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Abstract 
 

        We consider here the class of supervised learning algorithms known as Empirical Risk Minimization 
(ERM). The classical theory by Vapnik and others characterize universal consistency of ERM in the 
classical regime in which the architecture of the learning network is fixed and n, the number of training 
examples, goes to infinity. According to the classical theory, the minimizer of the empirical risk is consistent 
if the hypothesis space has finite complexity. We do not have a similar general theory for the modern 

regime of interpolating regressors and overparameterized deep networks, in which d > n and 
𝑑

𝑛
 remains 

constant as n goes to infinity. 
        In this note I propose the outline of such a theory based on the specific notion of CVloo stability of the 

learning algorithm with respect to perturbations of the training set. The theory shows that for interpolating 
regressors and separating classifiers (either kernel machines or deep RELU networks)  

1. minimizing CVloo stability minimizes the expected error  

2. the most stable solutions are minimum norm solutions  

The hope is that this approach may lead to a unified theory encompassing both the modern regime and the 
classical one.  
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Abstract
We consider here the class of supervised learning algorithms known as Empirical Risk

Minimization (ERM). The classical theory by Vapnik and others characterize universal
consistency of ERM in the classical regime in which the architecture of the learning network
is fixed and n, the number of training examples, goes to infinity. According to the classical
theory, the minimizer of the empirical risk is consistent if the hypothesis space has finite
complexity. We do not have a similar general theory for the modern regime of interpolating
regressors and overparamerized deep networks, in which d > n and d

n remains constant as n
goes to infinity.

In this note I propose the outline of such a theory based on the specific notion of CVloo

stability of the learning algorithm with respect to perturbations of the training set. The theory
shows that for interpolating regressors and separating classifiers (either kernel machines or
deep RELU networks)

1. minimizing CVloo stability minimizes the expected error
2. the most stable solutions are minimum norm solutions
The hope is that this approach may lead to a unified theory encompassing both the

modern regime and the classical one.

1 Foundations of Learning Theory
Developing theoretical foundations for learning is a key step towards understanding intelligence.
Supervised learning is a paradigm in which natural or artificial networks learn a functional
relationship from a set of n input-output training examples. A main challenge for the theory is
to determine conditions under which a learning algorithm will be able to predict well on new
inputs after training on a finite training set. What should be optimized in ERM to minimize the
expected error and, for n→∞, to achieve consistency? Ideally, we would like to have theorems
spelling out, for instance, that consisteny depends on constraining appropriately the hypothesis
space.

Indeed a milestone in classical learning theory was to formally show that appropriately
restricting the hypothesis space – that is the space of functions represented by the networks –



ensures consistency (and generalization) of ERM. The classical theory assumes that the hypothesis
space is fixed while the number of training data n increases to infinity. Its basic results thus
characterize the “classical” regime of n > d, where d is the number of parameters to be learned.
The classical theory, however, cannot deal with what we call the “modern” regime, in which the
network remains overparametrized (n < d) when n grows. In this case the hypothesis space is
not fixed.

In trying to develop a theory that can deal with the classical and the modern regime, it seems
natural to abandon the idea of the hypotehsis space as the object of interest and focus instead on
properties of the algorithms. Twenty years ago, while trying to formulate principles of learning
beyond ERM (and beyond the use of measures of complexity such as VC dimension, covering
numbers and Rademacher numbers), we noted [1] that any supervised learning algorithm is a
map L from data sets to hypothesis functions. For a general theory, we asked: what property must
the learning map L have for good generalization error? The answer was that LOO stability (see
[1]) together with CVloo stability of the algorithm, both going to zero for n→∞ is sufficient for
generalization for any supervised algorithm; CVloo stability alone is necessary and sufficient for
generalization and consistency of ERM. At the time, the surprising connection between stability
and predictivity promised a new framework for the foundations of learning theory (see also [2, 3]).

In this paper we outline how this old proposal may become a learning theory encompassing
both the classical and the modern regime for ERM (extensions beyond ERM seem natural
but we leave them to future work). We provide several arguments about why low expected
error should correspond to stable gradient descent algorithms. In particular, an algorithm that
minimizes a bound in stability should minimize the expected error if the bound is tight. Stability
minimization may thus provide a unifying principle that could explain, among other properties,
the predictivity of deep networks as well as the double descent curve found recently in several
learning techniques including kernel machines1.

1.1 Classical Regime

In the classical setting, a key property of a learning algorithm is generalization: the empirical
error must converge to the expected error when the number of examples n increases to infinity,
while the class of functions H, called the hypothesis space, is kept fixed. An algorithm that
guarantees good generalization will predict well, if its empirical error on the training set is
small. Empirical risk minimization (ERM) on H represents perhaps the most natural class of
learning algorithms: the algorithm selects a funcion f ∈ H that minimizes the empirical error –
as measured on the training set.

One of the main achievements of the classical theory was a complete characterization of the
necessary and sufficient conditions for generalization of ERM, and for its consistency (consistency
requires asymptotic convergence of the expected risk to the minimum risk achievable by functions

1One may argue that from the point of view of this proposal, the main role of Tikhonov regularization may be
to deal with the pathological situation of d = n, since asymptotically the inverse of the kernel does not exist if
λ = 0. Of course, presence of noise (significant SNR) has the effect of requiring regularization also for cases close
to d = n.



in H; for ERM, generalization is equivalent to consistency). It turns out that consistency
of ERM is equivalent to a precise property of the hypothesis space: H has to be a uniform
Glivenko-Cantelli (uGC) class of functions (spaces of indicator functions with finite VC dimension
are a special case) of uGC .

Later work [1] showed that an apparently separate requirement – the well-posedness of
ERM – is in fact equivalent to consistency of ERM. Well-posedness usually means existence,
uniqueness and stability of the solution. The critical condition is stability of the solution. Stability
is equivalent to some notion of continuity of the learning map (induced by ERM) that maps
training sets into the space of solutions, eg L : Zn → H. We recall the definition of leave-one-out
cross-validation (in short, CVloo) stability under the distribution PS :

∀i ∈ {1, . . . , n} PS
{
|V (fS , zi)− V (fSi , zi)| ≤ βPCV

}
≥ 1− δCV , (1)

where V (f, z) is a loss function that is Lipschitz and bounded for the range of its arguments and
z = ((x, y). CVloo stability of an algorithm measures the difference between the errors at a point
zi when it is in the training set S of fS wrt when is not.

It was proved [2] that For ERM, CVloo stability with βPCV and δCV in Equation 1 converging
to zero for n→∞ guarantees, if valid for all P , generalization and consistency (and is in fact
equivalent to them).

Notice that CVloo stability is a weaker requirement than uniform stability of Bousquet and
Elissef which is sufficient but not necessary for consistency of ERM in the classical regime. Of
course uniform stability implies CVloo stability.

1.2 Modern Regime

Recently, a different regime has been characterized, first in neural networks [4] and then in linear
and kernel regression, mainly because of the pioneering work by Belkin ([5], see also [6] and
[7, 8, 5, 9, 10, 11, 12]). In this modern regime, both n (the number of training data) and d (the
number of parameters) grow to infinity with n

d constant. If d ≥ n there may be exact fitting of
the training set and the generalization gap does not go to zero. The classical approach – based
on the analysis of the hypothesis space to infer asymptotic generalization and then consistency
– cannot be used because there is no fixed hypothesis space. However, the notion of stability,
which refers to the algorithm and not the hypothesis space, is not affected by this problem. Since
in the “classical” regime of fixed hypothesis space and n→∞, stability is important, we expect
that a similar notion of stability may work in the “modern” high dimensional regime of nd < 1.

The conjecture we discuss in this paper is that in both cases, stability remains the key
requirement for predictivity. Maximum stability – that is minimum βPCV – is usually guaranteed
during minimization of the empirical loss (that is by ERM) by complexity control under the form
of regularization (possibly vanishing, as in the definition of the pseudoinverse or as implicitely
provided by iterative gradient descent [13]). As we said earlier, the notion of CVloo stability turns
out to be necessary and sufficient for distribution independent generalization and consistency
in the classical framework of ERM with a fixed hypothesis space [2, 1]. In the modern regime,



when the empirical error is zero, the definition of CVloo stability seems closely related to the
definition of the expected error under a specific data distribution. It is thus natural to conjecture
that minimization of stability, in a distribution dependent way, is for ERM a sufficient condition
across the classical and the modern regime for minimizing expected error. In the next section we
will in fact show that CVloo stability is equivalent in expectation to the expected error. Then
we will discuss the conjecture that optimizing CVloo stability for overparametrized networks is
equivalent to selecting minimum norm solutions.

2 Stability and Expected error
We recall the definition in expectation of leave-one-out cross-validation (in short, CVloo) stability
under the distribution PS :

∀i ∈ {1, . . . , n} ES |V (fS , zi)− V (fSi , zi)| ≤ βCV , (2)

where V (f, z) is a loss function that is Lipschitz and bounded for the range of its arguments and
z = ((x, y). CVloo stability of an algorithm measures the difference between the errors at a point
zi when it is in the training set S of fS wrt when is not.

We assume here that the regressor or classifier satisfies V (fS , zi) = 0, that is they fit the
training data under the appropriate loss function (e.g. square loss or classification loss, for
instance the function c of [14]. Then

∀i ∈ {1, . . . , n} ES |V (fSi , zi)| = I(fS) (3)

where I(fS) is the expected error of fS .
As an example consider the case in which V is the square loss and fS(zi) = WSxi. Then

V (fSi , zi) = (WSixi − yi)2 = (WSixi −WSxi)2 = ((WSi −WS)xi)2 (4)

We have

Theorem 1 (informal) For regressor (and classifiers) that achieve zero error on the training
set, CVloo stability in expectation is equivalent to expected error.

3 Stability and Minimum Norm
I conjecture that the solution with the best stability among all solutions provided by ERM for
the overparametrized case are minimum norm solutions. I do not know how to prove this in
general. I will state it as a conjecture and support it with a few physicist-like arguments. The
conjecture is

Conjecture 2 The most stable solutions for fS satisfying V (fS , zi) = 0, ∀i are minimum
norm in the parameters.



For later use, I recall the following result, linking minimum norm and maximum margin in
the case of classification (see [15]):

Lemma 3
The maximum margin problem

max
WK ,··· ,W1

min
n
ynf(W ;xn), subj. to ‖Wk‖ = 1, ∀k. (5)

is equivalent to

min
Wk

1
2‖Wk‖2, subj. to ynf(W ;xn) ≥ 1, ∀k, n = 1, . . . , N. (6)

3.1 Linear Regressors

The first physicist argument is for linear functions fS(zi) = WSxi. Fitting the training set
provides the set of n equations

WSX − Y = 0 (7)

Assume WS ∈ R1,d, X ∈ Rd,n and Y ∈ R1,n with n < d. Then there are an infinite number
of solutions for WS given by WS = Y X† + (I −XX†)z where z is any vector. The solution of
minimum norm is WS = Y X†.

Let us show that the minimum norm solution is the most stable. The minimum norm solution
among all the infinite solutions is WS = Y X†. In the case in which S is perturbed by deleting
one data point the change ∆X in X should be small and decreasing with n. This means that
WSi = (Y + ∆Y )(X + ∆X)†. Suppose X is a d, n matrix with n < d. Then X† = (XTX)−1XT

and (X + ∆X)† = ((X + ∆X)T (X + ∆X))−1(X + ∆X)T Let us assume that ||∆X|| is small
and ||(XTX)−1|| is large. Let us call XTX = A, let us shorten ∆X = ∆.

Then (X + ∆)† ≈ (A + X∆T + (∆XT )−1(X + ∆)T . Consider (A + X∆)T + ∆XT )−1 ≈
A−1−A−1(XT∆X + ∆XTX)A−1. Thus (X + ∆)† ≈ [A−1−A−1(XT∆ + ∆TX)A−1][(X + ∆)T ].
Putting things together and inspecting the various terms shows that WSi = WS +D where D
are terms that are all contain the factor A−1 and delta factors in either X or Y or both. The
conclusion is ||WSi −WS || ≈ ||(XXT )−1(∆X + ∆Y )||. In other words stability depends on
||(XXT )−1|| an therefore on the norm ||W ||. This proof sketch should be cleaned up to show that
the minimum norm solution is the most stable solution and viceversa. An obvious observation
is that the same argument about the behavior of ||X†|| in [16] can be used here. It shows that
for random input X, CVloo stability is expected to exhibit a double-descent curve implying a
double-descent curve for the expected errror.

3.2 Deep Networks

Let us first introduce some notation. We define a deep network with K layers with the usual
coordinate-wise scalar activation functions σ(z) : R → R as the set of functions f(W ;x) =



σ(WKσ(WK−1 · · ·σ(W 1x))), where the input is x ∈ Rd, the weights are given by the matrices
W k, one per layer, with matching dimensions. There are no bias terms: the bias is instantiated
in the input layer by one of the input dimensions being a constant. We consider the case
in which f takes scalar values, implying that the last layer matrix WK is has size 1 x hK−1,
where hk denotes the size of layer k. The weights of hidden layer k has size hk × hk−1. In
the case of of binary classification which we consider here the labels are y ∈ {−1, 1}. The
activation function is the ReLU activation. For the network, homogeneity of the ReLU implies
f(W ;x) =

∏K
k=1 ρkf(V1, · · · , VK ;x), where Wk = ρkVk with the matrix norm ||Vk||p = 1 and

||Wk|| = ρk.
There are several physicist-like approaches to show that changes in the weights due to small

changes in the training set will be proportional to the norm of the weights. A simple observation
goes as follows. In a deep net, the product of the norms in a K-layer networks is ρ1 · · · ρK . Since
we know that if the ρk start equal then they grow at the same rate under gradient descent and
thus remain equal (see [15]), we assume that the total norm of the network is ρK (the argument
is valid even if the ρk are different). Assume now that the weights of each layer are perturbed
because of a change, such as leave-one-out, in the training set . Then the overall norm will
change as

ρK → KρK−1∆ρ, (8)

implying that for V (f, z) = cγ(f(x), y) as defined in section 4.2.2 of [17]

||V (fSi(xi)− fS(xi))|| ≤
1
γ
||fSi(xi)− fS(xi)||||x|| ≤

1
γ
ρK−1(ρ−∆ρ) (9)

Thus networks with minimum norm ρ (for a fixed margin) minimize ES |V f iS(xi)− fS(xi))|
and thus optimize CVloo stability. The same argument is valid for other loss functions such as
the square losss.

3.3 A General Approach?

I currently believe that a general approach to establish that stable solutions are minimum norm
and viceversa may rely on the implict function theorem or on the more powerful constant rank
theorem. The observation is that fitting the training set corresponds to the equation

F (X,Y,W ) = 0 (10)

where X∗, Y ∗ is the training set, W is the set of weights and F (X,Y,W ) is a set of n equations
for each of the data points (columns of X and Y ). Under assumptions of differentiability of F ,
the interpolating or separating property defines a mapping W (X,Y ) in the neighborhood of the
solution X∗, Y ∗,W∗ such that F (X,Y,W (X,Y )) = 0 in that neighborhood. Furthermore ∂W

∂X
may be computed in terms of the Jacobian of F and other derivatives. This should be checked
using the constant rank theorem because of possible degeneracies in the Jacobian. In the case of
F (X,Y,W ) = WX − Y , this approach would then provide ∆W (X) =≈ ∂W

∂X ∆X ≈ X†∆X. Thus



Conjecture 4 (very informal) Using the constant rank theorem, CVloo stability for kernel
regressors+classifiers and for deep nets, can be bounded by the norm of the weights. Thus
optimum stability is equivalent to minimum norm solutions.

3.4 Hard margin SVM

In the case of hard margin linear SVM it is not clear in terms of the classical theory why one
should select the maximum margin solution among all the separating hyperplanes. Our approach
provides an answer: one must choose the most stable solutions in order to minimize the expected
error, and the most stable solution is the minimum norm one for margin equal to 1 (which is
equivalent to the maximum margin solution, see Lemma).

3.5 Gradient Descent and Selection of Minimum Norm Solutions

Until now we have discussed ERM, without discussing the optimization algorithm used for
minimization. The summary of our results is that in order to ensure good expected error, it is
necessary to select the minimum norm solutions among all the infinite solutions that achieve zero
of the empirical loss. So ERM is not enough in the overparametrized case. However, it turns out
that if GD is used to perform ERM, GD will select the minimum norm solution both in the case
of kernel regression ([13]) and of deep networks, at least for the exponential loss (see [15]).

4 Caveats

In summary, the two main claims of this paper are 1) that minimization of stability ensures
minimization of the expected erroror and 2) that minimizing stability is equivalent to choose the
minimum norm solutions among all the solutions found by fitting the training set.

We now need to derive quantitative bounds for the case of kernel regressors and for deep
networks. Two papers in preparation [18, 19] will describe those specific results.

5 Conclusions

In summary, optimization of CVloo-type stability minimizes for n → ∞ the expected error in
both the classical and the modern regime of ERM. It is thus a sufficient condition for predictivity
in ERM (but probably beyond ERM, see [1]).

In the classical regime, stability implies generalization and consistency2. In the modern
regime, stability explains the double descent curve in kernel interpolants [18] and why maximum

2 We think that regularization is a way to obtain an effect similar to n > d, especially in the asymptotically
pathological case of n = d. We conjecture that the dynamical system associated with gradient descent algorithms
has hyperbolic minima in the classical regime, including regularized ERM, but just convex minima in the modern
regime, corresponding to vanishing regularization (similar to the definition of the pseudoinverse).



margin solutions in deep networks trained under exponential-type losses may minimize expected
error (this does not mean they are globally optimal), see [19].

The classical conditions for consistency of ERM – such as the hypothesis space being a uGC
class – can be regarded as the formalization of a ‘folk theorem’, which says that among simple
theories the one that fits the data best should be preferred. The modern conditions would say
that among all the theories that exactly fit the data, the simplest one should be preferred. The
framework that unifies the classical and modern regime is stability. Given that the empirical
error is good – even zero – the most stable solutions predict best. This corresponds to the
statement, for both the classical and the modern regime, that stable ERM should— most of the
time—change the current best model only incrementally, as new data become available.
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