
CBMM Memo No. 142 June 27, 2023

Skip Connections Increase the Capacity of
Associative Memories in Variable Binding

Mechanisms

Yi Xie∗,1, Yichen Li∗,2 and Akshay Rangamani1

1: Center for Brains, Minds, and Machines, Massachusetts Institute of Technology
2: Department of Psychology, Harvard University

Abstract

The flexibility of intelligent behavior is fundamentally attributed to the ability to separate and assign
structural information from content in sensory inputs. Variable binding is the atomic computation that
underlies this ability. In this work, we investigate the implementation of variable binding via pointers of
assemblies of neurons, which are sets of excitatory neurons that fire together. The Assembly Calculus
is a framework that describes a set of operations to create and modify assemblies of neurons. We
focus on the project (which creates assemblies) and reciprocal-project (which performs vari-
able binding) operations and study the capacity of networks in terms of the number of assemblies that
can be reliably created and retrieved. We find that assembly calculus networks implemented through
Hebbian plasticity resemble associative memories in their structure and behavior. However, for net-
works with N neurons per brain area, the capacity of variable binding networks (0.01N) is an order
of magnitude lower than the capacity of assembly creation networks (0.22N). To alleviate this drop in
capacity, we propose a skip connection between the input and variable assembly, which boosts the
capacity to a similar order of magnitude (0.1N) as the Project operation, while maintain its biological
plausibility.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

Skip Connections Increase the Capacity of
Associative Memories in Variable Binding Mechanisms

Yi Xie 1∗, Yichen Li 2 ∗, Akshay Rangamani 1

1 Center for Brains, Minds and Machines, Massachusetts Institute of Technology
2 Department of Psychology, Harvard University

Abstract

The flexibility of intelligent behavior is fundamentally attributed to the ability to separate and assign
structural information from content in sensory inputs. Variable binding is the atomic computation that
underlies this ability. In this work, we investigate the implementation of variable binding via pointers of
assemblies of neurons, which are sets of excitatory neurons that fire together. The Assembly Calculus [1]
is a framework that describes a set of operations to create and modify assemblies of neurons. We focus
on the project (which creates assemblies) and reciprocal-project (which performs variable binding)
operations and study the capacity of networks in terms of the number of assemblies that can be reliably
created and retrieved. We find that assembly calculus networks implemented through Hebbian plasticity
resemble associative memories in their structure and behavior. However, for networks with N neurons
per brain area, the capacity of variable binding networks (0.01N) is an order of magnitude lower than
the capacity of assembly creation networks (0.22N). To alleviate this drop in capacity, we propose a skip
connection between the input and variable assembly, which boosts the capacity to a similar order of magnitude
(0.1N) as the Project operation, while maintaining its biological plausibility. †

1 Introduction
The human brain is one of the most sophisticated learning machines in the world, and consequently compu-
tational models of the brain have been of great interest to the learning community. There have been many
models proposed to understand the brain, at different levels of abstraction, ranging from molecular models
of neurotransmission and models of single neurons to whole brain models studied in cognitive science.
Despite significant progress in experimental and theoretical computational neuroscience, understanding
how molecules, cells, and synapses contribute to cognition, behavior, intelligence, reasoning, and language
remains elusive. We are still searching for “a logic for the transformation of neural activity into thought and
action” [2].
With this motivation, we turn to the study of assemblies (or ensembles) of neurons. Assemblies are large
densely interconnected sets of neurons whose simultaneous excitation is tantamount to the subject’s thinking
of a particular concept or idea. They are initially created to record memories of external stimuli and are
believed to be subsequently manipulated through a repertoire of operations in the non-sensory brain. Known
as “the alphabet of the brain“ [3], assemblies of neurons were first hypothesized seven decades ago by Donald
O. Hebb [4] attempted to explain with his theory of plasticity, and were clearly identified as existing in
mammalian brains through calcium imaging more than a decade ago [5,6]. Recently, the Assembly Calculus
(AC) [1], a formal computational model of the brain based on assemblies of neurons, was introduced as
a high-level framework that would qualify as the sought “logic” at a level of abstraction between models
of neurons [7,8] and whole brain models. While modern deep neural networks are inspired by models of
the sensory parts of the brain, especially the visual cortex [9], assemblies of neurons are meant to model

∗Equal contributions.
†All code used to generate the figures in this work can be found at https://github.com/minzsiure/Variable-Binding-Capacity.

2

https://github.com/minzsiure/Variable-Binding-Capacity

intermediate levels of computation beyond sensory information processing. The AC framework consists
of operations that create new assemblies and modify existing ones, and has been shown to be Turing-
complete [10]. Systems have also been written in assembly calculus to solve complex cognitive problems like
language parsing [11] and planning in blocks world [12].
Assemblies of neurons are a promising candidate for the data structure underlying the brain’s “logic”, and
thus it is worth investigating the basic operations of assembly calculus. In this paper, we focus on two
fundamental operations in AC. The first operation is project, which creates assemblies from stimuli. The
second operation is reciprocal-project, which implements variable binding. Variable binding is an atomic
operation [13] that enables agents to separate and assign structural information from sensory inputs. It allows
us to represent information in a structuredmanner to access entities and their attributes in different ways such
as “What color is the block?” and “What object is blue?”. While anatomical or convolutional approaches to
variable binding exist, we study the implementation of pointer-based binding through reciprocal-project.
Notably, the point-based binding operation has been shown to be critical to language parsing [11].
In this paper, we establish the above two AC operations, project and reciprocal-project, as associative
memories. Since Hebbian plasticity is one of the computational primitives that underlies the implementation
of operations in assembly calculus, one can expect that associative memory structures emerge in the neural
circuits that implement them. We study the capacity of the associative memories that emerge in both
these operations and find that the capacity of reciprocal-project is smaller than the capacity of project
by an order of magnitude. We propose a biologically plausible skip connection in the architecture of
reciprocal-project to mitigate this drop in capacity. This addition enables new opportunities for exploring
hierarchical models using assemblies of neurons.

Our Contributions.

1. We establish that the neural circuits that implement operations for the creation of assemblies and
variable binding in Assembly Calculus (project and reciprocal-project) display an associative
memory structure.

2. We show that such associative memories yield a clear class structure after receiving multiple classes of
stimulus, and that they can complete patterns based on partial or perturbed inputs.

3. We provide the measurement of the memory capacity of both project and reciprocal-project under
different parameter settings (i.e., number of neurons per area, cap size, density of synaptic connections),
and find that the capacity of variable binding (reciprocal-project) is much lower than the capacity
of assembly creation.

4. We introduce a new variable binding model with an additional skip connection, and show that such a
design boosts the memory capacity significantly while making the model more biologically plausible.
This opens new avenues for exploring hierarchical models using assemblies of neurons.

Paper Outline. We introduce both the AC model and its basic operations in more detail in Section 2, as well
as the relevant setup of the experiments. In Section 3, we establish that associative memories emerge in AC
through Hebbian learning with a stream of stimuli drawn from some distribution; further, this phenomenon
generalizes to multiple classes of stimuli. Having established that AC operations create associative memories,
in Section 4, we measure the capacity of associative memories in AC as a function of model parameter
N , the number of neurons in each brain area, and K, the maximum number of active neurons in an area
at any time, and p, the rate of connectivity of brain areas and assemblies. We discuss the phenomenon
of the cascading reduction in the capacity of assemblies over hierarchical brain areas. Then, we leverage
our knowledge of reciprocal-project’s hypothesized biological role in variable binding mechanisms to
propose the addition of skip connection. This addition allows a direct access to the pointer variable by the
sensory input, which increases the capacity by an order of magnitude; as such, it tackles the challenges

3

caused by the aforementioned phenomenon. Lastly, we discuss the biologically plausiblility of the addition of
skip connections.

2 Assembly Calculus
In this section, we introduce the basic framework of Assembly Calculus and the two operations that we study:
project and reciprocal-project.

2.1 Model Overview
The model of the brain used in Assembly Calculus consists of several brain areas each with N excitatory
neurons. The neurons are binary (without any internal structure) and can either be firing or not firing
(neuron set to 0 or 1). Computation occurs in discrete timesteps, and the activity in any brain area can
be represented using a binary vector {0, 1}N . Afferent connections between neurons in different areas are
drawn independently at randomwith probability p. This means they have the structure of a random bipartite
graph BN,p. Recurrent connections between neurons in the same area follow the structure of an Erdos-Renyi
graph GN,p. While brains have excitatory as well as inhibitory neurons, AC only has excitatory neurons. The
function of inhibitory neurons is instead implemented implicitly by a capK(·) operation, which selects the K
neurons with the largest synaptic input out of the N neurons in a specific brain area to fire at a particular
timestep. The parameter K is referred to as the cap size. The final key component in this model is the
multiplicative Hebbian plasticity, which increases the strength of connection between neurons that fire in
consecutive timesteps by a factor of β.

2.2 Stimuli: Representation of Distinct Concept Classes
A stimulus is defined by a pattern of activity - represented by a vector in {0, 1}N . Stimuli are modeled as
random vectors, where each neuron fires independently. Since the neural stimuli corresponding to different
phenomena are going to have different representations, we introduce the idea of concept classes or stimuli
classes. Each concept class is represented by a coreset of neurons that fires with a higher probability than
the rest of the neurons in the stimulus area. The stimulus classes are thus fully specified by the coresets,
the probability of firing within the coreset, and the background probability of firing. We denote these
quantities by {S, r, q} respectively. The coreset of stimulus class i is denoted by Si, and we set its cardinality
|Si| = K. Every neuron that belongs to Si fires with probability r, while the rest of the neurons fire with
probability q which is typically much smaller than r. The parameters r, q can be thought of as determining
the signal-to-noise ratio of this problem.
By manipulating {S, r, q}, we can create a diverse range of stimulus classes with varying levels of complexity,
coreset activation, and noise. This flexibility allows us to simulate different scenarios and analyze how well
our model can discriminate and classify various concept classes under different conditions. In this paper, we
set r = 0.9 and q = 0.01. We choose the coresets uniformly at random from allK-sized subsets of N neurons.

2.3 Project

Project is the primary operation of AC that describes the creation of assemblies from stimuli. It entails that
through the projection of a stimulus assembly x in area S, an assembly y that can be thought of as a “copy”
of x forms in a downstream area C. Henceforth y fires every time x fires [1].

4

y₃
y₁x

y₂ y

Area S Area C

y
t

Figure 1: A demonstration of project(x, C, y), where an assembly x in stimulus area S is being projected to
form an assembly y in a downstream assembly content area C. Here, the red arrow represents the afferent
synaptic connections WSC , and the blue arrow represents the recurrent synaptic connections WCC .

The idea is that, with repeated firing of x, afferent synaptic connectivity from area S to area C excites a
sequence of {y(t)}, sets of neurons of size K in area C. With large enough parameters and high enough
plasticity, this process converges exponentially fast with a high probability to create an assembly y as a result
of the projection, as proven by previous literature [1]. A demonstration of this is shown in Figure 1.
More formally, if we consider a brain area C receiving synaptic input from an assembly x in stimulus area S ,
we can write the dynamics of the projection operation as:

y(t+1) = capK

(
W

(t)
CC y

(t) +W
(t)
SCx

)
W

(t+1)
SC = W

(t)
SC + βy(t+1)x⊤ ⊙W

(t)
SC

W
(t+1)
CC = W

(t)
CC + βy(t+1)y(t)⊤ ⊙W

(t)
CC

(1)

In the above set of equations, WSC and WCC refer to the weights of the afferent and recurrent synaptic
connections, respectively. y(t) refers to the pattern of activity in C at time t. At the end of T rounds of firing,
an assembly y is created as the result of the operation project(x, C, y). In each round, the synaptic weights
are updated according to the rule of Hebbian plasticity, by a factor of β. Theorem 1 of [14] shows that this
process converges in the sense that after a certain number of timesteps no new neurons are activated in area
C.
In section 3, we show that the mechanism of project resembles the creation of associative memory: every
time when the stimulus assembly x fires in area S, assembly y in area C will also fire reliably, as a result of
Hebbian updating. Assembly y is thus “associated” with x.

2.4 Reciprocal-Project

Reciprocal-project is an extension of project and is hypothesized to be instrumental for implementing
variable binding in the brain [15,16]. In reciprocal-project, three brain areas are involved: a stimulus area
S, a content area C, and a variable area V . We denote the operation as reciprocal-project(y, C, z)where
the stimulus x in S that created y fires to induce an assembly z in V that has strong forward and backward
synaptic connectivity with y. The demonstration of this neural operation is shown in Figure 2

5

y₃
y₁x

z₁
z₂

z₃z

y₂ y

Area S Area C Area V

y
t

z
t

Figure 2: A demonstration of reciprocal-project(y, C, z), where an assembly x in stimulus area S is being
projected to form an assembly y in a downstream content area C, and with strong forward and backward
synaptic connectivity to form an assembly z in the variable area V .

Formally, with an additional variable region V involved for establishing strong backward synaptic connectivity
as a variable binding mechanism, the dynamic of the reciprocal-project(y, C, z) operation is as follows:

y(t+1) = capK

(
W

(t)
CC y

(t) +W
(t)
SCx+W

(t)
V Cz

(t)
)

z(t+1) = capK

(
W

(t)
CVy

(t) +W
(t)
VVz

(t)
)

W
(t+1)
SC = W

(t)
SC + βy(t+1)x⊤ ⊙W

(t)
SC

W
(t+1)
CC = W

(t)
CC + βy(t+1)y(t)⊤ ⊙W

(t)
CC

W
(t+1)
CV = W

(t)
CV + βz(t+1)y(t)⊤ ⊙W

(t)
CV

W
(t+1)
VC = W

(t)
VC + βy(t+1)z(t)⊤ ⊙W

(t)
VC

W
(t+1)
VV = W

(t)
VV + βz(t+1)z(t)⊤ ⊙W

(t)
VV

(2)

The weights update is consistent with the rule of Hebbian plasticity, by a factor of β. In addition to the formed
assembly y described in project, an additional assembly z is created in the variable area V as the result of
the reciprocal-project operation.

3 The Emergence of Associative Memories in Assembly Calculus
In the above section, we introduced twoof the fundamental operations ofAC, project and reciprocal-project.
While previous work has shown that these mechanisms converge to stable sets of assemblies, we aim to
provide a description of the neural circuits in terms of the synaptic weight matrices. In this section, we study
the patterns and structures that emerge in these neural circuits and describe them in terms of associative
memories. We establish the correspondence between associative memories and models in assembly calculus
in two ways. First through the spectral decomposition of the synaptic weight matrices. Second, by showing
that circuits learned during AC operations can reconstruct assemblies from incomplete or noisy stimuli. We
also show that these properties hold when the stimuli come from multiple stimulus classes.

3.1 Associative Memories
Associative memories have been a popular topic in neural networks for over half a century, starting with the
work of Kohonen [17] who proposed a mathematical model for a non-hierarchical pattern storage system.

6

This work inspired many subsequent studies, including the Self-Organizing Map algorithm by Kohonen [17]
and the Simple Recurrent Network by Anderson [18]. Hopfield [19] later proposed the Hopfield network,
a recurrent neural network that can store and recall multiple patterns. Kanerva [20] proposed the sparse
distributed memory, which uses high-dimensional binary vectors for efficient pattern storage. Associative
memories have also been used in signal processing applications such as holography before their systematic
study in the context of neural networks [21].
Associative memories are systems that store associations between stimuli and responses. Given a number of
stimulus-response pairs {(xi, yi)}Ni=1, an associative memory A when probed with a stimulus xi will return
the response yi. In the special case that stimuli are associated with themselves, the associative memory
is called auto-associative. When the stimuli and responses are different, we refer to the memory as hetero-
associative. If the stimuli xi are orthogonal or near orthogonal, we can construct an associative memory from
the data as A =

∑N
i=1 yix

⊤
i = Y X⊤. We thus say that a matrix A has an associative memory structure if we

can discover factors U, V such that A = UV ⊤ and U, V are close to the outputs and inputs of A respectively.
For an auto-associative memory, we have A = XX⊤ which means that we would like both factors U, V to be
close to the inputs of A.
In addition to mapping stimuli to responses, associative memories are able to recall responses from noisy or
incomplete patterns of the stimuli. An associative memory typically performs this function by implicitly
constructing an energy function with local minima corresponding to the stored patterns. The iterative proce-
dure that recovers the stored patterns in an associative memory can be viewed as an iterative minimization
algorithm on the implicitly defined energy function. This characteristic of associative memory is commonly
demonstrated by supplying the memory a fraction of an input stimulus - for instance, the left half of an
image. The memory then reconstructs the complete image in the case of an auto-associative memory, or the
corresponding response in the case of a hetero-associative memory.

3.2 Spectral Factors of Synaptic Connections in Assembly Calculus Resemble Associa-
tive Memories

We show that the synaptic connections created by Hebbian updates during AC operations exhibit an associa-
tive memory structure by decomposing the matrices into factors that correspond to the input and output
assemblies. We discover these factors through the Singular Value Decomposition (SVD) of the afferent and
recurrent connectivity matrices. We perform SVD on each of the weight matrices to obtain

W = UΣV T

where the columns of U contain left singular vectors, the rows of V T contain right singular vectors, and the
diagonal of Σ stores singular values (in descending order) of the weight matrix. We expect the left and right
singular vector factors to contain information pertaining to the output and input assembly pairs, respectively.
To quantify the similarity between a singular vector and an assembly, we compute the Hamming distance
between them (with the top-k-winner-take-all operation applied to the singular vector to align with the
representation of the assembly). A smaller distance signifies greater similarity or closeness between the two
vectors. More precisely, we use the following distance metric between a right singular vector v and a stimulus
x:

dH(v, x) = 1T
∣∣capk(|v|)− x

∣∣ .
We can similarly compare a left singular vector uwith the assembly y.

7

0

20

40

60

80

100
W

SC
dH(left SV, y) dH(right SV, x)

0 20 40 60 80 100 120
Singular Vector Index

0

20

40

60

80

100

W
CC

dH(left SV, y)

0 20 40 60 80 100 120
Singular Vector Index

dH(right SV, y)

A

0

20

40

60

80

100

W
SC

dH(left SV, y)

Distance to Class 1
Distance to Class 2

dH(right SV, x)

0 20 40 60 80 100 120
Singular Vector Index

0

20

40

60

80

100

W
CC

dH(left SV, y)

0 20 40 60 80 100 120
Singular Vector Index

dH(right SV, y)

B

Figure 3: The visualization of Hamming distance between singular vectors in weight matrices of project
and the input or output assembly. We normalize the weights of synaptic connections every 5 iteration. Here,
N = 1000, K = 50, p = 0.1, β = 0.1. The model learns a class until reaching convergence with at most 30
iterations. We form assemblies at test time under 5 iterations when projecting stimuli generated under the
setting described in section 2.2 using q = 0.01 and r = 0.9. (A) single class of stimuli. (B) binary classes of
stimuli.

Using Figure 3 as an illustrative example, we present the Hamming distance between singular vectors in
weight matrices of project and the input or output assembly. In Figure 3A, the first few left singular vectors
in the afferent connectivity matrix WSC are very close to the output assembly y in the content area C, and the
first few right singular vectors in WSC are similar to the input vector x from the stimulus area S . The rest of
the singular vectors have a distance of≈ 2K from the input stimulus and output assembly respectively, which
means the singular vectors are completely orthogonal to the stimuli/assembly. The singular vectors in the
recurrent connectivity matrix WCC exhibit a comparable but less pronounced resemblance to the input and
output assembly (in this case, both the input and output are the assemblies in area C itself). This indicates
that the afferent connections form a hetero-associative memory, while the recurrent connections form an
auto-associative memory.
A similar spectral structure emerges when projecting multiple classes of stimuli, as shown in Figure 3B. We
project the first class of (noisy) stimuli to the network for 30 iterations, followed by projecting the second class
of stimuli to the same network for another 30 iterations, with weight normalization after every 5 iterations.
We observe an emerging class structure: different sets of singular vectors are close to the stimuli from different
classes. The singular vectors that correspond to the first class are dissociated from those that correspond to
the second class.
We repeat the SVD Hamming distance visualization for reciprocal-project, an operation employing three
brain areas to facilitate variable binding. As depicted in Figure 4, the singular vectors in the learned weight
matrices store associations of input and output pairs, and the structure of two stimuli classes is largely
preserved. However, we observe that with the hierarchical structure of brain areas in reciprocal-project,
such class structure becomes increasingly noisier in subsequent layers. The class structure is most distinct in
the afferent connectionWSC , which is situated at the top of the network. This suggests that as the stimuli
signals traverse through multiple afferent and recurrent synaptic connections, the model can introduce
additional noise due to the randomness in weight initialization. To address this issue, we explore the
inclusion of a skip connection in reciprocal-project (see section 4).

8

0

50

100

150

200

W
SC

dH(left SV, y) dH(right SV, x)

0

50

100

150

200
W

CV

dH(left SV, z) dH(right SV, y)

0

50

100

150

200

W
VC

dH(left SV, y) dH(right SV, z)

0

50

100

150

200

W
CC

dH(left SV, y) dH(right SV, y)

0 50 100 150 200 250
Singular Vector Index

0

50

100

150

200

W
VV

dH(left SV, z)

0 50 100 150 200 250
Singular Vector Index

dH(right SV, z)

A

0

50

100

150

200

W
SC

dH(left SV, y)

Distance to Class 1
Distance to Class 2

dH(right SV, x)

0

50

100

150

200

W
CV

dH(left SV, z) dH(right SV, y)

0

50

100

150

200

W
VC

dH(left SV, y) dH(right SV, z)

0

50

100

150

200

W
CC

dH(left SV, y) dH(right SV, y)

0 50 100 150 200 250
Singular Vector Index

0

50

100

150

200

W
VV

dH(left SV, z)

0 50 100 150 200 250
Singular Vector Index

dH(right SV, z)

B

Figure 4: The visualization of Hamming distance between singular vectors in weight matrices of
reciprocal-project and the input or output assembly. We normalize the weights of synaptic connec-
tions after every 5 iterations. Here, N = 1000, K = 100, p = 0.1, β = 0.1. The model learns a class until
reaching convergence with at most 50 iterations. We form assemblies at test time under 5 iterations when
projecting stimuli generated under the setting described in section 2.2 using q = 0.01 and r = 0.9. (A) single
class of stimuli. (B) binary classes of stimuli.

In figures 3 and 4, we observe that the number of singular vectors which are closer than random to the
stimuli/assemblies is≈ K. This is likely due to the cap operation in assembly calculus, which limits the rank of
the updates to each synaptic weight matrix. However, when examining the multi-class stimulus experiments,
we find that the number of singular vectors associated with each stimulus class can be significantly smaller
thanK. This implies the model has the capability to store multiple classes of stimuli-assembly associations,
as we explore in the next section. We expect that the capacity of an assembly calculus circuit is limited by
the rank of the learned synaptic weight matrix. Homeostasis (or normalization) plays a critical role here by
preventing the rank of the weight matrices from collapsing (see appendix B for more details).

3.3 Assembly Calculus Circuits are Capable of Pattern Completion & Assembly Recall
In the previous section, we established that the weight matrices of AC operations have factors that correspond
to the stimuli and assemblies. This means that the weight matrices have a structure similar to an associative
memory. In this section, we demonstrate a key property of associative memories in AC operations - to recover
stored patterns from noisy and incomplete stimuli [22]. The ability of AC circuits to reconstruct assemblies
from a fraction of their neurons indicates that the recurrent synaptic weights form an associative memory. The
ability of AC circuits to reconstruct assemblies from noisy input stimuli indicates that the afferent synaptic
weights form an associative memory. Both demonstrations further support our claim that assembly calculus

9

operations learn associative memories.

Assembly Pattern Completion: Previous work [1] has shown that assemblies can be recovered from a
fraction of the individual neurons, provided that the original assembly has been adequately reinforced. We
show that this is also the case for AC circuits that are learned from multiple classes of stimuli. We conduct an
experiment on an AC network implementing project. We present stimuli from M different concept classes
as described in section 2.2, each for Ttrain iterations to form assemblies ym ∈ {0, 1}n,m = 1, . . . ,M in area
C. For each class assembly, we make an incomplete version of ym by retaining only a fraction α ∈ [0, 1] of
theK active neurons, thereby creating the subset assembly ỹm. We then attempt to recover ym by setting
y(0) = ỹm and employing the recurrent synaptic connections WCC to execute the cap-K operation for Trecover

steps. Mathematically, the neurons in brain content area C evolve as ym(t+1) = capK

(
WCCy

m
(t)

)
. We measure

the performance of pattern completion by recording the percentage of the assembly recovered,∣∣∣Sym ∩ Sym
(Trecover)

∣∣∣
|Sym |

,

where Sy denotes the set ofK winners in assembly y. The results of this experiment are shown in Figure 5,
where we see that following sufficient training on multiple classes of stimuli (Ttrain), the model successfully
completed assemblies from all classes with perfect accuracy in merely Trecover = 2 iterations. The parameter
settings for this experiment are given in appendix C.

2 4 6 8 10 12 14
Learning time per class

20

40

60

80

100

Pe
rc

en
ta

ge
 a

ss
em

bl
y

re
co

ve
re

d

Class 0
Class 1
Class 2
Class 3
Class 4

Figure 5: Pattern completion in project. The model forms assemblies from few-shot presentations of the
stimulus classes and is able to recover the original assembly in Trecover = 2 rounds when probed with an
incomplete assembly with only α = 50% of its original K winners activated. The x-axis shows the number of
examples (Ttrain) shown per class to form an assembly ym. We averaged the results over 5 trials and show
both the median and standard error.

Assembly Recall: In the previous experiment we demonstrated that the recurrent synaptic connections
WCC in a projectmodel form an associative memory. We now probe the model with corrupted inputs to
show that it can recover the learned assemblies. This will demonstrate that the afferent synaptic connections
WSC also form an associative memory.
Similar to the pattern completion experiment, we present stimuli xm from M different concept classes, each
for Ttrain steps to form assemblies ym ∈ {0, 1}n,m = 1, . . . ,M in area C. We then probe the model with
corrupted inputs x̃m. The corrupted inputs can be created in two ways. First, we vary the probability of

10

the coreset firing r ∈ [0.1, 0.9]. Alternatively, we create a corrupted input by perturbing its coreset to be a
certain Hamming distance away from that of the original class coreset S, denoted S̃. The Hamming distance
between the coresets varies from 0 to 2K. Given the perturbed inputs x̃m, we obtain its associated assembly
ỹm by projecting x̃m for Trecover steps. The robustness of assembly recall was measured by the Hamming
distance between the original assembly ym and the recalled assembly ỹm.
The results of the above experiments are shown in Figure 6. In both instances of perturbation, the model
trained using project is able to reconstruct the original assembly within 10% of the original assembly ym.
This is true even when the distance between the original coreset and the perturbed coreset is close to 50%.
In both instances of perturbation, the model trained using project is able to recall the original assembly
at a decent rate even when the coreset firing is noisy or when the coreset is disturbed to be distant from
the original stimuli. The robustness follows the expected trend, in which the reconstruction is closer to the
original assembly when the signal-to-noise ratio of the stimuli is higher (figure 6A) or the magnitude of the
perturbation is smaller (figure 6B).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability of coreset firing (r) after perturbation

10

20

30

40

50

dH
(Y

,Y
) i

n
%

class 0
class 1
class 2
class 3
class 4

A

0 25 50 75 100 125 150 175 200
Hamming distance between coresets

10

20

30

40

50

60

70

dH
(Y

,Y
) i

n
%

class 0
class 1
class 2
class 3
class 4

B

Figure 6: Assembly recall in project. Here shows the median and standard error of results across 5 trials.
We denote a stack of stimuli x or assemblies y by X and Y . (A) Performance of recalling the original
assembly Y (formed under stimuli X) across pertubations of r. We present the model a stream of corrupted
inputs X̃ constructed by varying the coreset firing rate r in X . We plot dH(Y, Ỹ) normalized by K, the
Hamming distance between the set of firing neurons of the original assemblies Y and of assemblies Ỹ formed
by corrupted inputs X̃ , and normalized by K to show the percentage of differences. (B) Performance of
recalling the original assembly Y across manipulations of Hamming distance between coresets. Here, the
corrupted inputs X̃ are drawn from coresets S̃ that differ by a certain Hamming distance from the coreset S
of the original stimuli X . See more details of the experiment setup in appendix D.

In summary, in this section, we have demonstrated that basic Assembly Calculus operations (project and
reciprocal-project) form associative memories. The associations of input-output pairs are stored in the
weight matrices in the model. Such associative memories are robust in three aspects:

1. The spectral structure of weight matrices shows reliable separation among different stimuli classes.
2. A previously learned assembly can be rapidly reconstructed from a fraction of its neurons.
3. A previously learned assembly can be reconstructed from a corrupted version of the original input.

11

4 Capacity of Associative Memories in Assembly Calculus
In this paper, we have so far introduced two key operations in Assembly Calculus: 1) project, which creates
assemblies, and 2) reciprocal-project which performs variable binding. We saw in section 3 that the
neural circuits that implement these operations are associative memories, and can accommodate stimuli
from multiple concept classes. This naturally raises the question of capacity: How many distinct concept
classes can we encode in assembly circuits of a given size? How do parameters N,K which control the size
of the area and the cap size influence the capacity of these circuits? We aim to answer them in this section.
Through empirical measurements, we find that despite the capacity of project being higher than that of
the Hopfield model, the capacity of reciprocal-project is much lower than the capacity of project. We
attribute the cause of this drop to the fact that reciprocal-project involves more than one stage of random
projection. In order to alleviate this drop in capacity, we propose a skip connection between the stimulus
area and the pointer variable area, as demonstrated in Figure 7B.

Project

𝒮 𝒞

A Variable Binding

𝒮

𝒞 𝒱

B

Figure 7: (A) Project operation. (B) Variable Binding with optional skip connection (dotted arrow).

4.1 Capacity of ProjectModel Exceeds Classical Associative Memory Models
In previous work, as well as in this paper, we have seen that using stimuli from distinct concept classes to
train neural circuits for AC operations results in assemblies that are also distinct for each class [14]. We
demonstrate an example of assemblies learned for five stimulus classes (using the setup described in section
2.2) through project below. In Figure 8B2, the overlap between assemblies of the same class is much larger
than the overlap between assemblies of different classes, which means that they can be reliably distinguished.
However, we observe that as we add more distinct classes of stimuli during training, the overlap between
assemblies of the same classes diminishes while the overlap between assemblies of different classes grows.
At a certain critical number of stimuli classes, we see that the assemblies of different classes cannot be
distinguished from one another anymore. We refer to this threshold as the capacity of the project operation.
More precisely, an AC operation achieves capacitywhen the average between-class assembly overlap is greater
than or equal to the average within-class assembly overlap. Notably, this also corresponds to a linear decoder
getting chance accuracy when classifying assemblies of the stored patterns, implying the catastrophic loss of
all stored patterns.

12

Figure 8: Assemblies learned from five stimulus classes through project. In (A), we exhibit the distribution
of firing probabilities over neurons of the content area C for each class. In (B1) and (B2), we show the average
overlap (measured in correlation percentage) of different classes of input stimuli (red) and the overlap of
the corresponding representations in the assemblies (blue). See the detailed setup and the formation of
assemblies under reciprocal-project in appendix A.

With this definition of capacity, we explore how the capacity of the project operation varies with the number
of neurons N and the cap sizeK. For each setting of the parameters N andK, we train the model with an
increasing number of stimuli classes, and track the average within-class similarity of assemblies and compare
it to the average between-class similarity of assemblies. We record the capacity (averaged over 5 different
trials) as the number of classes when the within-class similarity is less than or equal to the between-class
similarity. The exact parameter settings are in appendix E.
As shown in Figure 9A, the capacity of the associative memory created using project is ≈ 0.22×N , where
N is the number of neurons in each brain area. This is higher than the capacity of Hopfield memories, which
was estimated to be ≈ 0.14×N [23]. The capacity decreases exponentially withK, as shown in Figure 9B.

13

100 200 300 400 500 600 700 800
Number of neurons (N)

20

40

60

80

100

120

140

160

Ca
pa

cit
y

Project.
Capacity = 0.22N - 5.43

A

50 100 150 200 250
Cap size (K)

10

20

30

40

50

60

Ca
pa

cit
y

Project.
ln(Capacity) = -0.01K - 4.59

B

Figure 9: Capacity of project, shown by the median number of classes across 5 trials and the corresponding
standard error. (A) Capacity as a function of N . (B) Capacity as a function of cap size K.

4.2 Skip Connections Increase the Capacity of Variable Binding Mechanisms
We now examine the capacity of the reciprocal-project, and compare it to the capacity of project. Despite
the capacity of project being competitive with traditional associative memory models, the capacity of the
regular reciprocal-projectmodel drastically drops to 0.01×N (Figure 10A, in blue). When measuring
how the capacity evolves as a function of the maximum number of active neuronsK (Figure 10B), we see
that the capacity decreases exponentially withK in all models tested. However, the capacity of the regular
reciprocal-projectmodel (in blue) is consistently lower than project (in orange).
This drop of capacity in reciprocal-project can be explained by the fact that the assemblies created in
the pointer variable space V are extremely noisy, due to some loss of information when assemblies are
formed in its preceding content space C. See appendix A for the similarity among assemblies in project
and reciprocal-project as a reference. To show that this amplification of noise is inherent to performing
two stages of random projections, we compare the capacity of reciprocal-project to the capacity of an
operation that performs project twice - once from the stimulus area S to the content area C, then from the
content area C to the variable area V . As shown in Figure 10A, B (in purple), for double-project, the capacity
of the content area C is approximately the same as in project. However, with the noise introduced by the
additional layer in double-project, the capacity of the variable area V drops significantly, and becomes
similar to the capacity of V in reciprocal-project.
To alleviate the propagation of noise, we propose the addition of a skip connection between the stimulus area S
and the pointer variable area V . The addition of the skip connection between S and V boosts the capacity of
the Variable Binding model by allowing the pointer variable to be directly accessed by the sensory input. This
results in an increased capacity ≈ 0.1×N (Figure 10A, in red). We also measure how the capacity evolves as
a function of the number of active neurons K. In Figure 10B, although capacity decreases exponentially with
K in all cases, the Variable Binding model with Skip Connections (in red) starts with a larger capacity than
the original Variable Binding model (in blue) and is comparable to the projectmodel (in orange).
Notably, the introduction of skip connections in ourAssemblyCalculusmodel not only addresses the observed
capacity drop but also renders the model more biologically plausible. A recent study of the connectome of
an insect brain [24] has revealed analogous architectural features with connections that skip layers. This
finding provides compelling evidence for the biological relevance of skip connections, suggesting that they
may serve to increase the brain’s computational capacity while overcoming physiological constraints on the
number of neurons that limit network depth. We expand the discussion of biological plausibility at the end

14

of the paper.

100 200 300 400 500 600 700 800
Number of neurons (N)

0

20

40

60

80

100

120

140

160

Ca
pa

cit
y

Project.
Variable Binding (VB), C
Variable Binding (VB), V
VB w/ Skip Connection, C
VB w/ Skip Connection, V
Double Project, C
Double Project, V

A

50 100 150 200 250
Cap size (K)

0

10

20

30

40

50

60

70

Ca
pa

cit
y

Project.
Variable Binding (VB), C
Variable Binding (VB), V
VB w/ Skip Connection, C
VB w/ Skip Connection, V
Double Project, C
Double Project, V

B

Figure 10: Capacity of different models, shown by the median number of classes across 5 trials and the
corresponding standard error. (A) Capacity as a function of N for the Variable Binding model without
(in blue) and with skip connection (in red). The latter yields a larger capacity. We also show the baseline
capacity of projectmodel (in orange) and double-projectmodel (in purple). (B) Capacity as a function
of cap sizeK.

5 Related Work
In this section, we highlight and discuss how our work connects to prior works.

Assembly Calculus: The core framework of our study, Assembly Calculus, is first formally proposed in [1].
It entails the mathematical and theoretical grounding of a repertoire of operations based on assemblies
of neurons. The operations include project, reciprocal-project, associate, and merge, consistent with
recent experimental results [25, 26]. Since its introduction, numerous studies have demonstrated the remark-
able computational power of its Turing completeness [27], achieved through the use of simple, biologically
plausible Hebbian plasticity as opposed to backpropagation. This framework has further opened up new
avenues for exploring higher human cognitive functions, including reasoning, planning, and language
comprehension. This ranges from classical machine learning tasks such as classifying concept classes [14]
(which provides the basis of our experimental setup in this paper), performing boolean operations and
supervised learning tasks [28], to other cognition level applications like planning in the block world [12]
and language parsing [11].

Associative Memories and their Capacity: Our establishment of the emergence of associative memories
in AC is of great significance, enabling us to understand the intermediate-level brain computation more
thoroughly and broadly through its important connection with a wider range of well-studied neural network
models of associative memory. These include the classical and influential Hopfield networks (HNs) [19, 29]
and more recently the modern continuous Hopfield networks (MCHNs) [30], which possess close links
with self-attention [31] in machine learning; as well as Willshaw Associative Memories [21, 32, 33], Plate
Holographic Reduced Representations [34], Sparse Distributed Memories (SDMs) [20, 35, 36], Kohonen
Memories [17,37], among many others. Notably, the recently proposed Universal Hopfield Networks [38]
serve to generalize the operations of such memory networks into a sequence of three operations: similarity,
separation, and projection. This framework may facilitate a more modular understanding of AC’s random
projection and cap (RP&C), considerably a crucial primitive in neural computation and computational

15

learning more broadly [1, 39]. Moreover, addressing the inherent capacity constraints of associative memory
models is a significant avenue in the past, including Kanerva’s SDM, and for future research. It is also the
primary motivation behind our characterization of the capacity of ACwith respect to the model size and other
parameters. AC, like all other associative memory models, exhibits a memory cliff, beyond which the addition
of a single pattern results in the catastrophic loss of all patterns. Inspired by the entorhinal hippocampal
memory system in mammalian brains, [40] recently proposed Memory Scaffold with Heteroassociation
(MESH) as a way to overcome the issue. In our work, we introduce the more intuitive yet biologically
plausible idea of connections that skip layers. This type of architecture is characteristic of successful machine
learning models, including deep residual learning [41] and U-Net [42]. In particular, skip connections are
used to combat information loss and overly abstracted representation over deeper layers due to diminishing
gradients in these machine learning models. Its existence is recently confirmed in the connectome of an
insect brain [24].

Variable Binding: In this paper we consider circuits that are used to perform binding between content
and variable spaces in neural computation [16]. Variable binding implemented by neural assembly models
combines the strengths of pointer-based binding [43, 44] - where the variables (or structural roles) are
synaptically linked to content, and anatomical binding [45] - where distinct brain areas represent different
structural roles and the brain areas contain information related to the content. The pointer-based and
anatomical binding models explain different aspects of the experimental findings of Frankland and Greene
[46], which show that the functional magnetic resonance imaging activity in specific human brain regions
predicts the roles of words in sentences (“agent” vs. “patient”, etc.) and also contains information about the
attachment of roles to the content of the words. Later work characterizes this variable binding process in a
neural model [16]. An alternative model for variable binding is proposed in the convolutional binding of
Plate’s Holographic Reduced Representations [34] and Kanerva’s SDM [20] where neurons and content are
represented by high-dimensional vectors, and binding is executed by precise mathematical operations like
convolutions. However, these circuits rely on specific synaptic connectivity patterns, which may or may not
exist in the brain. While these previous works present different neural architectures for performing variable
binding, they do not measure how the capacity of these circuits scales with the model parameters. We focus
on the neural assembly-based variable binding model of Muller et al. [16] and show that while the capacity
of these models can be limited, we can boost their capacity by adding skip connections.

6 Discussion & Conclusion
In this paper, we study a few basic operations in assembly calculus and show that the corresponding neural
circuits can be understood as associative memories. We do so by analyzing the spectral structure of their
synaptic weights, as well as demonstrating their ability to retrieve and reconstruct stored neural assemblies.
In addition to establishing the correspondence between assembly operations and associative memories, we
also empirically measure their capacity and show that their capacity exceeds that of Hopfield memories, even
though the linear scaling remains. Our measurements on the capacity of circuits that implement assembly
calculus operations can help design models that can scale to larger datasets and a variety of tasks. This would
have implications for transfer learning, as well as continual learning of different tasks. Our results show that
one can scale a neural assembly model to more tasks by simply increasing the size of each brain area.
Finally, we also show that the capacity of variable binding mechanisms is much lower than the capacity
of simple assembly creation, and that their capacity can be boosted by the addition of skip connections.
These results indicate that one can construct variable binding models that scale favorably with the size of
brain areas by adding skip connections. Our experiments also highlight how models with multiple layers of
assemblies as in reciprocal-project or double-project can amplify the noise in deeper brain areas. The
introduction of skip connections offers a streamlined, yet significant, approach to mitigate this influence.
This also provides a pathway to design deeper and larger models based on the assembly calculus.
In addition to the computational advantages of skip connections, their presence in the brain is backed up by

16

research on long-ranged connections in the brain [24]. The canonical organization of neocortical circuits [47]
can be characterized by a small-world network topology, which consists of dense local clustering and relatively
few long-range connections [48]. This topology is claimed to support both specialized and integrated
information processing while being effective on wiring costs and enabling high dynamical complexity.
Moreover, research shows that long-ranged connections contribute to the optimization of both global wiring
cost as well as total processing steps [49]. Studies using cortical thickness measurements in magnetic
resonance images have provided further evidence for the existence of long-range connections in the human
brain in both intra- and interhemispheric regions. These studies also highlight the robust small-world
properties in the human brain anatomical network [50]. Collectively, these findings underscore the biological
plausibility and significance of long-range connections in the underlying architecture of complex brain
networks.

17

References
1. C. H. Papadimitriou, S. S. Vempala, D. Mitropolsky, M. Collins, and W. Maass, “Brain computation by

assemblies of neurons,” Proceedings of the National Academy of Sciences, vol. 117, no. 25, pp. 14464–14472,
2020.

2. R. Axel, “Q & A,” Neuron, vol. 99, p. 1110–1112, 2018.
3. G. Buzsáki., The Brain from Inside Out. Oxford University Press, 2019.
4. D. O. Hebb, The organization of behavior: A neuropsychological theory. Psychology Press, 2005.
5. K. D. Harris, “Neural signatures of cell assembly organization,” Nature reviews neuroscience, vol. 6, no. 5,

pp. 399–407, 2005.
6. G. Buzsáki, “Neural syntax: cell assemblies, synapsembles, and readers,”Neuron, vol. 68, no. 3, pp. 362–

385, 2010.
7. F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the

brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.
8. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The

bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.
9. M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in cortex,”Nature neuroscience,

vol. 2, no. 11, pp. 1019–1025, 1999.
10. C. H. Papadimitriou, “Random projection in the brain and computation with assemblies of neurons,”

in 10th Innovations in Theoretical Computer Science Conference, 2019.
11. D. Mitropolsky, M. J. Collins, and C. H. Papadimitriou, “A biologically plausible parser,” Transactions

of the Association for Computational Linguistics, vol. 9, pp. 1374–1388, 2021.
12. F. d’Amore, D. Mitropolsky, P. Crescenzi, E. Natale, and C. H. Papadimitriou, “Planning with biological

neurons and synapses,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 21–28,
2022.

13. G. Marcus, A. Marblestone, and T. Dean, “The atoms of neural computation,” Science, vol. 346, no. 6209,
pp. 551–552, 2014.

14. M. Dabagia, S. S. Vempala, and C. Papadimitriou, “Assemblies of neurons learn to classify well-
separated distributions,” in Proceedings of Thirty Fifth Conference on Learning Theory (P.-L. Loh and
M. Raginsky, eds.), vol. 178 of Proceedings of Machine Learning Research, pp. 3685–3717, PMLR, 02–05 Jul
2022.

15. R. Legenstein, C. H. Papadimitriou, S. Vempala, andW. Maass, “Assembly pointers for variable binding
in networks of spiking neurons,” arXiv preprint arXiv:1611.03698, vol. 11, 2016.

16. M. G. Müller, C. H. Papadimitriou, W. Maass, and R. Legenstein, “A model for structured information
representation in neural networks of the brain,” eneuro, vol. 7, no. 3, 2020.

17. T. Kohonen, “Self-organization and associative memory,” 1989.
18. J. A. Anderson, “A simple neural network generating an interactive memory,” Mathematical biosciences,

vol. 14, no. 3-4, pp. 197–220, 1972.
19. J. J. Hopfield, “Neural networks and physical systemswith emergent collective computational abilities.,”

Proceedings of the national academy of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.
20. P. Kanerva, “Sparse distributed memory and related models,” tech. rep., 1992.

18

21. D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-holographic associative memory,”
Nature, vol. 222, no. 5197, pp. 960–962, 1969.

22. J.-e. K.Miller, I. Ayzenshtat, L. Carrillo-Reid, and R. Yuste, “Visual stimuli recruit intrinsically generated
cortical ensembles,” Proceedings of the National Academy of Sciences, vol. 111, no. 38, pp. E4053–E4061,
2014.

23. V. Folli, M. Leonetti, and G. Ruocco, “On the maximum storage capacity of the hopfield model,”
Frontiers in computational neuroscience, vol. 10, p. 144, 2017.

24. M. Winding, B. D. Pedigo, C. L. Barnes, H. G. Patsolic, Y. Park, T. Kazimiers, A. Fushiki, I. V. Andrade,
A. Khandelwal, J. Valdes-Aleman, F. Li, N. Randel, E. Barsotti, A. Correia, R. D. Fetter, V. Hartenstein,
C. E. Priebe, J. T. Vogelstein, A. Cardona, and M. Zlatic, “The connectome of an insect brain,” Science,
vol. 379, no. 6636, p. eadd9330, 2023.

25. K. M. Franks, M. J. Russo, D. L. Sosulski, A. A. Mulligan, S. A. Siegelbaum, and R. Axel, “Recurrent
circuitry dynamically shapes the activation of piriform cortex,” Neuron, vol. 72, no. 1, pp. 49–56, 2011.

26. J.-e. K.Miller, I. Ayzenshtat, L. Carrillo-Reid, and R. Yuste, “Visual stimuli recruit intrinsically generated
cortical ensembles,” Proceedings of the National Academy of Sciences, vol. 111, no. 38, pp. E4053–E4061,
2014.

27. C. H. Papadimitriou and S. S. Vempala, “Random Projection in the Brain and Computation with
Assemblies of Neurons,” in 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)
(A. Blum, ed.), vol. 124 of Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany),
pp. 57:1–57:19, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

28. A. Rangamani and A. Gandhi, “Supervised learning with brain assemblies,” NeurIPS Beyond Backpropa-
gation Workshop, 2020.

29. J. Hopfield, “Neurons with graded response have collective computational properties like those of
two-state neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81,
p. 3088—3092, May 1984.

30. H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlovic, G. K.
Sandve, V. Greiff, D. P. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter, “Hopfield
networks is all you need,” CoRR, vol. abs/2008.02217, 2020.

31. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” 2017.

32. D. Willshaw, G. Hinton, and J. Anderson, “Holography, associative memory, and inductive generaliza-
tion,” Parallel Models of Associative Memory (updated edition), GE Hinton and JA Anderson (eds.)(Hillsdale,
Erlbaum, 1989), pp. 103–124, 1985.

33. B. Graham and D. Willshaw, “Improving recall from an associative memory,” Biological Cybernetics,
vol. 72, pp. 337–346, 1995.

34. T. A. Plate, “Holographic reduced representations,” IEEE Transactions on Neural networks, vol. 6, no. 3,
pp. 623–641, 1995.

35. L. A. Jaeckel, “An alternative design for a sparse distributed memory,” tech. rep., 1989.
36. J. D. Keeler, “Comparison between kanerva’s sdm and hopfield-type neural networks,” Cognitive

Science, vol. 12, no. 3, pp. 299–329, 1988.
37. T. Kohonen, P. Lehtiö, J. Rovamo, J. Hyvärinen, K. Bry, and L. Vainio, “A principle of neural associative

memory,” Neuroscience, vol. 2, no. 6, pp. 1065–1076, 1977.

19

38. B. Millidge, T. Salvatori, Y. Song, T. Lukasiewicz, and R. Bogacz, “Universal hopfield networks: A
general framework for single-shot associative memory models,” 2022.

39. S. Dasgupta, C. F. Stevens, and S.Navlakha, “A neural algorithm for a fundamental computing problem,”
Science, vol. 358, no. 6364, pp. 793–796, 2017.

40. S. Sharma, S. Chandra, and I. R. Fiete, “Content addressable memory without catastrophic forgetting
by heteroassociation with a fixed scaffold,” 2022.

41. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.
42. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmen-

tation,” 2015.
43. A. Zylberberg, L. Paz, P. R. Roelfsema, S. Dehaene, and M. Sigman, “A neuronal device for the control

of multi-step computations,” Papers in physics, vol. 5, no. 2, pp. 1–15, 2013.
44. T. Kriete, D. C. Noelle, J. D. Cohen, and R. C. O’Reilly, “Indirection and symbol-like processing in the

prefrontal cortex and basal ganglia,” Proceedings of the National Academy of Sciences, vol. 110, no. 41,
pp. 16390–16395, 2013.

45. K. J. Hayworth and A. H. Marblestone, “How thalamic relays might orchestrate supervised deep
training and symbolic computation in the brain,” bioRxiv, p. 304980, 2018.

46. S. M. Frankland and J. D. Greene, “An architecture for encoding sentence meaning in left mid-superior
temporal cortex,” Proceedings of the National Academy of Sciences, vol. 112, no. 37, pp. 11732–11737, 2015.

47. R. J. Douglas and K. A. Martin, “Neuronal circuits of the neocortex,” Annu. Rev. Neurosci., vol. 27,
pp. 419–451, 2004.

48. D. S. Bassett and E. Bullmore, “Small-world brain networks,” The neuroscientist, vol. 12, no. 6, pp. 512–
523, 2006.

49. M. Kaiser and C. C. Hilgetag, “Nonoptimal component placement, but short processing paths, due to
long-distance projections in neural systems,” PLoS computational biology, vol. 2, no. 7, p. e95, 2006.

50. Y. He, Z. J. Chen, and A. C. Evans, “Small-world anatomical networks in the human brain revealed by
cortical thickness from mri,” Cerebral cortex, vol. 17, no. 10, pp. 2407–2419, 2007.

20

Appendix A Assemblies learned for various concept classes
In Figure 8 and 11, we show the assemblies being learned for five stimulus classes through project and
reciprocal-project. For both, N = 1000, p = 0.1, β = 0.1, r = 0.9, q = 0.01, with 100 samples per class
over 5 rounds when forming the assemblies at the test time. We observe the assemblies being formed by
reciprocal-project is more noisy, and the patterns learned become significantly more sparse as number of
classes increase comparing to the ones learned by project.

Figure 11: Assemblies learned for five stimulus classes through reciprocal-project. In A1 and A2, we
exhibit the distribution of firing probabilities over neurons of the content area C (top) and variable area V
(bottom) for each class. In B, we show the average overlap of different input samples (red). In C1 and C2,
we show the overlaps of the corresponding representations in the assemblies (green) in content area C (top)
and variable area V (bottom).

21

Appendix B The Role of Normalization on Matrix Rank

0 20 40 60 80 100 120 140
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

K
S-

Va
lu

es
 /

Al
l S

-V
al

ue
s WSC

beta=0.001
beta=0.005
beta=0.01
beta=0.05
beta=0.1
beta=0.2

0 20 40 60 80 100 120 140
Number of Iterations

WCC

0 20 40 60 80 100 120 140
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

K
S-

Va
lu

es
 /

Al
l S

-V
al

ue
s WSC

beta=0.001
beta=0.005
beta=0.01
beta=0.05
beta=0.1
beta=0.2

0 20 40 60 80 100 120 140
Number of Iterations

WCC

Figure 12: Rank collapsing in project: the ratio of the top-K singular value sum over all singular value sum.
Top: No normalization. Bottom: Normalize every 5 iterations.

To track the rank of the weight matrices during project, we computed the ratio of the sum of the top-K
singular values to the sum of all singular values. A ratio of 1.0 signifies that the rank has collapsed to K,
implying a stabilization of the representational potential within the weight matrix. Conversely, a smaller ratio
indicates that the matrix retains the capacity for additional information storage within the representational
space; however, the acquired information may be less distinguishable from noise compared to a saturated
matrix. Hebbian learning propels the matrix towards the system’s fixed point, resulting in the rank gradually
converging to K as the number of iterations increases; the convergence rate is contingent upon the learning
rate β (Figure 12, top).
We noted that weight normalization effectively inhibits the rank from prematurely collapsing to K (Figure
12, bottom). This suggests that, for an equivalent number of iterations, normalization enables the weight
matrix to accommodate a greater variety of stimulus classes by preventing its collapse to the fixed point.
However, this comes at the expense of potentially weakening the emergent class structure in the normalized
weight matrix compared to the unnormalized counterpart. In the following section, we provide evidence
that weight normalization can maintain a distinguishable class structure for multiple input classes.

22

Appendix C Experiment details for pattern completion

Hyperparameters Specification
α 0.5
N 1000
K 100
p 0.1
β 0.1
m K
r 0.9
q 0.01

Number of samples per class during training (Ttrain) np.linspace(4, 14, 10).astype(int)
Number of assemblies formed per class during testing 50
Number of rounds to form each assembly during testing 5

Number of rounds to recover each assembly during testing (Trecover) 2
Normalization Normalize after learning each class

Trials Take median over 5 trials

Table 1: Hyperparameters and other relevant setting used for conducting pattern completion experiment in
Section 3.3.

Appendix D Experiment details for assembly recall

Hyperparameters Specification
N 1000
K 100
p 0.1
β 0.1
m K
r 0.9
q 0.01

Number of samples per class during training (Ttrain) 5
Number of assemblies formed per class during testing 500
Number of rounds to form each assembly during testing 5

Number of rounds to recover each assembly during testing (Trecover) 2
Normalization Normalize after learning each class

Trials Take median over 5 trials

Table 2: Hyperparameters and other relevant setting used for conducting assembly recall experiment for
perturbing coreset firing rate r or the coreset of each stimulus class in Section 3.3.

Appendix E Experiment details for the capacity measurement
Below we show the set up for hyperparameters and other relevant setting used for the Assembly Calculus
model under both project or reciprocal-project in Section 4. When measuring the model capacity with
respect to N (Table 3) or K (Table 4), we vary the hyperparameter of interest (either N or K) while keeping
all else constant. Here, N is number of neurons in each brain area of the model, whileK is the maximum

23

number of firing neurons per brain area. The synaptic connections between neurons in different areas are
drawn independently at random with probability p, while β is the multiplicative Hebbian plasticity learning
rate. {m, r, q} are specified for the stimulus classes. In particular, m specifies the number of neurons in the
coreset of each stimulus class. r is the probability of each neuron in the coreset firing independently, while
q is the probability of the neurons outside the coreset firing independently (i.e. noise). During training,
the model learns 5 samples drawn independently from a particular stimulus class distribution, updates its
parameters, and undergoes a round of normalization, then proceed to learn the next stimulus class. After
the parameters are learned, we form 50 assemblies per class at test time; each assembly is formed under 5
rounds of iteration to fully utilize the recurrent connections. We take the median over 5 trials.

Hyperparameters Specification
N 100 − 800
K 50
p 0.1
β 0.1
m K
r 0.9
q 0.01

Number of samples per class during training 5
Number of assemblies formed per class during testing 50
Number of rounds to form each assembly during testing 5

Normalization Normalize after learning each class
Trials Take median over 5 trials

Table 3: Hyperparameters and other relevant setting used for training the models and measuring the model
capacity with respect to N in Section 4.

Hyperparameters Specification
K 20 − 240
N 250
p 0.1
β 0.1
m 50
r 0.9
q 0.01

Number of samples per class during training 5
Number of assemblies formed per class during testing 50
Number of rounds to form each assembly during testing 5

Normalization Normalize after learning each class
Trials Take median over 5 trials

Table 4: Hyperparameters and other relevant setting used for training the models and measuring the model
capacity with respect to K in Section 4.

24

	Introduction
	Assembly Calculus
	Model Overview
	Stimuli: Representation of Distinct Concept Classes
	Project
	Reciprocal-Project

	The Emergence of Associative Memories in Assembly Calculus
	Associative Memories
	Spectral Factors of Synaptic Connections in Assembly Calculus Resemble Associative Memories
	Assembly Calculus Circuits are Capable of Pattern Completion & Assembly Recall

	Capacity of Associative Memories in Assembly Calculus
	Capacity of Project Model Exceeds Classical Associative Memory Models
	Skip Connections Increase the Capacity of Variable Binding Mechanisms

	Related Work
	Discussion & Conclusion
	Assemblies learned for various concept classes
	The Role of Normalization on Matrix Rank
	Experiment details for pattern completion
	Experiment details for assembly recall
	Experiment details for the capacity measurement

