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Abstract 
 

Neural networks have demonstrated impressive success in various domains, raising the question of what 
fundamental principles underlie the effectiveness of the best AI systems and quite possibly of human 
intelligence. This perspective argues that compositional sparsity, or the property that a compositional 
function have "few" constituent functions, each depending on only a small subset of inputs, is a key 
principle underlying successful learning architectures. Surprisingly, all functions that are efficiently Turing 
computable have a compositional sparse representation. Furthermore, deep networks that are also sparse 
can exploit this general property to avoid the “curse of dimensionality". This framework suggests interesting 
implications about the role that machine learning may play in mathematics. 
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Abstract. Neural networks have demonstrated impressive success in various do-
mains, raising the question ofwhat fundamental principles underlie the effectiveness
of the best AI systems and quite possibly of human intelligence. This perspective
argues that compositional sparsity, or the property that a compositional function
have "few" constituent functions, each depending on only a small subset of inputs,
is a key principle underlying successful learning architectures. Surprisingly, all
functions that are efficiently Turing computable have a compositional sparse repre-
sentation. Furthermore, deep networks that are also sparse can exploit this general
property to avoid the “curse of dimensionality". This framework suggests interesting
implications about the role that machine learning may play in mathematics.

The impressive success of machine learning across various domains — includ-
ing "hard" problems such as protein folding, playing Go, driving cars, generating
near-human text — has led to a growing interest in understanding fundamental
principles underlying the effectiveness of these methods, in particular, neural net-
works which are crucial in all these systems. At the same time, as we consider
the question "will machines change mathematics?", it is natural to seek intuition
regarding the prospect of machines succeeding at core challenges of research math-
ematics, namely, theorem proving, as well as proposing conjectures. The present
contribution offers a mathematical perspective on the success of neural networks,
i.e. foundations of so-called deep learning, in terms of the notion of compositional
sparsity. Roughly speaking, a compositional function is sparse if it is the composition
of "few" constituent functions, each depending on only a small subset of inputs
(we make this more precise in Definition 2.2). This intuition, as we will explain,
is particularly relevant to the question of theorem proving, and links closely to
Gowers’ analysis of "how it can be that humans find proofs" [10].

Before turning to technical definitions, we first briefly discuss some history, and
the meaning of the word "learning" as it appears in machine learning, deep learning,
and learning theory etc. The advent of modern logic andmathematics formalization
more than a century ago was closely tied from the start to interest in automated
theorem proving. Early research in this area, e.g. by Russell, Herbrand, Gödel,
Church, Turing, also led to the development of theoretical computer science as a
discipline, and central figures in the new field of artificial intelligence — Wiener,
Turing, Pitts — were mathematicians, working in logic. Wiener, a polymath in his
time, distinguished between two types of machine: those that interact with the
user or environment according to fixed rules, and those that do so according to
evolving rules which depend on previous experience [34, 35]. He referred to the
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latter as learning systems1. This characterization was an attempt to formalize the
phenomenon of learning observed in biological systems (including human beings).
Artificial intelligence, a looser term2 includes machines both with and without
learning capabilities, and during the next fifty years, until the 1990s, the most
visible advances in AI were non-learning (rule-based) systems. These have come to
be known as GOFAI for “good old-fashioned AI", or “expert systems"; they focused
on replicating rules and reasoning that human experts consciously use. Parallel
developments in learning theory and learning systems continued throughout this
time, particularly for systems modeled after biological neural networks. By the
1980s the field of machine learning had become increasingly active and, in the last
10 years especially, it has had a wide influence on computer science more broadly,
changing the basic paradigm from "programming" to "training". Simultaneously,
breakthroughs in computing power and accompanying algorithmic innovations
have led to widespread practical success of neural networks. Previously, only
shallow networks with two layers had been manageable, thus greatly limiting
their effectiveness; the new paradigm, networks with three or more layers, became
known as deep learning. With this success came broad media attention for AI in
general, widespread use by the public (e.g. in social media, search engines, and
voice recognition), uptake by business and scientific professions - and also massive
investment and profits in the private sector developing these tools. In the last decade
alone such developments have far eclipsed the earlier achievements of GOFAI so
that "AI" in mainstreammedia nowadays usually denotes machine learning, or even
more specifically deep learning.

In fact, combining learning modules, and for example melding rule-based and
learning systems, has always been a strategy of interest in AI and will surely be fur-
ther developed in future (cf. Gowers’ announcement [9] where he mentions "plenty
of potential for combining machine learning with GOFAI ideas"). In recent years,
modern proof assistants such as Lean are increasingly used by mathematicians,
and new areas of math like homotopy type theory and univalent foundations them-
selves heavily incorporate (and rely on) computer formalization. Lean and other
proof assistants are so far not learning systems, but rather hard-coded software.
As we focus in this paper on the abilities of deep learning, and the potential use of
learning systems for proving or proposing mathematical statements of “interest"
to mathematicians [10], the reader is invited to keep a high-level viewpoint and to
imagine a situation where logical steps and propositions could be represented in a
system such as Lean, and deep learning, possibly in tandem with other refinements,

1The latter can use fixed rules as well as malleable ones, the former only used fixed rules.
2Wiener’s work on intelligence had focused strongly on the role of learning and (analog) feedback

for intelligent behaviour and he coined the name Cybernetics for that field [34]. The term Artificial
Intelligence was coined several years later at the Dartmouth Conference [19] by others, including
mathematicians McCarthy and Shannon, who intended to use fixed-rule as well as learning approaches:
“every aspect of learning or any other feature of intelligence can in principle be so precisely described
that a machine can be made to simulate it. An attempt will be made to find how to make machines
use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and
improve themselves." They expected to achieve this within the summer of 1956; in fact, we are only now
getting close to some of these goals.
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used to produce tentative proofs or conjectures3. To give a sense of the abilities of
deep learning, we will make use of a learning theory viewpoint.

The paper is structured as follows. In Section 1, we give a brief introduction
to learning theory, the mathematical study of learning systems. Here we identify
three key considerations — approximation, optimization, and generalization — and
establish terminology such as target class and approximator class. We then define
neural networks, and highlight a central challenge in designing learning systems:
close approximation and efficient optimization are inherently at odds. In Section 2,
we explain how deep neural networks can resolve this tension for certain classes of
target function, namely those that are compositionally sparse. We define and discuss
compositional sparsity, explaining its relationship to efficient computability. In
Section 3, we point out a further advantage of deep neural networks: if one restricts,
as in the previous section, to deep networks with architecture matching the compo-
sitional structure of a given target class of compositionally sparse functions, this
leads also to order of magnitude improvement in generalization, the key criterion
by which learning systems are judged. Next, in Section 4, we discuss two types of
neural network that exploit this phenomenon: CNNs and Transformers (the former
commonly used for computer vision tasks, the latter at the core of chat bots such
as ChatGPT). Finally, in Section 5, we return to discuss the prospect that learning
systems might increasingly be able to prove theorems or make conjectures (see
[39]). In particular, we note that the learning theoretic insights sketched above
give a partial answer to questions posed by Gowers [10] concerning the class of
statements mathematicians are interested in proving/refuting. This in turn sheds
light on the potential usefulness of learning machines.

1. A Perspective on the Foundations of Deep Learning
Essentially, at the most basic level, a neural network is a parametric represen-

tation that is used to approximate a function. Usually this function is implicitly
given by a large "training" set of input-output data. In the following, we refer to
"approximators" — the networks — and to "target functions" — the maps to be
learned.
1.1. The framework. We sketch very briefly some basic ideas of learning theory. A
supervised learning problem is defined by an unknown probability measure µ on
the product spaceX × Y ; the training data S = {(xi, yi)}mi=1 are i.i.d. samples from
µ. For simplicity, we will assume Y = [0, 1].

The measure µ defines a function
3We are not advocating a specific design for such machines, but instead broadly considering some

relevant design considerations. A useful image to have in mind could be a machine like a chat bot that
proposes next steps in a proof. It would do so having already been given either the final goal statement or
some other description of the context, depending on whether we seek a proof/refutation or a conjecture.
This setup is akin to specifying the kind of text or response we’d like a chat bot to produce; however,
unlike current chat bots we could assume that this "math bot" starts with a knowledge base of known
true statements. We might want it to operate at lowest granularity, proposing a logical sequence of
subsequent statements (where typically each one can be verified, for example by Lean, to follow logically
from previous ones), or very high granularity, proposing essentially just a single (difficult) conjecture,
or anywhere in between, in which case it would be proposing a sequence of intermediate statements that
are predicted to plausibly lead to the desired final statement, as potential roadmap to assist theorem
proving by a different machine, or by human mathematicians.
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(1.1) fµ : X → Y

satisfying fµ(x) =
∫
ydµx, where µx is the conditional measure on {x} × Y .

From this construction fµ can be viewed as the true input-output function reflect-
ing the environment which produces the data4. The goal of supervised learning
is to "closely" approximate this function. To do so, a parametric approximator f is
used, and closeness is measured by the (generalization) error of f (also called the
true risk of f) which may be defined by

(1.2)
∫
X

(f − fµ)
2dµX

where µX is the marginal measure5 on X . This is the expectation of the squared
loss and it conveniently corresponds to the L2 distance between f and fµ, but
(f−fµ)

2 is sometimes substituted by ℓ(fµ(x), f(x)) for other pointwise loss functions
ℓ : Y × Y → [0,∞).

To achieve the goal of supervised learning, i.e. “find" f minimizing generalization
error for an unknown fµ, it is necessary to have a space F of parametric functions
where search is possible, yet which is rich enough to approximate a broad range
of possible target functions. We will refer to these as approximator class and target
function class respectively. The design of a supervised learning algorithm thus
typically begins with the two steps: (1) choose F, (2) specify how to search within F.
Step (1) corresponds to approximation, step (2) to optimization. Once we’ve chosen
these, we’ve designed a learning algorithm. Learning theory then mathematically
analyzes the algorithm in terms of howwell the choicesmade in (1) and (2) conspire
to produce, for each function fµ in the target class, an approximator f with low
generalization error. Note: the search within F - and thus the approximator f -
typically depend on S, so the generalization error is a random variable and its
analysis is subtle6; we refer to the analysis of generalization as step (3). Altogether,
learning theory thus draws on notions and results from several areas ofmathematics,
including probability theory, functional analysis, combinatorics, approximation
theory and optimization.

In this paper, we focus on the space of deep neural networks with L layers as
a choice for F in step (1). Below we will give the definition of this “model", and

4For example, the input-output function of interest might take as input an xray image of some kind
and output a binary value y which is 1 if and only if a tumor appears in the image. Here X would
be the set of all possible images of the specified kind, and µ would be the distribution of pairs (x, y)
as they naturally occur. The training set S is sampled from µ. In practice, if X consists of all xrays
produced in participating hospitals, this might mean sampling images xi from that database uniformly
(which amounts to the marginal µX being uniform), then hiring humans to annotate each xi with the
appropriate value 1 or 0 for yi (this uses humans to reveal the conditional µxi ; in this example it is
concentrated entirely at y = 1 or y = 0 and humans know which)

5This is the pushforward of the measure µ via the projection πX toX . More technically, one starts
withX × Y a product measurable space determined by the measurable spacesX and Y ; then for any
measurable set A ⊂ X , µX(A) := µ(A× Y ).

6One common way this is done - the PAC learning approach [29] - is to ask if generalization error is
below ϵ with high probability, in a way that depends "polynomially" on the size m of S; here, the target
function class is called the concept class, and the approximator class F is called the hypothesis class. A
related approach is found in VC theory, an earlier broad framework for studying learning [30, 31, 32].
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later we consider using instead a subclass F̂. The rest of the paper then justifies this
choice, through the 3-step lens of learning theory.

Once F is chosen in step (1), then as step (2), starting from the data S , one may
minimize the empirical error (also called empirical risk) 1

m

∑m
i=1(f(xi) − yi)

2 over
f ∈ F (or its regularized version - see below) to obtain a, hopefully, unique function
fS : X → Y . This approach is called (regularized) empirical risk minimization (ERM)
and it is used in many learning strategies, including deep networks. Note: empirical
error of a function f is the average loss of f over the training data S ; generalization
error of f is the expected loss of f over the space X . The second error is the mean
of the first under random sampling of S, so concentration of measure results can
be used to relate these two errors. In a sense, ERM picks fS using the empirical
error as a proxy for the generalization error (which cannot be directly calculated).
Learning theory, in step (3), then studies the empirical minimizer fS , its associated
empirical error and its relation to the expectation

(1.3)
∫
X

(fS − fµ)
2dµX

which is the generalization error of fS . Variations on the ERM strategy, such as regu-
larization (see below), can play a role in further ensuring fS has small generalization
error.

We return now to the focus of this article: the choice of deep networks for step
(1). Suppose that F consists of neural networks7 with L layers. More precisely, the
elements of F are functions fW : Rd → Rq that are compositions of the following
form, namely alternating between left-multiplication by amatrixWk and application
of a non-linear function σ,

Rd W1−−→ Rd1
σ−→ Rd1

W2−−→ Rd2
σ−→ Rd2 · · ·RdL−2

WL−1−−−−→ RdL−1
σ−→ RdL−1

WL−−→ Rq.

(1.4)

finishing with left-multiplication by a matrix WL. Here the input to the network is
assumed to be x ∈ Rd; Wk, k = 1, · · · , L are matrices; and the (abusive) notation
σ : Rj → Rj denotes coordinate-wise application of the activation function, which
we assume is a GELU, that is a smooth version [14] of the rectified linear unit
(ReLU) σ : R → R, σ(x) = max(0, x). Each function fW ∈ F is thus specified by L
matrices of parameters Wk, k = 1, · · · , L of suitable dimensions. It is a composition
of maps σ ◦Wk, followed by a final linear transformation WL. Note that each map
σ ◦ Wk : Rdk−1 → Rdk has ith coordinate σ(wi · v) for v ∈ Rdk−1 , where wi is the
ith row ofWk. Real-valued functions of this form, namely v 7→ σ(w · v) for v, w in
Euclidean space, are called ridge functions (due to the shape of their graph); they
will play a role in the next theorem (Theorem 1.1). Finally, we call networks with
L > 2 layers deep networks, and networks with L = 2 (only one σ layer) shallow.

For our purposes of giving learning-theoretic insight into this choice of approxi-
mator class in step (1), we will avoid going into many technical details of step (2)
that arise for deep networks. We mention only in passing two of these. First, deep
networks are often overparametrized (more parameters than data) so simple ERM

7Many variants of neural network exist, for example convolutional neural networks (CNNs) which
are a subclass of the large class F defined here. The multilayer perceptron (MLP) [26] - the first artificial
neural network to be widely used and studied - is on the other hand Fwith L = 2; like all F, it is fully
connected: each output of a layer depends on all inputs from the previous layer.
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would not return8 a unique fS . In this case, one typically uses “weight decay" to
control the complexity of the chosen fS . Specifically, this means minimizing the
regularized empirical risk,

Lλ
S(fW ) :=

1

m

m∑
i=1

ℓ(fW (xi), yi) + λρ2,

where λ > 0 is a predefined hyperparameter, ∥ · ∥ is the Frobenius norm (i.e.
the square root of the sum of the absolute squares of the matrix elements) and
ρ = ∥W1∥∥W2∥ · · · ∥WL∥. This controls the weights in the matrices Wk, keeping
them small. Secondly, to accomplish the optimization, one typically uses a form of
stochastic gradient descent (SGD) calledmini-batch SGD9. For the reader unfamiliar
with these techniques, the details do not matter; both are step (2) techniques that
help to obtain fS ∈ F with low generalization error. Our focus will be on justifying
step (1). For this, two questions arise: how close are functions ofF to target functions
of interest, and how does the choice of F affect our ability to search for optimal
elements in F. As we describe next, these two are a priori in tension, yet deep
networks can resolve this conflict.

1.2. Approximation and the curse of dimensionality. Consider the first key step in
the theory of machine learning: choosing a class F of parametric approximators for
the class of target functions to be learned. Possible classes of approximators include
generalized additive models, polynomials, radial basis functions, kernel machines
as well as deep GELU or RELU networks that we descibed above. As mentioned,
there are two main considerations in choosing F: it should closely approximate a
large class of target functions, and it should remain computationally efficient for
optimization on the training data. Efficiency implies that the number of parameters
in the approximators must not be exponential in d, the number of (real- or Boolean-
valued) input variables. On the other hand, for some function classes, a number of
parameters exponential in d/s may be required to achieve desired accuracy, where
s is a measure of smoothness such as the number of bounded derivatives. This is
an example of the so-called curse of dimensionality [4], a loose term that refers to
situations where crucial resources needed by an algorithm (e.g. time, space, or
data) depend exponentially on the dimension of the input. Note: "exponential de-
pendence" and more generally O and Ω notation describe the limiting (asymptotic)
behaviour of a real-valued function, e.g. runtime of an algorithm as a function of
input size; see [36] for definitions.

1.2.1. Curse of dimensionality. Let s ≥ 1 be an integer, andWd
s be the Sobolev space of

all functions of d variables with continuous partial derivatives of orders up to s < ∞

8It might also overfit, i.e. "fit to noise". This refers to a situation, especially likely for large F, where
f ∈ F could be chosen to match whatever random yi was seen for each xi in the pairs (xi, yi) ∈ S,
rather than fµ(xi). Such f will in general not be approximating fµ but rather the "noise" in S, and may
thus have poor generalization error.

9This algorithm samples a "mini-batch" of training data from S, computes the empirical loss on this
mini-batch, and moves within parameter space so as to reduce this loss. At the next iteration a new
mini-batch is sampled and so on. This has the effect of performing a slightly jittery (i.e. randomized)
gradient descent for the full empirical loss function on S, so as to minimize that loss without getting
stuck in local minima.

6
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supported on a compact subset of the unit ballBd =
{
x : ∥x∥2 =

(
x2
1 + · · ·+ x2

d

)1/2
< 1
}
.

In this section, we consider target functions in Wd
s .

Theorem 1.1. (informal; see [22] for more detail) Let σ̄ : R → R be infinitely differentiable,
and suppose there is a point where all derivatives of σ̄ are nonvanishing10. For f ∈ Wd

s ,
shallow networks with σ̄ can approximate f within ϵ in the sup norm using a number of
parameters

(1.5) N = O(ϵ−d/s) and this is the best possible.

Remarks
(1) The proof in [21] (see also [24]) relies on the fact that the algebraic poly-

nomials in d variables of (total or coordinatewise) degree < k are in the
uniform closure of the span of O(kd) functions of the form x 7→ σ̄(w · x).
The estimate (1.5) then derives from an upper bound of ϵ = O(k−s) on
the approximation error by such polynomials. A survey of these and re-
lated upper and lower bounds can be found in [24]. Regarding lower
bounds, [18] shows that, even allowing a much wider class of continuous σ̄
which includes the GELU function σ mentioned in Section 1.1, achieving ϵ-
approximation of functions f ∈ Wd

s with L2-norm requires an exponential
number N = Ω(ϵ−d/s) of parameters.

(2) Since these results are all based on the approximation of the polynomial
space by linear combinations of ridge functions, as implemented by shallow
networks, one may ask whether it could be improved by using a different
class of approximators. The answer relies on the concept of nonlinear d–
width of the compact setWd

s (cf. [7, 20]). The d-width results imply that
the estimate in Theorem (1.1) is the best possible among all reasonable11 [7]
methods of approximating arbitrary functions in Wd

s .
(3) This exponential dependence on the dimension d to obtain approximation

error O(ϵ) is an example of the curse of dimensionality [4]. Note that the
constants involved in O or Ω in the theorems will depend upon the norms
of the derivatives of f as well as σ̄.

Remark (1) tells uswewill needL > 2 if wewish to use neural networks as proposed
for F. On the other hand, Remark (2) means, for all practical purposes, that any
F that can approximate arbitrary functions fromWd

s to a specific level of accuracy
will be cursed by computationally infeasible optimization (searching).

A motivating theme in our paper is that this impasse can be resolved if we do not
seek to approximate all functions inWd

s and we also (de facto) restrict searching
in F to a specific manageable subclass F̂ that contains approximators for the target
functions of interest. This, we claim below, is the case for certain deep neural
networks. In particular, we will argue that the key property these neural networks
exploit to avoid the curse of dimensionality is compositional sparsity12 which we
define below.

10In particular, σ̄ cannot be a polynomial.
11This includes our choice of F.
12We use the term compositional sparsity following [6] instead of another equivalent term we used[22]

earlier: hierarchical local compositionality.
7
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2. Compositionally sparse functions can be approximated by deep networks
without curse of dimensionality

To explain more precisely the argument, we define now the class of sparse com-
positional functions. This class is interesting for approximation theory: in fact the
assumption of sparse target functions has appeared often in the recent approxima-
tion literature (see [6, 15, 27, 1, 16]).

A compositional representation of a function f is a presentation of f as a composition
of constituent functions that are typically required to be of a specific kind, for
example ridge functions of somedimension. Constituent functionsmay in general be
multivariate, inwhich case they take as input the outputs of several other constituent
functions. This compositional structure can be summarized by a directed acyclic
graph (DAG) where internal nodes are the constituent functions, source nodes are
input variables, and sink nodes are output variables (see Figure 1). If the relevant
DAG is G, we say the computed function is a compositional G-function, and G is one
of its compositional graph representations (which are in general non-unique).

Definition 2.1. (informal) A function f : Rd′ → R is sparse if it depends on at most a
"small" number d0 of variables (to be made clear from the context).

Definition 2.2. A function f : Rd → R is said to be compositionally sparse if it can
be represented as the composition of no more than poly(d) constituent functions13 each of
which is sparse, in the sense that it depends on at most a constant number d0 of variables.

Similar definitions apply to Boolean functions (cf. circuit complexity [28]) but
here we consider only real-valued functions on the reals. For simplicity of notation,
we assume that s = 1; when s > 1 the dimensionality d in the theorems should be
replaced by d

s .
The reader who is familiar with d0-ary trees14 may note that the number of in-

ternal nodes in a full d0-ary tree is of the order of the number of leaves, so if G is a
d0-ary tree, compositional G-functions are sparse with a number of constituent func-
tions linear in d, whereas compositionally sparse functions that use a higher-degree
polynomial number of constituent functions must have a graph representation with
either reduced degree at many internal nodes (the constituent functions) or non-
tree like structure (re-using output of constituents) or both.

Remark

13The expression poly(d)means O(p(d)) for some polynomial p, and presupposes a sequence of f
with arbitrarily large d; for example, detection of a car is a binary-valued function one can define on
arbitrarily large images. The same upper bound of p(d) should apply for all sufficiently large input sizes
d. Likewise the upper bound d0 mentioned next is constant in the sense that it is does not change as d
increases, i.e. d0 ∈ O(1). Weaker but still useful definitions of compositional sparsity are possible, for
example by requiring d0 ∈ O(log d), but we will stay with the simple assumption of constant d0.

14A k-ary tree is a generalization of binary (k = 2) or ternary (k = 3) trees to higher degree. More
precisely, a k-ary tree is a tree, i.e. connected acyclic graph, where one node, designated the root, has
degree at most k, while all other nodes have either degree 1 (and are called leaves) or else degree at
most k + 1. Non-leaves (including the root) are called internal nodes. The tree is "full" if "at most" is
replaced by "exactly". A k-ary tree is here viewed as a DAG by directing each edge towards the root.

8
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Figure 1. An example of a compositional function graph (DAG). The
internal nodes of the DAG G, denoted by red dots, represent the constituent
functions. The black arrows represent the input to the various nodes as
indicated by the in edges of the red nodes, and the blue dot indicates the
output value of the G-function, f in this example.

• Deep networks fW ∈ F are functions with specific constituent functions
(Wk and σ), and specific graph representation that is a priori fully connected
in the sense that each node at layer k may depend on all nodes at layer
k − 1. This is not sparse. In particular, some constituent functions have
d input variables. If one restricts, however, to matrices Wk with specific
zero entries, this amounts to using constituent functions with fewer inputs
and the resulting graph representation may be sparse. We refer to this de
facto graph as the architecture of the network since it specifies the flow of
information from input to output, and the location of trainable parameters.
This is the case with CNNs: approximators are taken from a subclass F̂ of
FwhereW matrices have many zero entries, in specific patterns15. These

15In CNNs, some layers, called convolutional layers, have Wk with many zero entries in each row,
while the set of nonzero entries is the same in every row (just differently located). This means each
coordinate (output) ofWkv will only depend on a few coordinates of v, and will be a dot product of
that sub-vector of v with a small vector c, that is the same for all output coordinates (this is called weight
sharing). Such matrices applied to image data can have the effect of taking a dot product of a "template"
with a small patch of an image, for example to detect a specific local shape like an edge, and doing so
in identical manner at all small patches in the large image (due to weight sharing). Just as corners are
defined by an arrangement of edges, many functions we might try to learn for images, e.g. whether the
image contains a car, can be expressed as compositions of successive local shape detectors, and are thus
well-approximated by CNNs.

9
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zero entries are never changed, i.e. no optimization of these parameters is
carried out: we optimize only the other entries of the matrices W .

The class of sparse compositional functions and the class F of deep networks —
or a subclass F̂ thereof — form an interesting, specific pair (target function class,
approximator class). In fact, the following theorem16 by Mhaskar and Poggio [22]
shows that functions with bounded first derivative — that can be represented by
a compositionally sparse function graph (see right-hand side of Figure 1) — can be
approximated arbitrarily well by deep, sparse RELU networks with poly(d) trainable
parameters17.
Theorem 2.3. [22] Let G be a Directed Acyclic Graph (DAG) with internal node set
V , d the number of source nodes, and for each v ∈ V , let dv be the number of in-edges
of v. Consider compositional G-functions f : Rd 7→ R, where each of the constituent
functions of Figure 1 is in the Sobolev space Wdv

sv . Consider shallow and deep networks
with infinitely smooth activation function. Then, to ϵ-approximate target functions f , the
number of trainable parameters needed in a shallow network is exponential in d

Nshallow = O
(
ϵ−

d
s

)
,

where s = minv∈V sv , while the number of trainable parameters needed in a deep network
with architecture G is

Ndeep = O

(∑
v∈V

ϵ−dv/sv

)
.

Therefore, to approximate compositionally sparse G-functions, deep networks with an associ-
ated graph that corresponds to G avoid the curse of dimensionality in approximating f for
increasing d, whereas shallow networks, in general, cannot avoid the curse.

To see the last statement, recall from Definition 2.2 that compositional sparsity of
f means V has polynomially many elements and each dv is at most constant.
2.1. Efficiently computable functions are compositionally sparse. As we’ve seen,
sparse compositional functions with bounded first derivatives can be approximated
by a deep network with the same graph without curse of dimensionality. But how
broad is the class of sparse compositional functions (with constituent functions as
stated)? In this section, we show that it is quite broad since it is equivalent to the
class of efficiently computable functions.

We first provide, in Definition 2.4, a specific version of the definition of a com-
putable function. For Boolean functions, computability is equivalent to computability
by a Turing machine18. For functions on the reals there are various notions of com-
putability. The simplest is Borel-Turing computability. As shown very recently, they
all have some technical problems (see [2, 5]), in the sense that there exist functions
on the reals (such as the pseudoinverse) that are not computable. Here we bypass

16In it, we assume a smooth version of the RELU activation function (recently the RELU has been
replaced in applications by smooth versions such as the GELU activation function[14]).

17To deduce this from the Theorem, note Ndeep will thus be a sum of |V | constants by Definition 2.2,
where |V | is polynomial in d.

18TheChurch-Turing thesis states that any real-world computation can be translated into an equivalent
computation on a Turingmachine (this is equivalent to using general recursive functions). Note, however,
the Turing machine may need arbitrarily large memory.
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these issues and consider the standard case, that is functions that are Borel-Turing
computable. Our focus in this note is whether such computable functions, are, or
are not, computable in polynomial time.

Definition 2.4. A function f : I → Rk
c , I ⊂ Rd

c , where Rc is the set of computable
real numbers, is called Borel-Turing computable, if there exists an algorithm (or
Turing machine) that transforms each given computable representation of a vector
x ∈ I — for instance using rational numbers — into a representation for f(x). The
special case of efficient computability requires computability in time/space that are
poly(d).
The following observation, cast here as a theorem, is simple but interesting (for

a proof, see [25]).

Theorem 2.5. Functions on I ⊂ Rd with Lipschitz continuity which are efficiently
computable are compositionally sparse. Efficiently computable Boolean functions are
compositionally sparse.

2.2. Efficient computability, compositional sparsity and deep, sparse RELU net-
works. Here are two obvious but interesting consequences directly implied by the
observations above.

2.3. Efficient computability is equivalent to compositional sparsity. Consider
smooth real-valued functions in d variables, that is Lipschitz continuous functions,
that are compositionally sparse. Theorem 2.3 shows that such functions are com-
puted by deep GELU networks with a number of parameters which is poly(d) (the
same is true for Boolean functions). RELU networks can be simulated efficiently by
a Turing machine, since each layer in a deep network corresponds to a finite number
of steps of a Turing machine. On the other hand, Theorem 2.5 shows that efficiently
computable functions are compositionally sparse. We therefore have:

Corollary 2.6. For computable functions (if the function is on I ⊂ Rd, Lipschitz
continuity is required), compositional sparsity is equivalent to poly(d) computability.

2.4. Efficiently computable functions can be approximated by a deep, sparse
network. A direct implication of Theorems 2.5 and 2.3 is the following statement
which essentially says that for any "reasonable" target functions, i.e., ones that are
efficiently computable, the tension in learning systems between close approximation
and efficient optimization will be avoided by neural networks that have suitable
architecture.

11
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Corollary 2.7. (informal) All efficiently computable functions (if the function is on the
reals, Lipschitz continuity is required) can be approximated without curse of dimensionality
by deep networks with architecture matching the graph of a sparse representation of the
function.

Remark
• Recall that a function has usually several compositional representations and
thus several compositionally sparse representations. The approximating
network shouldmatch one of them. Whether this can be done by training on
data, that is by the optimization step, is an open question - cf. Section 4. One
of themain implications of Theorem 2.6 is that in principle all functionsmay
be approximated by an appropriately sparse neural network without curse
of dimensionality. Thus the assumption in several recent statistics papers
(for instance [3]) that the regression function is some form of a "generalized
hierarchical interaction model" can be avoided. This observation, in turn, may
provide theoretical foundations for several approaches, including tensor
representations of data such "as the Hierarchical Tucker format [12, 11], in
representing broad classes of functions.

• This implies that perhaps the main challenge in machine learning is the dis-
covery of a sparse compositional graph representing the class of functions
to be learned (see Section 4 on CNNs and transformers; the sparse graph
structure is known in CNNs and, we conjecture, is learned in transformers).
As an aside, compositionality may play an interesting role in simplifying
the task of optimization.

3. Learning theory: compositional sparsity can lead to orders-of-magnitude
better bounds on expected error

Corollary 2.7 implies that deep GELU networks with polynomially many pa-
rameters (and suitable architecture) suffice to approximate compositionally sparse
functions, thus enabling efficient (i.e. polynomial-time) training, that is optimiza-
tion, w.r.t. given data and a chosen loss function. The optimized network will give
the lowest possible (regularized) empirical error in the class. This is a surrogate for
— but may not actually equal — the lowest possible in-class generalization error,
known as approximation error, which is ultimately our goal. The discrepancy between
these errors is known as the estimation error and there is a tradeoff. While we saw
that choosing a larger class F reduces approximation error, it also increases the
possibility of overfitting, (see Section 1.1 and its footnote on overfitting) where some
network achieves small or zero empirical error on the training set but the network
performs poorly on unseen data. This is especially likely in the overparametrized
case. As we describe in the next Theorem, however, it turns out that composi-
tional sparsity has a mitigating effect here too, independently of whether or not the
network is overparametrized.

Measures of complexity in learning theory, such as Rademacher complexity or
VC dimension, are quantities associated to learning problems, such that bounds
on generalization error exist in terms of these quantities (Rademacher complexity,
for example, bounds the difference between expected and empirical error). Higher
complexity generally gives higher (upper or lower bounds on) generalization error.

12
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The next Theorem [37, 8] therefore implies that sparsity of a network dramatically
reduces generalization error.

Theorem 3.1. (informal) The contribution to the Rademacher complexity of a deep network
is smaller for sparse layers of weights than for dense layers: if there are k non-zero (i.e.
trainable) entries in each row of a weight matrixW and the weight matrix is n×n, then the
contribution of the layer to the Rademacher complexity of the network is

√
k
n∥W∥ instead

of ∥W∥, as it would be for a dense layer. Here ∥ · ∥ is the Frobenius norm.

In analogy with the approximation result of Theorem 1.1, the key property
here is sparsity (k much smaller than n in the theorem). This property is for
example ensured in convolutional layers of typical CNNs - see footnote 15. Notice
that an equivalent result for underparametrized networks follows directly from
considerations of VC dimension. Thus, focusing on a class F̂ ⊂ F of deep networks
with architecture matching the compositionally sparse representation of target
functions not only enables efficient search in a space where close approximators
lie (as described in Section 2), but interestingly, it also ensures generalization error
is also reduced. The next section looks more closely at the interplay between
optimization and choice of sparse subclass F̂.

4. Optimization and open questions
We now turn to two important architectures where compositional sparsity is

exploited.

4.1. The sparse graph is known: CNNs. In the underparametrized case, recent
work[15] has shown that an optimal tradeoff between approximation and general-
ization error can be achieved, assuming that optimization finds a goodminimum. In
the more interesting overparametrized square loss case, generalization depends on
solving a sort of regularized ERM, that consists of findingminimizers of the empirical
risk with zero loss, and then selecting the one with lowest complexity. Recent work
[38] has provided theoretical and empirical evidence that this can be accomplished
by SGD provided that the following conditions are satisfied:

(1) the sparse function graph of the underlying regression function is assumed
to be known and to be reflected in the architecture of the approximating
network;

(2) the network is overparametrized allowing zero empirical loss;
(3) the loss function is an exponential loss or the regularized square loss.

Thus a reasonable conjecture is that this optimization problem can be solved by
SGD if the graph of the underlying target function is known and takes the form of a
compositionally sparse graph. This is the case for CNNs and for the network shown in
Figure 2.

4.2. The sparse graph is unknown: transformers. The second part of the argu-
ment is about the case of unknown function graphs. We focus here on the case of
transformers.
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Figure 2. The network here — similar to a CNN— reflects in a "hard-
wired" way the sparse compositional function graph of the target function.
Thus the function graph is supposed to be known here.
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Figure 3. Here a self-attention head (followed by a one-layer RELU
network, though two layers are more common) selects and weights, for
each input token, the relevant other tokens. The "A" box is the self-
attention algorithm; the RELU circles represent the units of a one-layer
RELUs. Notice that unlike the network of Figure 2 the selected input
tokens, which are vectors, are combined linearly into an input to the RELU
network at each layer.
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Transformers are deep learning networks that power the Large Language Models
(LLMs) underlying ChatGPT and similar bots[33]. They are designed to deal
with sequences of text — originally to solve the problem of translation from one
language to another — but can be adapted to other modalities. The basic module of
a transformer consists of a self-attention layer, followed by one or two GELU layers.
This basic module is repeated to create much deeper networks. As shown in Figure
3 the input to each layer is a sequence of vectors, called tokens, each encoding a
word or part of it. The output19 is also such a token. In the attention layer each
node, which receives an input token, selects a weighted subset of similar tokens in
the sequence, effectively using a normalized Gaussian kernel with a Mahalanobis
metric learned during training ([25], see also [13]). In summary for each node
in the layer, self-attention maps a long sequence of context tokens into a linear
combination of a few of them. The resulting vector is then the input to the GELU
network. This has the effect of reducing dependence on inputs to a smaller number
of variables20, i.e. mimicking sparsity.

We conjecture that this process of learning the autoregressive prediction of the
"next token" exploits the compositional structure of language where each token can
be predicted from a sparse set of preceeding tokens. Recent papers are consistent
with this conjecture (see for instance [17]), [23]. Our arguments show that simple
transformers — just able to approximate a short sequence of sparse constituent
functions— should approximate any (compositional) function efficiently computed
by a Turing machine as long as the training data reflect the step-by-step output of
the Turing machine.

The open question is how well can transformers recover the unknown sparse
function graph of a function, when the training data do not contain the output of
all intermediate constituent functions.

19To connect this setup with the basic learning theory we sketched earlier, note that a target function
fµ(x) taking values in [0, 1] as we defined in Section 1.1 can be interpreted as specifying the probability
that y = 1 given x, in a setting where pairs (x, 0) and (x, 1) are both possible, i.e., binary y-values
are non-deterministically associated to x under µ. This can be extended beyond binary y, to a case
where y takes discrete values a1, . . . , ak non-deterministically for each x, by considering instead k

target functions f i
µ with the ith one specifying the probability that y = ai given x. This is close to the

situation of transformers, except that rather than outputting the probabilities of y = ai for all i, the
machine generates an output from the set {a1, . . . , ak} of tokens based on those learned probabilities.
In particular, a transformer thus takes a sequence of input tokens, and outputs a next token that would
be typical under µ. It is able to do this based on the approximation to f i

µ it learned from its training
data. For language modelling these are typically massive quantities of text retrieved from the internet.
The transformer sequentially processes this text, thus observing many examples of which next token
follows a sequence of tokens, thus learning to perform autoregressive prediction.

20Although transformers essentially search in the full F, as the self-attention module learns to recognize,
for a specific set of data, which inputs matter at each stage of composition, it essentially drives search
towards an implicit subclass F̂. For example, given a large corpus of English language text, self-attention
would eventually come to recognize the functional roles of subject, verb, prepositions and direct object, in
the sense that to predict the final word in the incomplete sentence "The red apple fell from the "
the (trained) self-attention mechanism would guide the network to form the prediction mainly based on
"apple" and "fell", as well as "from".
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5. Machine learning and mathematics

We now switch to the broader question of replicating human intelligence in
machines and to the implications for mathematics of the previous description of
core principles of learning.

The first remark is that this is a time of unique opportunity to study principles of
intelligence since we begin to have several instances of "intelligent" systems, such
as AlphaZero which can outperform humans on the difficult tasks of playing go,
shogi and chess, or ChatGPT which is widely considered to have passed the Turing
test. Developments like these spurred Akshay Venkatesh’ essay about a prospective
Aleph(0) and its potential effects on research math. Our present contribution takes
up the parallel question of how likely it is that such machines could soon appear.
Based on the perspective we’ve outlined, this question hinges on the compositional
sparsity of relevant functions that one might attempt to learn by machine. There
are various possibilities for such functions to be used in research-level math, for
example a machine that predicts reference papers of likely interest given a rough
draft of a current project, or a machine that makes conjectures in some context, or
one that produces tentative proofs or merely assists a (human) mathematician by
suggesting next arguments in a proof (see also footnote 3).

Consider, for now, some version of producing next steps in a proof, given preced-
ing interactions (goal statement, hypotheses, steps so far) as well as a knowledge
base of true statements. The compositional sparsity principle discussed in the pre-
ceding pages, and especially its version for natural language — where the next
output typicallymust be consistentwith context and only a handful of thewords that
went before — seems to have a rough analogue in the structure of human-created
mathematical proofs: each statement that appears in such a proof typically follows
logically from only a small number of already established facts, and is relevant to
the specific context. This does not mean that the choice of next output (in Math or
in natural language) was evident from these same precursor statements, just that
the new word or statement is consistent in some way with those few precursors. If a
suitable network design is developed to exploit this type of sparsity, it seems quite
plausible that at least simple versions of proof generation could be soon do-able by
machine. This does not in any way mean there are not significant engineering and
design challenges that would need to be overcome along the way to achieve even
minimal functionality, only that based on the learning principles we have sketched,
it does not seem like an impossible task.

Regarding context —mentioned above for natural language or logical arguments,
and certainly highly relevant for conjectures — this is closely related to association,
namely a probabilistic rather than deterministic link between items that are not
directly related, in the direct way for example that a verb is conjugated to match
the subject, or one mathematical statement is a direct consequence of others. It
is rather a higher-level connection that emerges in the presence of many lower,
more direct connections. We humans are familiar with the experience of being
"reminded of" something. In this case, a new spontaneous image might arise in the
presence of a complex web of many other circumstances. That web is the context to
which is somehow associated the new image, and it does not require that this exact
combination of circumstances was ever encountered before. An approximative
description of how shallow and deep networks behave is in terms of memories
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that are able to generalize and are not simply look-up tables. In this metaphor, the
transformer output is the composition of associations at different levels. In fact, a
hierarchy of associations was suggested by the first author as a core ability of the
human brain [33]. In a similar vein, our arguments about sparse compositionality
and its equivalence with efficiently computable functions imply that networks, such
as a transformers, that can approximate simple, sparse functions can be trained,
with appropriate data, to learn any compositional function of interest, that is any
computer program. It follows that, if there exists some computer program capable of
proving a set of theorems, then it is in principle possible to learn it from appropriate
training sequences of tokens.

Gowers’ manifesto [10] considers "the computational problem where the input
is a mathematical statement and the output is a proof of that statement if it exists
and otherwise a declaration that there is no proof." While this class is undecidable,
Gowers points out that humans are primarily concernedwith proofs of some limited
length, but deciding if such a proof exists and producing it is still NP-complete. To
better understand how humans nevertheless do prove theorems of interest, Gowers
considers the set B (for "boring") of all pairs (S, P ) such that S is a well-formed
mathematical statement and P is a correct proof of S. He then defines the subset
M ⊂ B of problems that mathematicians are interested in, remarking: ".. I believe
that there is something aboutM that makes the restriction toM of the proof-finding problem
far easier algorithmically than the general proof-finding problem. That is why humans can
do mathematics, and that is why if we can understand what is going on, then we should
be able to program computers to do mathematics." The project Gowers describes in the
manifesto is devoted to better understanding:

(1) What distinguishes the pairs inM from general pairs in B? and
(2) Why is it frequently feasible for humans to find a proof P of a statement S

when (S, P ) ∈ M?
The perspective we have given here offers a preliminary high-level answer: if

the italicized conjecture about algorithmic ease of proof-finding in M is true, then
a necessary condition for (S, P ) ∈ B to belong to M is that there exist a sparse
function mapping established statements (that are known to be true) to S via
"constituent" logical steps of certain acceptable kinds, and that P is an instance
of such a sparse representation. This is of course an intuitive answer only, but it
suggests that the principle of sparsity together with the detailed picture of M that
will arise from Gowers’ project can be useful not only for developing GOFAI — but
also learning-based automated or interactive theorem provers.
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