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Abstract
Consider a loss function L = Y | ¢ with ¢; = f(x;) — y;, where f(x) is a deep feed-

K3
forward network with R layers, no bias terms and scalar output. Assume the network is
overparametrized that is, d >> n, where d is the number of parameters and n is the number
of data points. The networks are assumed to interpolate the training data (e.g. the minimum
of L is zero). If GD converges, it will converge to a critical point of L, namely a solution
of Z?:l £;V{; = 0. There are two kinds of critical points - those for which each term of the
above sum vanishes individually, and those for which the expression only vanishes when all
the terms are summed. The main claim in this note is that while GD can converge to both
types of critical points, SGD can only converge to the first kind, which include all global
minima.
We review other properties of the loss landscape:

e As shown rigorously by [I] for the case of smooth RELUs the global minima in the
Ws, when not empty, are highly degenerate with dimension d — n and for them
6;=0 Vi=1,---,N (see also [2]).

e Under additional assumptions all of the global minima are connected within a unique
and potentially very large global valley ([3], based on [4]).

1 Introduction

Understanding properties of the loss landscape can help us understand properties of trained
networks. In the case of the square loss, for overparametrized networks, experiments suggest
that SGD, unlike GD, may avoid critical points of the gradient which are not global minima.
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Figure 1: One can convert a deep network into a polynomial function by using polynomial
nonlinearity. As long as the nonlinearity approximates ReLU well (especially near 0), the
“polynomial net” performs similarly to a ReLU net. From [2].

Here we assume that the deep networks have an activation function which is a RELU. In

some of the statements we assume either a smooth RELU or a polynomial approximation of a
RELU as in Figure[].

2 Definitions

We consider the case in which f takes scalar values, implying that the last layer matrix W# is
has size 1 x hr_1, where h; denotes the size of layer k. The weights of hidden layer k has size
hi X hi—1. In the case of of binary classification the labels are y € {—1,1}.

For non-smooth ReLLU activations the followmg 1m%)ortant positive one-homogeneity property
holds Vz,Va > 0,0(az) = ao(z). Thus, o(z) = z. A consequence of one-homogeneity
is a structural lemma (Lemma 2.1 of [5 ], closely related to Euler’s theorem for homogeneous

functions) 3=, ; W,ij (W) = f(W;x) where Wy is here the vectorized representation of the
k

weight matrices Wy, for layer k.

For the network, homogeneity of the ReLU implies f(W;x) = Hle o f(V1, -+, Vi;x), where
Wi = pi Vi with the matrix norm ||V4||, = 1. Note that % = L f(V;z) and that the
definitions of pg and Vj all depend on the choice of the norm used in normalization.

There are no bias terms but one of the input components is set to be a constant.

3 Background: gradient descent and SGD

Consider

N
min L(f(W)) = mvivngﬂ% (1)

with ¢; = y; — f(W, JIZ)



GD can be used to minimize L(f(W)) by running the following dynamical system (e.g.
gradient flow)

N
W =VwL(f(W)) =Y Vwf(W;z)(yi — fF(W;z)). (2)
SGD can be formulated as follows. First define

Definition 1 A random vector v € R* drawn from a distribution D is a sampling vector if
Eplv]=1 Vi

Then the stochastic version of Equation [I} is
n
min Ep[L(f(W))] = min Ep > vl (3)
i

Usually the distribution over D is assumed to be random v with independent components v;,
satisfying condition [1} This implies that in expectation SGD is equal to GD (777).

4 Critical points

Finding the interpolating global minimizers of L = 3" ¢ is equivalent to finding the set of network
weights W* that solve the system of equations ¢;(W*) =0 Vi =1,---,N. Thus instead of
finding all the critical points of the gradient of L, we would like to find the joint minimizers —
that is the W — that minimize E% Vi=1,---,n.

We distinguish two sets of solution to VL = 0:

1. solutions of ¢;V{; = 0, Vi
2. solutions of ), ;V{; = 0 that are not solutions of ¢;V¢; = 0,Vi

The solutions 1) of ¢;V{; = (f(x;) — yi)Vw f(zi) = 0, Vi consist of the global minima that is
f(z;) —y; = 0,Vi and of other points, which we call here “spurious” critical points, for which
L;Ve; = 0,Vi but L # 0. This can happen if Vy¢; = 0 for some ¢ and ¢; = 0 for the other 7.
Notice that Vy f(x;) = 0 is a vector of D components — as many as there are weights in the
network — all identically = 0 for a non-xero z;.

5 Why SGD is less likely than GD to get stuck in critical points
which are not global minimizers
The global minima and the critical points satisfying V,,¢; = 0, V¢ are critical points of the

loss for any subset of the training points, that is for any of the batches used in SGD. This is
not true for the solutions 2) of Y, ¢;V¢; = 0: they are not (generically) critical points of any
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random subset of the training points. This means that SGD will never stop after it reaches them
(generically).
Consider

N
W = Z A2 (4)

where v;(t) is the i-th component of v which is a random binary vector with (n — nggp) zero’s
and ngap one’s, where ngap is the size of the minibatches used by SGD. For simplicity, assume
the basic form of SGD, in which the minibatch size is 1. The random vector v (all zero with a
single component equal to one) changes at every interation. Suppose now that W (¢) has reached
a critical point of the gradient which is a global minimum. Then at ¢ + 1, W = 0 independently
of the choice of v(t 4 1) since V f(x;) is zero for each of the data points. Suppose instead that
W (t) has reached a critical point of the gradient which is not a global minimum (and is not a
spurious critical point). Then at t 4+ 1, W # 0 for a random choice of v(t + 1); if W = 0 for that
particular choice, in one of the subsequent iterations the random v will yield W # 0 and the
dynamical system will move out of the critical point.

Theorem 2 (informal) Consider a noiseless situation. The dynamical systems defined by SGD
and GD stops at global minima. GD will also get stuck at all other critical points of the gradient.
SGD will not get stuck at other critical points — apart from the spurious ones, which are easy to
detect, because all the components of gradient vector V f(x;) are zero for at least some of data
points 1.

6 Degeneracy of global minima

We are interested in finding the global minimizers achieving zero loss of
n
L(fW))=>_¢ (5)
i=1

with ¢; = y; — f(W; ;). The network f is assumed to be overparametrized with a number of
weights d >> n and to be able to interpolate the training data achieving L(f(W™*)) = 0 which
implies £; =0 Vi=1,---,N.

If we assume overparametrized networks with d >> n, where d is the number of parameters
and n is the number of data points, [I] proved that the global minima of L(w) are highly
degeneratd!] with dimension d — n.

LThis result is also what one expects from Bezout theorem for a deep polynomial network. As Terry Tao says
in his blog “from the general “soft” theory of algebraic geometry, we know that the algebraic set V is a union of
finitely many algebraic varieties, each of dimension at least d-n, with none of these components contained in any
other. In particular, in the underdetermined case n<d , there are no zero-dimensional components of V | and thus
V is either empty or infinite”.



Theorem 3 ( [1] ) For an overparametrized f with smooth activation function assuming a
square loss, the minimizers W are highly degenerate with dimension d — n.

6.1 Degeneracy of global critical points

We wish to understand whether the solutions of the global critical points, e.g. >, ¢;V¢; = 0 that
are neither global zeros nor solutions of V¢; =0, Vi are degenerate. We hypothesize that the
space of such critical points is lower dimensional than the space of global minima, and leave the
study of this question to future work.

6.2 Non-smooth RELU

For exact RELU — as opposed to smooth RELU assumed so far — it turns out that Vyy f(z;) =0
for some i then f(x;) =0 for the same i.

The proof of this fact uses the structural lemma (Lemma 2.1 of [5], closely related to Euler’s
theorem for homogeneous functions)

Of (W)

> Wy () = f(W;) (6)

ihj
i ow,

where W}, is here the vectorized representation of the weight matrices W, for layer k. Setting
Vw f(x;) = 0 in Equation |§| gives
0=f(W;x;) (7)

Taking second derivatives of Equation |§| shows that if Vi f(z;) = 0 then the Hessian

This property allows a better characterization of the spurious critical points. The spurious
points are defined by f(x;) = y; for some i and f(z;) = 0 for the other i; this means that L # 0.
Are the spurious points local minima or saddles? The structural lemma implies that for the 4
for which f(z;) = 0 it holds H(x;) = 0; for the other ¢ H is positive semidefinite (because they
are global minima of ¢;). Thus the Hessian associated with L, since L is the sum of the ¢;, is
positive semidefinite. This means that the associated critical points are degenerate local minima.

Of course, the use of this property is tantamount to assuming non-smooth activation functions.
This assumption is inconsistent with the smoothness we require for proving theorems on the
degeneracy of the global and local minima. This is likely to be a technical problem that may
be circumvented but at the present time represents a possibly fatal weakness in some of our
arguments.



7 Discussion

Taken together, the results we summarize here may help explain some puzzling empirical
observations of the past few years. In particular, minima found by GD can be unstable for SGD.
According to [6], switching from GD to SGD at a point close to a global minimum, SGD often
escapes from that minimum and converges to a better minimum [7]

7.1 GD and SGD “feel” different loss landscapes

Consider loss functions of the form L = ), ¢;. In the preceeding section we have shown that
SGD cannot stop at critical points that exist because of the interaction between different ¢;
whereas GD will stop at them. To visualize this point here is a simple example. Define ¢(w, z;)
as a(w — x;)%. With 1 = —zy consider S22, l(w, x;) = a(w — x1)? + a(w + x1)?. GD will “see”
a loss of the form 2aw? + const with one minimum in zero, whereas SGD will see a loss with two
minima, one in x; and one in xs.

This shows that the analogy between SGD on one hand and GD + noise at the other hand,,
can be quite misleading.
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