
CBMM Memo No. 91 July 11, 2018

Classical generalization bounds are surprisingly
tight for Deep Networks

Qianli Liao1, Brando Miranda1, Jack Hidary2 and Tomaso Poggio1

1Center for Brains, Minds, and Machines, MIT
2Alphabet (Google) X

Abstract

Deep networks are usually trained and tested in a regime in which the training classification error
is not a good predictor of the test error. Thus their working regime seems far from generalization,
defined as convergence of the empirical to the expected error. Here we show that, when normalized
appropriately, deep networks trained on exponential type losses show an approximatevely linear de-
pendence of test loss on training loss. The observation, motivated by a previous theoretical analysis
of overparametrization and overfitting, not only demonstrates the validity of classical generalization
bounds for deep lerning but suggests that they are tight, directly contradicting the claims of a recent,
much cited paper titled “Understanding deep learning requires rethinking generalization”

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

A Surprising Linear Relationship Predicts Test Performance in
Deep Networks

Qianli Liao1, Brando Miranda1, Jack Hidary2, and Tomaso Poggio ∗2

1Center for Brains, Minds and Machines, MIT
2Alphabet (Google) X

July 11, 2018

Abstract

Given two networks with the same training loss on a dataset, when would they have dras-
tically different test losses and errors? Better understanding of this question of generalization
may improve practical applications of deep networks. In this paper, we make a step towards
answering this question. We show empirically that with the commonly used cross entropy
loss for classification, it is surprisingly simple to induce significantly different generalization
performances for two networks that have the same architecture and meta parameters: one
can either pretrain the networks with different levels of "corrupted" data or simply initialize
the networks with weights of different gaussian standard deviations. Further theoretical
analysis that follows from a recent theoretical analysis of overfitting in deep networks, shows
that these effects are due to an intrinsic problem of measuring test performance with cross
entropy training loss. Cross entropy loss can be decomposed in two components that are
both minimized by SGD — one of which is not related to expected classification performance.
However, if we factor out this irrelevant component of the loss, a surprising linear relationship
emerges between training and test losses. With this form of "normalized loss", training loss
becomes an excellent predictor of test loss.

∗To whom correspondence should be addressed
1

Contents
1 Introduction 3

2 Observation: Networks that Train Equally but Generalize Differently 3

3 Theory: Cross Entropy Loss Is Misleading 5
3.1 Intuition . 6

3.1.1 Shallow Linear Network . 6
3.1.2 Deep ReLU Network . 6

3.2 Comparing empirical minimizers of deep networks 6

4 Experiments: Normalization Leads to Surprising Linear Relationship Be-
tween Training and Test Losses 7
4.1 Interesting observations . 7
4.2 Randomly labeled training data . 8

5 Discussion 17

A Results on CIFAR-100 19

2

1 Introduction
Despite many successes of deep networks and a growing amount of research, there remains several
fundamental questions unanswered, among which a key puzzle about generalization in deep
networks. When does a network generalize well? What is the relationship between training and
test performances?

In this paper, we investigate the question of when and why could two deep networks with the
same training loss have different testing performances. This question is valuable because training
loss is one of the most important clue that deep learning practitioners rely on when making
choices of models. It is worth studying how much training loss can tell us about generalization.

In addition to training loss, there are many factors (such as choices of network architecture)
that can affect generalization performance and we cannot exhaustively study them in this paper.
Therefore, we restrict our models to have the same architecture and training settings within each
experiment. We tried different architectures in different experiments and observed consistent
results.

2 Observation: Networks that Train Equally but Generalize Dif-
ferently

First we start with an observation even when two networks have the same architecture, same
optimization meta parameters and same resultant training loss, it is possible for them to have
different test performances (i.e., error and loss).

We propose two approaches to achieve this effect:

• Initialize networks with different levels of “random pretraining”: the network is pretrained
on “corrupted” training data for a specified number of epochs (30 in our experiments) —
the labels of a portion of the examples are swapped with each other in a random fashion.

• Initialize the weights of the networks with different standard deviations: as a commonly
used initialization approach, we initialize the weights with diagonal gaussian distribution.
All dimension have the same standard deviation. We can simply adjust this standard
deviation to get different levels of generalization performance.

We show the results of ‘random pretraining” with networks on CIFAR-10 (Figure 1) and
CIFAR-100 (Figure 12) and initialization with different standard deviations on CIFAR-10 (Figure
2) and CIFAR-100 (Figure 13).

3

0 0.2 0.4 0.6 0.8 1

Pretraining Corrupted Percentage

0

0.5

1

1.5

2

2.5

3

3.5

L
o
s
s
 o

n
 C

IF
A

R
-1

0

Train

Test

0 0.2 0.4 0.6 0.8 1

Pretraining Corrupted Percentage

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r

o
n
 C

IF
A

R
-1

0
Train

Test

Figure 1: Random Pretraining vs. Generalization Performance on CIFAR-10: a 5-layer ConvNet
(with only convolutional layers and no pooling) is pretrained on training data with partially
“corrupted” labels for 30 epochs. Then they are trained on normal data for 80 epochs. Then
among the network snapshots saved from all the epochs, we pick a network that is closest to a
arbitrary (but low enough) training loss (0.006 here). This is to make sure all models shown in
the figure have very close training losses. The number on the x axis indicates what percentage of
labels are swapped randomly. As pretraining data gets increasingly “corrupted”, the generalization
performance of the resultant model gets worse, even though they have similar training losses.
Batch normalization (BN) is used. After training, we “absorbed” the means and standard
deviations of BN into the network’s weights and biases. No data augmentation is performed.

4

0 0.05 0.1 0.15 0.2

Standard Deviation in Weight Initialization

0

0.5

1

1.5

2

2.5

L
o
s
s
 o

n
 C

IF
A

R
-1

0

Train

Test

0 0.05 0.1 0.15 0.2

Standard Deviation in Weight Initialization

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
rr

o
r

o
n
 C

IF
A

R
-1

0
Train

Test

Figure 2: Standard Deviation in Weight Initialization vs. Generalization Performance on CIFAR-
10: the network is initialized with weights of different standard deviations. Other settings are the
same as 1. As initial weights get increasingly large norm, the generalization performance of the
resultant model gets worse, even though all models have similar training losses.

3 Theory: Cross Entropy Loss Is Misleading
In the previous section, we observe that it is possible to obtain networks that have the same
training loss but very different test performances. This indicates that training loss is not very
correlated with test loss. In general, it is quite common to get zero training error (and a very
small training loss) when using overparametrized networks. Therefore, comparing models based
on training statistics becomes very difficult. In an extreme case, recent work [1] shows that an
overparametrized network can fit any random labels and fail to generalize at all. In some sense,
training loss seems easily “fooled” by SGD in a way that extremely good training loss can be
achieved without any generalization guarantees.

In this section, we theoretically investigate in the case of cross entropy loss why this “super-
fitting” phenomenon happens and demonstrate that better fitting does not necessarily lead to
better generalization.

5

3.1 Intuition

3.1.1 Shallow Linear Network

Consider a shallow linear network, trained once with GD on a set of N data xi, yi and separately
on a different set of N data. Assume that in both cases the problem is linearly separable and thus
zero error is achieved on the training set. The question is which of the two solutions will generalize
better. The natural approach is to look at the L2 norm of the solutions:

∑
n(yn − wTxn)2

af(wa, x) = (wa, xa) f(wb, xb) = (wb, xb) (1)

In both cases GD converges to zero loss wih the minimum norm, maximum margin solution
for w. Thus the solution with the larger margin (and the smaller norm) should have a lower
expected error. In fact, generalization bounds ([2]) appropriate for this case depend on the
product of the norm |w| and of a bound on the norm of the data.

3.1.2 Deep ReLU Network

With ReLU nonlinearity, there is a

3.2 Comparing empirical minimizers of deep networks

Notation: We define (as in [3]) a deep network withK layers with the usual elementwise scalar ac-
tivation functions σ(z) : R → R as the set of functions f(W ;x) = σ(WKσ(WK−1 · · ·σ(W 1x))),
where the input is x ∈ Rd, the weights are given by the matricesW k, one per layer, with matching
dimensions. We use the symbol W as a shorthand for the set of W k matrices k = 1, · · · ,K.
For simplicity we consider here the case of binary classification in which f takes scalar values,
implying that the last layer matrix WK is WK ∈ R1,Kl . There are no biases apart form the
input layer where the bias is instantiated by one of the input dimensions being a constant. The
activation function in this paper is the ReLU activation.

Consider different zero minima of the empirical risk obtained with the same network on the
same training set. Can we predict their expected error from empirical properties only? A natural
way to approach the problem of ranking two different minimizers of the empirical risk starts with
the “positive homogeneity” property of ReLU networks (see [3]) :

f(W 1, · · · ,Wk;x) = ρ1, · · · , ρKf(W̃ 1, · · · , W̃k;x) (2)

where Wk = ρkW̃k and ||W̃k|| = 1.
This property is valid for layerwise normalization under any norm. Note that f(W 1, · · · ,Wk;x)

and f(W̃ 1, · · · , W̃k;x) have the same classification performance on any given (test) set. It follows
that different empirical minimizers should be compared in terms of their normalized form: the
ρ factors affect exponential type losses loss – driving it to zero by increasing the ρs to infinity
– but do not change the classification performance which only depends on the sign of ynf(xn).
The cross entropy for two classes is given by

6

L =
N∑
n=1

ln(1 + e−ynf(xn)) =
N∑
n=1

ln(1 + e−yn(ρ1,··· ,ρK)f(W̃ 1,··· ,W̃k;xn)). (3)

The question is then: what is the right norm to be used to normalize the capacity of deep
networks? The “right” normalization should make different normalized minimizers equivalent
from the point of view of their intrinsic capacity – for instance equivalent in terms of Radamacher
complexity. The positive homogeneity property implies that the correct norm for a multilayer
network should be based on a product of norms. Since different norms are equivalent in Rn it is
enough to use L2.

The argument can be seen more directly looking at a typical generalization bound. It has the
following form [4]:

With probability ≥ (1− δ) ∀f

|E(f)−ES(f)| ≤ 2RN (F) +

√
ln(1

δ)
2N (4)

where E(f) is the expected loss, ES(f) is the empirical loss, N is the size of the training set and
RN (F) is the empirical Rademacher complexity of the class of functions F on the unit sphere to
which f belongs.

We expect layerwise normalization to yield the same complexity for the different minimizers.
The case of linear functions is a simple example. The Radamacher complexity of a set F) of
linear functions f(x) = wTx can be bounded as RN (F) ≤ 1√

N
XW where X is an Lp bound on

the vectors x and W is an Lq bound on the vectors w with Lp and Lq being dual norms, that is
1
p + 1

q = 1. This includes L2 for both w and x but also L1 and L∞. Since different Lp norms are
equivalent in finite dimensional spaces (in fact ||x||p ≥ ||x||q when p ≤ q, with opposite relations
holding with appropriate constants) Equation 4 holds under normalization with different Lp
norms for w (in the case of linear networks). Notice that the other term in the bound (the last
term on the right-hand side of Equation 4) is the same for all networks trained on the same
dataset.

The results of [5] – which was the original motivation behind the arguments above and the
experiments below– imply that the weight matrices at each layer converge to the minimum
Frobenius norm for each minimizer.

4 Experiments: Normalization Leads to Surprising Linear Re-
lationship Between Training and Test Losses

4.1 Interesting observations

• Independence from Initialization The linear relationship is independent of whether the
initialization is via pretraining on randomly labeled natural images or whether it is via
larger initialization or standard initialization. In fact on the left of figure 3 and on figure

7

6 one can observe a linear relation for minimizers obtained with default initialization in
Pytorch [6] which seems to be a variation of He initialization (check) [7].

• Robustness Figures 3, 4, 10, 9, 7, 8 and CITATIONS qianli’s layer nets show the linear
relationship for different types networks (3 layers vs 5 layers, with and without batch
normalization) on CIFAR10. Figures 14 and 15 show the linear relationship on CIFAR100.

• Norm independence Figures 4 show that the Lp norm used for normalization does not
matter – as expected.

4.2 Randomly labeled training data

Since the Radamacher empirical complexity in Equation 4 does not depend on the labels of the
training set, Equation 4 also holds in predicting expected error when the training is on randomly
labeled data ([8]) (though different stricter bounds may hold separately for each of the two cases).
The experiments in figure 10, 7 and 14 show the expected result. It is quite surprising to see that
the new datapoint (corresponding to the randomly trained network) still satisfies aproximatevely
(but not exactly) the same linear relationship on figure 10.

Figure 3: Test loss/error v.s. training loss with all networks normalized by the Frobenius norm
of weights per layer: The model is a 3 layer convolutional ReLU network with the first 2 layers
having 24 filters of size 5 by 5; the final layer is fully connected; only the first layer has biases.
The network is overparametrized with 154,464 parameters and was trained with 50K examples on
CIFAR10. The models were obtained by pre-training on random labels and then by fine tuning on
natural labels. SGD without batch normalization was run on all networks in this plot until each
reached approximately 0.0044± 0.0001 cross-entropy loss on the training data. The numbers as
markers indicate the amount of corruption of the random labels used in pre-training.

8

Figure 4: Test loss/error v.s. training loss with all networks normalized by the L1 norm per layer
divided by 100: The division by 100 is an adjustment to avoid numerical issues because L1 norms
are large. The training and the networks were the same as the ones on figure 3. The networks
chosen for normalization were the ones at epoch 300 because figure 5 shows that the final train
loss does not have any effect after normalization. The slope and intercept of the line of best fit
are 0.8358 and 0.3783 respectively. The ordinary and adjusted R2 values are both 0.9998 while
the root mean square (RMSE) was 5.6567× 10−5. The numbers as markers indicate the amount
of corruption the random labels had during the pre-training.

9

Figure 5: Left: test loss v.s. training loss with all networks normalized by the Frobenius norm
per layer. Right: test loss v.s. training loss with all unnormalized networks. The training and the
networks were the same as the ones on figure 3. All networks were trained for 300 epochs. Unlike
in Figure 3 where the networks had approximately the same loss, in this experiments we made
sure the networks converged, had zero training error and did not have the same loss, by choosing
the ones at the the end of training (epoch 300). The losses range approximately from 1.5× 10−4

to 2.5× 10−3. This experiment shows independence of the property of normalize networks from
the initial training loss. The numbers as markers indicate the amount of corruption of random
labels used during pre-training. The slope and intercept of the line of best fit are 0.836 and 0.377
respectively. The ordinary and adjusted R2 values are both 0.9998 while the root mean square
(RMSE) was 4.7651× 10−5.

10

Figure 6: Left: test loss v.s. training loss with all networks normalized by the Frobenius norm
per layer. Right: test loss v.s. training loss with all unnormalized networks. The training and
the networks were the same as the ones in figure 3. Since the same conditions hold as in figure 5,
the model that was chosen was at epoch 300. The losses range approximately from 1.29× 10−3 to
1.38× 10−3. The 0 as markers indicate there was no corruption during training. The slope and
intercept of the line of best fit are 0.8117 and 0.4333 respectively. The ordinary R2 is 0.9660 and
the adjusted R2 value is 0.9592 while the root mean square (RMSE) was 6.3624× 10−5.

11

5 5.2 5.4 5.6 5.8 6 6.2

Train Loss (Unormalized Net) 10 -3

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

T
e
s
t
L
o
s
s
 (

U
n
o
rm

a
liz

e
d
 N

e
t)

0 0.01

0.1

0.2

0.4

0.6 0.8

1

4000 5000 6000 7000 8000 9000 10000 11000

Product of L2 Norms of Weights from All Layers (Unormalized Net)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

T
e
s
t
L
o
s
s
 (

U
n
o
rm

a
liz

e
d
 N

e
t)

00.01

0.1

0.2

0.4

0.6 0.8

1

2.2992 2.2994 2.2996 2.2998 2.3 2.3002 2.3004 2.3006 2.3008 2.301

Train Loss (Normalized Net)

2.2998

2.3

2.3002

2.3004

2.3006

2.3008

2.301

2.3012

2.3014

T
e
s
t
L
o
s
s
 (

N
o
rm

a
liz

e
d
 N

e
t)

0

0.01

0.1

0.2

0.4
0.6

0.8

1

2.2992 2.2994 2.2996 2.2998 2.3 2.3002 2.3004 2.3006 2.3008 2.301

Train Loss (Normalized Net)

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

T
e
s
t
E

rr
o
r

(U
n
c
h
a
n
g
e
d
 b

y
 N

o
rm

a
liz

a
ti
o
n
)

0

0.01

0.1

0.2

0.4

0.6
0.81

Figure 7: Random Pretraining experiment with/without normalization on CIFAR-10. The red
numbers in the figures indicate the percentages of “corrupted labels” used in pretraining. The
green stars (*) in the figures indicate the precise locations of the points. Top left: The training
and test losses of unormalized networks. There is no apparent relationship between training and
test losses. Top right: the product of L2 norms from all layers of the network. We observe an
positive correlation between the norm of the weights and testing loss . Bottom: If we normalize
each layer’s weights by dividing by its L2 norm, the classification error does not change (bottom
right) while the loss do change (bottom left). There is a surprising linear relationship between
training and testing losses.

12

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075

Train Loss (Unormalized Net)

1

2

3

4

5

6

7

8

T
e
s
t
L
o
s
s
 (

U
n
o
rm

a
liz

e
d
 N

e
t)

RL

0.0010.01
0.05
0.1

0.150.2

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Product of L2 Norms of Weights from All Layers (Unormalized Net)

1

2

3

4

5

6

7

8

T
e
s
t
L
o
s
s
 (

U
n
o
rm

a
liz

e
d
 N

e
t)

RL

0.0010.01
0.05

0.1

0.15 0.2

2.297 2.298 2.299 2.3 2.301 2.302 2.303

Train Loss (Normalized Net)

2.298

2.2985

2.299

2.2995

2.3

2.3005

2.301

2.3015

2.302

2.3025

2.303

T
e
s
t
L
o
s
s
 (

N
o
rm

a
liz

e
d
 N

e
t)

RL

0.001
0.01

0.05

0.1

0.15

0.2

2.297 2.298 2.299 2.3 2.301 2.302 2.303

Train Loss (Normalized Net)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e
s
t
E

rr
o
r

(U
n
c
h
a
n
g
e
d
 b

y
 N

o
rm

a
liz

a
ti
o
n
)

RL

0.0010.01
0.05

0.1
0.15

0.2

Figure 8: Same as Figure 7 but not conducted by “random pretraining”. Instead, the networks are
initialized with different standard deviations (in weights). The red numbers in the figures indicate
the standard deviations used in initializing weights. The “RL” point is a reference point that is
initialized with standard deviation 0.05 and were trained and tested on completely random labels.

Note that two unnormalized minimizers of the exponential loss that achieve a given small
loss L = ε, the minimizer with higher product of the norms ρ1, · · · , ρK has the higher capacity
and thus the highest expected error. Experiments support this claim (see Figure 9 and top left
panels of Figure 7), 14, 8, 15.

13

0 0.5 1 1.5 2 2.5 3
product norm: ||w k||...||w1|| 104

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

ge
ne

ra
liz

at
io

n
er

ro
r/t

es
t e

rro
r

product norm ||wk||...||w1|| vs generalization error

Figure 9: Plot of test error vs the product norm ‖W‖product =
∏L
l=1 ‖Wl‖. The model here is a 3

layer convolutional ReLU network with the first 2 layers having 24 filters of size 5 by 5; the final
layer is fully connected; only the first layer has biases. The network is overparametrized: it has
154,464 parameters and was trained with 50K examples on CIFAR10. The models were obtained
by pre-training on random labels and then fine tuning on natural labels. SGD without batch
normalization was run on all networks in this plot until each reached approximately 0.0044±0.0001
cross-entropy loss on the training data.

14

2.286 2.288 2.29 2.292 2.294 2.296 2.298 2.3 2.302 2.304
Train Loss (Network Normalized)

2.288

2.29

2.292

2.294

2.296

2.298

2.3

2.302

2.304

Te
st

 L
os

s
(N

et
w

or
k

N
or

m
al

iz
ed

)

0
000000

0.00010.0001

0.0001

0.0001

0.0001

0.0001

0.0001
0.0001

0.001
0.001

0.001
0.001

0.001
0.001

0.001

0.01

0.01
0.010.01

0.01
0.01

0.010.01

0.1

0.1
0.1

0.1

0.1
0.1

0.1

0.10.20.20.20.20.2
0.20.20.2

0.50.50.50.50.50.50.50.50.750.750.750.750.750.750.75

111111111111

Figure 10: Plot shows cross entropy loss on the test set v.s. the training loss with all networks
normalized by the Frobenius norm per layer. The training and the networks were the same as the
ones on figure 3. All networks were trained for 300 epochs. Unlike in Figure 3 where the networks
had approximately the same loss, in this experiments we made sure the networks converged (and
had zero train error) but not had the same loss. Thus the networks that were chosen were the
ones at epoch 300. The slope and intercept of the line of best fit are 0.8789 and 0.2795 respectively.
The ordinary and adjusted R2 values are both 0.9721 while the root mean square (RMSE) was
5.8304× 10−4. The numbers as markers indicate the amount of corruption the random labels
had during the pre-training had except for the points labels with 1 which correspond to a network
trained on random labels and evaluated on random labels. The remaining networks were evaluated
on natural labels.

15

2.286 2.288 2.29 2.292 2.294 2.296 2.298 2.3 2.302 2.304
Train Loss (Network Normalized)

2.288

2.29

2.292

2.294

2.296

2.298

2.3

2.302

2.304

Te
st

 L
os

s
(N

et
w

or
k

N
or

m
al

iz
ed

)

0
000000

111111111111

Figure 11: Plot shows cross entropy loss on the test set v.s. the training loss with all networks
normalized by the Frobenius norm per layer. The training and the networks were the same as the
ones on figure 3. All networks were trained for 300 epochs. Unlike in Figure 3 where the networks
had approximately the same loss, in this experiments we made sure the networks converged (and
had zero train error) but not had the same loss. Thus the networks that were chosen were the
ones at epoch 300. The slope and intercept of the line of best fit are 0.9642 and 0.0844 respectively.
The ordinary and adjusted R2 values are both 0.9999 while the root mean square (RMSE) was
6.9797× 10−5. Similarly as in figure 10, the points labeled 1 were trained only on random labels
and evaluated on that same randomly labeled data set. The points marked with 0 were only trained
on natural labels.

16

5 Discussion
Our results support a measure of complexity in deep networks based on a product norm. The
original suggestion [3] is of products of layerwise Frobenius norms but as we discussed earlier, all
Lp norms are equivalent in our setup.

The linear relation we found is quite surprising since it implies that the classical bound
of Equation 4 is tight and holds in a seemingly robust way across different types of networks,
different data sets and different initializations. This result not only demonstrates the validity
of classical generalization bounds for deep lerning but suggests that they are tight, directly
contradicting the claims of a recent, much cited paper titled “Understanding deep learning
requires rethinking generalization”

Our results yield a recommendation for practitioners: monitor during training the empirical
loss of the normalized network instead of the cross entropy loss (though SGD optimizes the
latter). This is the one that matters in terms of stopping time and test performance as suggested
by Figures 3 and 4.

More significantly for theory, the observations of this paper clearly demand a critical discussion
of some commonly held beliefs such as the key role in generalization of concepts such as dropout,
SGD and flat minima.

Acknowledgments

We thank Lorenzo Rosasco, Yuan Yao, Misha Belkin, Xavier Boisch, Andrzej Banbuski and
especially Sasha Rakhlin for illuminating discussions. NSF funding provided by CBMM.

17

References
[1] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep

learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[2] Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction: Risk
bounds, margin bounds, and regularization. In Advances in neural information processing systems,
pages 793–800, 2009.

[3] T. Poggio, Q. Liao, B. Miranda, A. Banburski, X. Boix, and J. Hidary. Theory IIIb: Generalization in
deep networks. arXiv:1703.09833, CBMM Memo No. 090, 2018.

[4] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. pages 169–207,
2003.

[5] C. Zhang, Q. Liao, A. Rakhlin, K. Sridharan, B. Miranda, N.Golowich, and T. Poggio. Theory of
deep learning IIb: Optimization properties of SGD. CBMM Memo 072, 2017.

[6] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[8] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. CoRR, abs/1611.03530, 2016.

APPENDIX

18

A Results on CIFAR-100

0 0.2 0.4 0.6 0.8 1

Pretraining Corrupted Percentage

0

1

2

3

4

5

6

L
o
s
s
 o

n
 C

IF
A

R
-1

0
0

Train

Test

0 0.2 0.4 0.6 0.8 1

Pretraining Corrupted Percentage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r

o
n
 C

IF
A

R
-1

0
0

Train

Test

Figure 12: Same as Figure 1, but on CIFAR-100.

19

0 0.05 0.1 0.15 0.2

Standard Deviation in Weight Initialization

0

1

2

3

4

5

6

L
o
s
s
 o

n
 C

IF
A

R
-1

0

Train

Test

0 0.05 0.1 0.15 0.2

Standard Deviation in Weight Initialization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r

o
n
 C

IF
A

R
-1

0
Train

Test

Figure 13: Same as Figure 2, but on CIFAR-100.

20

0.0675 0.068 0.0685 0.069 0.0695 0.07 0.0705 0.071 0.0715 0.072

Train Loss (Unormalized Net)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

T
e

s
t

L
o

s
s
 (

U
n

o
rm

a
liz

e
d

 N
e

t)

0 0.01

0.1

0.2

0.4

0.6

0.8

1

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

Product of L2 Norms of Weights from All Layers (Unormalized Net) 10 4

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

T
e

s
t

L
o

s
s
 (

U
n

o
rm

a
liz

e
d

 N
e

t)

00.01

0.1

0.2

0.4

0.6

0.8

1

4.6045 4.60455 4.6046 4.60465 4.6047 4.60475 4.6048

Train Loss (Normalized Net)

4.6047

4.60475

4.6048

4.60485

4.6049

4.60495

T
e

s
t

L
o

s
s
 (

N
o

rm
a

liz
e

d
 N

e
t)

0

0.01

0.1

0.2

0.4

0.6
0.8

1

4.6045 4.60455 4.6046 4.60465 4.6047 4.60475 4.6048

Train Loss (Normalized Net)

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

T
e

s
t

E
rr

o
r

(U
n

c
h

a
n

g
e

d
 b

y
 N

o
rm

a
liz

a
ti
o

n
)

0

0.01

0.1

0.2

0.4

0.6

0.8

1

Figure 14: Same as Figure 7 but on CIFAR-100

21

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Train Loss (Unormalized Net)

2

4

6

8

10

12

14

16

T
e

s
t

L
o

s
s
 (

U
n

o
rm

a
liz

e
d

 N
e

t)

RL

0.0010.01
0.05
0.1

0.15
0.2

1 2 3 4 5 6 7 8

Product of L2 Norms of Weights from All Layers (Unormalized Net) 10 4

2

4

6

8

10

12

14

16

T
e

s
t

L
o

s
s
 (

U
n

o
rm

a
liz

e
d

 N
e

t)

RL

0.0010.01
0.05

0.1
0.15

0.2

4.6043 4.6044 4.6045 4.6046 4.6047 4.6048 4.6049 4.605 4.6051 4.6052

Train Loss (Normalized Net)

4.6045

4.6046

4.6047

4.6048

4.6049

4.605

4.6051

4.6052

T
e

s
t

L
o

s
s
 (

N
o

rm
a

liz
e

d
 N

e
t)

RL

0.001
0.01

0.05

0.1

0.15

0.2

4.6043 4.6044 4.6045 4.6046 4.6047 4.6048 4.6049 4.605 4.6051 4.6052

Train Loss (Normalized Net)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
e

s
t

E
rr

o
r

(U
n

c
h

a
n

g
e

d
 b

y
 N

o
rm

a
liz

a
ti
o

n
)

RL

0.0010.01

0.05
0.1

0.15
0.2

Figure 15: Same as Figure 8 but on CIFAR-100.

22

	Introduction
	Observation: Networks that Train Equally but Generalize Differently
	Theory: Cross Entropy Loss Is Misleading
	Intuition
	Shallow Linear Network
	Deep ReLU Network

	Comparing empirical minimizers of deep networks

	Experiments: Normalization Leads to Surprising Linear Relationship Between Training and Test Losses
	Interesting observations
	Randomly labeled training data

	Discussion
	Results on CIFAR-100

