay et al., 2017; AVA by Gu 

et al., 2018). Identifying interactions is also a major component of related computer vision challenges, 

such as image captioning (Vinyals et al., 2017) and visual question answering (Antol et al., 2015), which 

are based on combined text and visual data (e.g., Antol et al., 2015; COCO-VA by Lin et al., 2014; 

Visual7w by Zhu et al., 2016). Despite these efforts, performance of existing algorithms for interaction 

recognition is low (Gu et la., 2018) and significantly behind the performance of algorithms for object 

recognition. Specifically, current machine understanding of interactions between multiple objects in a 

complex scene -- even when these scenes are highly constrained -- is limited (e.g., Li et al., 2009; Johnson 

et al., 2017). We next turn to briefly review related work in our specific area of focus, namely, modeling 

the recognition of social interactions in images.  

3.1.1 Visual understanding of social interactions in previous work 

Early research on visual understanding of social interactions is rooted in the field of social and 

psychological sciences, studying the different types (e.g., Leary’s circumplex, Leary, 1958), and physical 

characteristics (e.g., the distance between two individuals, Hall, 1966) of social relations. This analysis of 

interactions includes so-called proxemics (spatial aspects of interacting humans), and interaction 

taxonomies such as the Wiggins circumplex (Wiggins 1979), which applied Leary’s Circumplex to the 

interaction and relations domain. The field of social interactions has also included developmental studies 

on infants and children. For example, Hamlin and Wynn (2011) have demonstrated recognition of social 



interactions in infants around the age of six months, such as a preference by the infants towards an agent 

seen helping another agent, over an agent hindering others. Other studies have shown that a perception of 

social dominance starts developing during the first year of life (Mascaro and Csibra 2012, Thomsen et al 

2011). Such studies underscore the basic importance and the natural capacities of recognizing the type 

and tone of social interactions between people.  

Brain studies have further highlighted the role of visual understanding of social interactions in the 

primate cortex. For instance, activations in human brain regions (in the posterior superior temporal sulcus, 

pSTS) were reported when subjects viewed interacting humans, but not when viewing non-interacting 

humans, for stimuli composed from moving point-light representing human figures (e.g., Centales et al., 

2011; Isik et al., 2017). Similarly, a recent study in macaques found regions of the frontal and parietal 

cortex that responded exclusively to movies of monkey engaged in social interactions, but not to movies 

of monkeys conducting independent actions or of interactions between inanimate objects (Sliwa and 

Freiwald, 2017). These studies reveal the existence of cortical machinery that is dedicated to visual 

analysis of social interactions.  

In terms of computational modeling coming from cognitive studies and machine vision, only a limited 

number of studies have addressed the problem of visual recognition of social interactions. Most of these 

studies relied primarily on spatiotemporal patterns in video sequences, unlike humans who can also 

reliably perceive social interactions in still images. Early methods for recognizing interactions were based 

on characterizing low-level visual features in interaction videos (e.g., Patron-Perez et al., 2012). More 

recent methods are based on finding body parts and modeling relations between the agents. Examples 

include localization of agents’ body pose (e.g., Yang et al., 2012), or face pose (Tanisik et al., 2016), e.g., 

by deep CNN features, and features based on distance between agents (Patron-Perez et al. 2012, Yang et 

al. 2012). Kong and Fu (2016) have further used the localization of body components and their relations 

for the recognition of social interactions, by modeling a set of spatiotemporal relations between body 

Figure 6. (A). ‘hugging’ can be recognized independently from local body parts of the interacting agents. Top row: Different 

image regions taken from the same scene, each of which is sufficient for humans to recognize a ‘hug’. Bottom row: Local 

image regions from different scenes in which humans can recognize a ‘hug’. Each region contains different sub-configurations 

of body parts. In each of these sub-configurations humans can also identify and localize the different body parts, and their 

relations, the process described in this paper as ‘image interpretation’. (B). Different tone of interactions. On the top panel 

humans report a cold formal hug, while on the bottom panel humans report an intimate warm hug. Detailed interpretation can 

play critical role in determining the type and tone of social interactions. 
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parts. Similar to these studies, but with a significantly richer set of body features and relations, our work 

uses full interpretation of the interacting agents, in order to achieve correct and robust interaction 

recognition. 

 

3.2 Full interpretation of social interaction images  

To deal with the extreme variability of images within a given interaction category such as ‘hug’, we 

first used the minimal-images approach described above (Sec. 2.1 and Sec. 2.3), in order to identify 

reduced configurations, which still provide sufficient support for correctly recognizing the interaction. 

Such minimal interaction images are useful to identify the visual components and relations, which are 

crucial for making the correct interpretation. Our study suggests that an image of interacting agents (e.g., 

‘hugging’) contains multiple informative sub-configurations, where each one of them is sufficient for 

humans to recognize the interaction (Fig. 6A). Different configurations typically include different body 

parts e.g., a hand of an agent and the back of another, arms of the two agents, etc. Such sub-

configurations can be clustered into several different ‘templates’ of the interaction category, which are 

defined by the parts that they contain. Since the number of parts in these sub-configurations is small, their 

variability is considerably reduced compared with fully-viewed images. Identifying these configurations 

individually, and then combining them together, can lead to a flexible and robust recognition of social 

interactions. We next describe psychophysical results of studying minimal images for social interactions.  

3.2.1 A set of minimal images for social interactions  

Minimal images become particularly useful at the limit of recognition, where further reduction of the 

image makes them unrecognizable. We applied the minimal images approach to find the most limited 

configurations from which humans can still recognize social interactions. We used a psychophysical study 

to identify the minimal recognizable configurations in social interaction images; these are local image 

regions in which the interaction type is recognizable, and which further reduction by either size or 

resolution turns them unrecognizable. To identify the minimal interaction configurations, we used a 

similar search procedure to the one in Sec. 2.1. The search started from a fully viewed interaction image, 

such as a ‘hug’, which was reduced in small steps, by cropping corners or reducing resolution. At each 

step, human interaction recognition was tested via MTurk. A minimal interaction configuration is an 

image region from which the interaction type is reliably recognized, but any further reduction in size or 

resolution makes the image un-recognizable (a recognition criterion set at 50% correct recognition by the 

MTurk subjects was used). Examples are shown in Fig. 7 for minimal interaction configurations. 

The search started from various interaction images (e.g., two people ‘hugging’, ‘fighting’, ‘toasting’, 

‘board playing, etc., examples in Fig. 7A), and each interaction image was used to identify a number of 

different, partially overlapping, local configurations (minimal images). Subjects were presented with 

images from different social interaction categories, as well as individual object images for control. Each 

image was presented to 30 different subjects, and each subject saw a single image from each interaction 

class. Overall, we had approximately 7000 different subjects participating in the study. More details about 

the psychophysics procedure are in Appendix A. For the discovered minimal configurations, we also 

tested the internal semantic components that humans can recognize in them (namely human interpretation 

of minimal hugging configurations; See partial lists of such components in Fig. 7B). The minimal 

interaction configurations varied in the body parts they contained. For example, one minimal ‘hug’ 

configuration included the agents’ faces and arms, while another contained only torsos and arms (without 

faces). Overall, our search generated minimal configurations coming from 8 different social interaction 

classes. The average size of the minimal interaction images was ~302 image samples.  

Similar to the minimal configurations from object images, we found that in minimal interaction 

images too, small changes in the image could cause a large drop in human recognition of the interaction 



type. Figs 8C-D show this characteristic for ‘hug’ minimal configurations. For each minimal image, our 

study identified a set of internal features that are used by the recognition process, together with 

informative properties and relations between adjacent components. The internal components and their 

spatial relations, identified in the psychophysical study, were next used in a computational model for full 

interpretation and recognition of interaction images, described in the next section. 

 3.2.2 A model for full interpretation of social interaction images 

The model for the automatic interpretation of social interactions is based on the structured-prediction 

framework, discussed in Sec. 2.3, and in more detail in (Ben-Yosef et al. 2018). The model was trained to 

perform the interpretation of a single interaction type (e.g., ‘hugging’), and a single interaction 

configuration (e.g., a configuration showing an arm and a back, as in the examples of Fig. 8A).  The 

interpretation score that the model provides was also used for recognition, by comparing the model score 

to a decision threshold. To train the model, we collected multiple examples from the same minimal 

configuration (the positive set), as well as interpretations for all the examples provided by a human 

annotator. A negative set for the model was composed from multiple non-class examples of similar size to 

the positive images, containing various objects, non-interacting agents, or interacting agents from a 

different interaction class (e.g., ‘fighting’ examples were used in the negative set of a ‘hugging’ model). 

Figure 7. (A). Minimal interaction configurations for: ‘hugging’ and ‘fighting’ (agent-agent interactions), and for toasting and 

board playing (interactions involving two agents and objects.). (B). Human interpretation of the internal semantic components in 

the minimal configurations. (C-D). Inferring interpretation features from minimal and sub-minimal configurations. Columns from 

left to right: Minimal and sub-Minimal configurations, candidate critical interpretation feature, minimal and sub-minimal images 

with a similar loss of feature. Features included here are missing arm contours (in C) and ‘touching’ relation involving the hand 

of agent#1 and the back of agent#2 (in D).  
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The interpretation model was based on a structured random forest algorithm (Breiman, 2001), similar to 

Sec. 2.3, with the structural features in the ‘extended’ set of Sec. 2.4, together with additional structural 

features, which were found to be useful for interpretation of minimal interaction configurations, using the 

same procedure used in Sec. 2.4 and (Ben-Yosef et al. 2018). 

The new features and relations incorporated in the model for recognizing interactions were inferred 

from human interpretation and recognition of minimal and sub-minimal images for social interactions, as 

exemplified in Fig. 7C-D. A minimal image was compared to its slightly reduced, but unrecognizable 

sub-minimal configuration, and a feature of a part, or a relation between parts, which exist in the minimal 

but not in the corresponding sub-minimal image, was identified. For interactions, the search for structural 

features was extended beyond pure image relations (e.g., ‘contour parallelism’, ‘inside/outside’, as in Sec. 

2.3 and Fig. 3), to include more properties and relations regarding the contact points of parts belong to the 

different agents. Such features coming from minimal and sub-minimal images included a unary feature of 

a closed hand configuration, or a binary feature of a hand ‘touching’ a person's back (Fig. 7D). Such 

relations are generic and can be used for interpretation of various interaction types. When a candidate 

feature or relation were identified by the difference between a minimal and its sub-minimal image, a 

computational test was applied for deciding whether to include it in the interpretation model. To perform 

the test, we compared the performance of the interpretation model using two versions of the model, one 

with the added feature and the other without it (using only the extended set described in Sec. 2.4).  The 

new feature was added to the interpretation model only if it contributed to the model's performance (a 

similar to the paradigm used in Ben-Yosef et al., 2018).  

3.2.3 Experimental evaluation 

The interaction recognition model was trained and tested on a number of interaction 

configurations. Several examples of a minimal 'hugging' configuration are shown in Fig. 8A. The model 
was trained with a positive set including 120 examples, provided with full interpretation annotations by a 

human observer. A negative set for the training procedure included 5000 non-hug image regions, of the 

Figure 8. A model for full interpretation of minimal interaction configurations. (A). Four ‘hugging’ minimal images from the 

same type. A full interpretation model was trained on 120 examples of minimal images from this type, provided with human 

detailed interpretation of the internal parts in them, as well as negative examples from non-hugging images. (B). The model was 

tested on novel examples of minimal images of the same type as in (A),and returned the predicted interpretation for these 

examples. The results, few of them are shown here, show good match with human interpretation (see text for details and 

quantitative evaluation). 

Results for the full interpretation model 
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same size of the minimal image examples. The model was evaluated on a test set of 120 minimal images 

(see examples for interpretation results in Fig. 8B), and the overlap between the predicted interpretation 

by the model and human interpretation was measured. Table 1 shows the average overlap for two versions 

of our model, which are different by the structural features that they use: the basic set of features (Sec. 

2.4), an extended set of features (Sec. 2.4) with the addition of features for contact points, as explained in 

Sec. 3.2.2. 

The average overlap measured for the test examples of the two interpretation versions show that 

the addition of feature and relations beyond the basic set is useful to achieve accurate interpretation of 

social interaction images. Specifically, there was a significant improvement in interpretation results 

between the basic and extended models (P<9.9*10-5, n=5, one-tailed paired t test). Examples for the 

predicted interpretation by the extended set are in Fig. 8B, showing how the model is able to generalize 

well the interpretation to novel instances of the local 'hugging' configuration.  

To further explore the role of interpretation in interaction recognition, we next tested models for 

the recognition of minimal interaction images, on images which are different in both interaction type 

(namely, a hug or a non-hug image), as well as the tone of interaction, as reported by human observers via 

MTurk survey. On our collected set of local hugging configurations used above, human subjects were 

also asked to grade the tone of the hug, on a scale of 1 to 3, where 3 is ‘an intimate, warm hug’, 2 is ‘a 

Figure 9. (A). A binary CNN classifier was fine-tuned by examples of minimal hugging images as positive set, and non-hugging 

examples as negative set. The top row shows visualization of the features activated by the classifier at the final stage of the net 

(here layer fc8 of AlexNet, Krizhevsky et al., 2012). Visualization produced by DeepDreamImage visualization (2017), showing 

feature activation for ‘non-hug‘ in the left activation map, and ‘hug‘ in the right activation map. The activation maps suggest that 

the network will output high activation score for an arm-like structure at multiple locations, but there is no indication of finer 

features and relations such as open-hand configuration, ‘touching‘ relation, etc. (B). Non-class test examples that confuse the 

network and cause it to respond with high activation at the output layer (‘hard-negative examples’). These examples were not 

confusable to the MTurk subjects. (C). The full interpretation model is applied to the hard-negative examples and returns low 

hugging scores since expected parts or relations do not exist. (D). Sub-minimal configurations taken from hugging images, but the 

MTurk users could not recognize as ‘hug’, which triggered high positive responses by the CNN. (E). The full interpretation model 

returns low hugging score for these examples, which is consistent with human recognition.  
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formal, neutral hug’, 1 is ‘a distant, cold hug’. To test recognition of the interaction type, the 

interpretation score was used as a measure for recognition. To test the recognition of interaction tone, we 

used the learned structural representation (the relations vector) of our interpretation model, together with 

an SVM classifier trained for the three levels of interaction tone. 

The experimental results for recognition of the interaction type and tone were matched to human 

recognition measured via MTurk. We compared human judgment with our model and with a binary CNN 

model trained on the task of classifying ‘hug’ vs. ‘non-hug’. The CNN classifier was based on the 

AlexNet (Krizhevsky et al., 2012) and the VGG19 (Simioniyan and Zisserman, 2015) network models. 

The training set for classifying the interaction type by both the network model and the interpretation 

model included 120 example of the minimal image as positive set, and 5,000 examples from non-

interaction category as negative set (see positive and negative examples in Fig. 9A). The positive test set 

included 120 annotated minimal images, and negative set included 400 non-hug image regions (hard 

negatives) containing closely interacting agents that were not recognized as ‘hugging’ by human 

observers on the MTurk (examples are shown in Fig. 9B, together with the interpretation provided by the 

model with the extended relations set in Fig. 9C). The Average Precision (AP) was then computed for 

both the interpretation score (provided by the model with extended set), and a binary deep network 

classifier based on the VGG19 (Simioniyan and Zisserman, 2015) CNN model. (AP is an evaluation 

measure for scored retrieved results. Here both binary CNN and interpretation model retrieve the 

‘hugging’ minimal configuration in novel images). A large improvement in AP was obtained between the 

results provided by the interpretation model (0.80) and the AP provided by the CNN model (0.69).   

Table 1. The overlap (Jaccard) index between human and model 
hugging interpretation. The overlap index is computed for each 
component, and also for the average overlap. The overlap was 
computed and compared for two versions of our model, with the basic 
and extended set of relations, for different configurations.  

  For testing predictions for the tone of interaction, we 

conducted a preliminary experiment using 50 examples of 

the local hugging configurations used above (Fig. 9A), 

for which humans gave consistent ratings about the tone 

of hugging interaction (each image rated by 20 different 

MTurk users). The interpretation model for hugging 

configurations (Fig. 8B) was applied on these examples, 

and then used to classify the image to one of the three 

tone categories. Our preliminary results show a good 

match to the psychophysics data, and motivate more 

computational experiments in this direction. 

In summary, we presented in this section a novel interpretation scheme, applied to local image 

regions of interacting people. The scheme provides a computational model for identifying and interpreting 

such configurations of social interactions, and it also suggests a possible model for the interpretation 

process performed by humans. The scheme can identify complex interactions between agents, and can 

produce a full interpretation of internal components, in particular body parts of the interacting agents.  

The method is based on the detection and interpretation of parts of the image that match a 

minimal configuration, from which a human observer can identify the interaction. These configurations of 

body parts are less variable than fuller configurations, and their interpretation helps focusing on the 

meaningful cues, which are often subtle and small in size. In a fully viewed image, more than one of these 

configurations may be found, and the scheme combines the interpretation of the component 

configurations. Future directions and extensions can include a range of social interactions, and 

‘Hugging’ Components 

Average Jaccard overlap 

Basic set Extended set 

Agent 1, arm upper contour 0.27 0.48 

Agent 1, arm lower contour 0.24 0.43 

Agent 1, Back contour 0.39 0.59 

Agent 2, Back contour 0.38 0.56 

Agent 1, hand region 0.42 0.55 

mean 0.34 0.52 



interactions of more than two agents. In addition, the general interpretation process described here could 

be applied to images beyond social interactions, in particular, interactions between agents and objects. 

 

4. From understanding minimal images to the understanding of larger scenes  

Vision is a process of recovering knowledge about the surrounding world (semantic information) 

from images. Humans can extract semantic information from images at a broad range of scales, from 

small parts of objects to configurations of multiple objects and agents. The studies reported here suggest 

that the ability to recognize and understand fine local objects structure on the one hand, and to recognize 

interactions between agents and objects on the other, share a common process of detailed local 

interpretation. Using psychophysical and computational studies based on the perception of minimal 

images, we proposed a model for local image interpretation. This model uses a structural description of a 

Figure 10. Expansion of minimal images' interpretation to surrounding regions in a visual scene. (A). In the suggested view, scene 

understanding begins with interpretation of local but sufficiently informative regions (‘absolute minimal images’), from which the 

interpretation expands to larger regions, based on the visual task and goal. In the case of understanding social interactions, an 

absolute minimal image could be a hand or a face region of one of the interacting agents, while the extended regions include body 

parts from both agents (and form the ‘interaction minimal images’). Here we plot body parts of two interacting agents (from agent#1 

in blue, from agent#2 in orange), we well as few inter-relations between body parts (in green connectors). The two solid ellipses 

correspond to two interactions minimal configurations (which correspond to the images shown with solid-line image border), and 

the two dashed purple contours correspond to the two absolute minimal configurations (and referred to the images with dashed-

line image border). (B). Different minimal configurations (either ‘absolute’ or ’interaction’) may overlap in the parts and relations 

they use (their structural features). A mechanism of sharing structural features enables a more efficient learning of interpretation 

procedures for minimal images. 
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local image region, which includes all the fine semantic 

components that humans can perceive in the region, along 

with a set of relations between them. We next suggested that 

the recognition of interactions between two agents, or an 

agent and an object, often depend in part on a detailed 

analysis of the regions where they interact. Consequently, the 

model for the full interpretation of local image regions can 

contribute not only to object recognition, but also to the 

recognition and interpretation of interactions between agents 

(as well as interactions between agents and objects).  

Our studies focused on minimal recognizable images 

for three reasons. First, minimal images are useful for 

identifying the visual features and relations that play a role in 

image interpretation, using in particular comparisons 

between minimal images and their similar, but unrecognized 

sub-images. Second, humans can reliably recognize and 

interpret minimal images, and therefore a model of human 

image understanding should be able to account for these 

capacities. Third, as discussed further below, we suggest that 

during the recognition of natural images (of a large size and 

high resolution), local, recognizable image regions, similar to 

minimal images, provide useful building blocks for the 

image interpretation process. In this section, we turn 

therefore to discuss the possible role of minimal images in 

the recognition and interpretation of full scale real-world 

scenes. We suggest that the level of minimal images provides 

an effective starting point for the process of real-world scene 

understanding. Minimal images are by definition the smallest 

image regions that do not require any additional context to be 

recognized. They can therefore be recognized first, and then 

provide context for the subsequent recognition of additional 

image regions, which cannot be recognized on their own, but 

can be disambiguated and recognized based on the context 

provided by preceding recognition stages.  

The interpretation model described above was developed for the task of interpreting a single minimal 

image in isolation. A full size natural image will usually contain multiple minimal images, at multiple 

locations and a range of resolutions. The availability of multiple minimal images raises the issue of 

integrating interpretation results across spatial locations and scales, but it also makes the process easier in 

certain respects as well as more robust. We turn next to consider aspects of the recognition process that go 

beyond a single minimal image, to recognize and interpret larger parts of a natural scene.  

In the interpretation model discussed in Sec. 2.3, 2.4, the accurate recognition and full interpretation 

of a single minimal image is obtained by an initial fast feed-forward recognition stage, followed by an 

interpretation stage. The second stage provides a full local interpretation, and it also increases the 

accuracy of the initial recognition stage. A full object image provides not just a single minimal image, but 

multiple minimal configurations, at multiple locations and scales. Combining their results will increase 

the accuracy of the initial feed-forward recognition stage, and consequently for a full object image, the 

initial feed-forward stage will be able to produce accurate recognition, but still without providing the full 

interpretation of fine details. For example, a full horse image will contain minimal configurations such as 

the horse's overall shape, as well as different parts such as the head, torso, legs, or tail. A feed-forward 

Figure 11. psychophysical support for the 

expansion of interpretation. (A). Hug-interaction 

minimal configurations, where humans recognize 

the agents and their type of interaction. (B). Sub-

images containing an 'absolute' minimal 

configuration: the hug is no longer recognized, but 

the body part is recognized with accuracy above 

threshold. (C). The original image without the 

absolute minimal configuration. Both the 

interaction type as well as the remaining body 

parts become unrecognizable. Recognition rates 

are shown under each image. 
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activation of a subset of these configurations will indicate with high likelihood the presence of a horse. 

For some tasks such fast recognition without details may be sufficient, but others will depend on fine 

details of structure and interactions. Depending on the task, the recognition process can next proceed to 

provide a detailed interpretation of selected image parts. For example, for recognizing agents’ interactions 

discussed above, a detailed interpretation of the interaction regions will often be required. The model 

suggests that the interpretation stage is applied in a top-down manner to selected locations, rather than 

being applied uniformly across the image. In our model, the interpretation starts from a subset of minimal 

images recognized in the first stage, and then expands to nearby regions. 

The expansion process from minimal images to surrounding regions is illustrated schematically in 

Fig. 10, for the case of agents’ interactions. The figure shows a graph composed of internal object parts, 

together with relations between parts. The graph components come from the image of two interacting 

people, with blue nodes coming from one person, and yellow nodes from the other.  The first stage in our 

model detects minimal configurations of the interacting agents, such as a human hand, or a human face 

(Fig. 10A, dashed purple contours). The recognition process continues to produce an internal 

interpretation of the hand or face regions, and then extends the interpretation to nearby regions.  The 

process eventually gets to an extended region in which the interpretation is sufficient to provide 

information about the agents’ interaction (Fig. 10A, purple ellipses). These extended regions are the 

minimal interaction configurations, discussed in Sec. 3.2.1.  On this view, minimal interaction 

configurations contain smaller minimal ‘absolute’ recognizable configurations, from which recognition 

and interpretation start.  

In recent psychophysical studies, we obtained support for the structure of minimal interaction 

configurations, as composed of a minimal absolute configuration, combined with additional features, 

which are not recognizable on their own. Examples are shown in Fig. 11. Column A shows example of 

Hug-interaction minimal configurations. Column B shows sub-images containing an 'absolute' minimal 

configuration: the hug is no longer recognized, but the body part is recognized with accuracy above 

threshold. Column C shows the original image without the absolute minimal configuration. Here, not only 

the hug becomes unrecognizable, but also all the body parts in the remaining image become 

unrecognized. In the model, the absolute configuration is recognized first, and the interaction is 

subsequently recognized by an expansion process. It will be of interest to examine this predicted 

dynamics of the recognition process in further psychophysical experiments. 
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Appendix A: A search for minimal interaction images - Experimental details 

This section describes in more details the MTurk procedure for testing human recognition of social 

interaction. A Turk subject was presented with an interaction image, and was asked to describe in free 

text what is the object, object part, action or interaction that he/she saw in the image. In the presented set 

of images to the subject, there was always one control object image (e.g., a swan), and a control image of 

interaction (e.g., shaking hands), from which the object or interaction is easy to recognize (verified in a 



preliminary pilot experiment). A subject’s survey was rejected if the answers to these two ‘catch’ images 

were incorrect.  

A decision if the subject’s answer is correct or not was based on a list of keywords that were 

acceptable as true interaction descriptions, which we selected and predefined in a pilot experiment before 

the main experiment was conducted. In this pilot experiment we showed subjects fully viewed high-

resolution interaction images, and collected the union of the words used for describing them. Table 2 

shows the list of keywords that we accepted as ‘correct’ description of ‘hugging’, and the list of keywords 

that we considered as incorrect. To verify repeatability of the psychophysics results, we re-sent 10% of 

the tested images in our experiment again to the MTurk, and matched human recognition results from the 

first and second surveys. The match showed high correlation. 

Table 2. Shows 

examples for the 

answers that we 

considered as 

correct and 

incorrect for 

recognizing 

‘hugging’. 
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