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Abstract

The Average Gradient Outer Product (AGOP) provides a novel approach to feature learning in 
neural networks. We applied both AGOP and Gradient Descent to learn the matrix M in the 
Hyper Basis Function Network (HyperBF) and observed very similar performance. We show 
formally that AGOP is a greedy approximation of gradient descent.
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1 Introduction

The Average Gradient Outer Product (AGOP), defined as 1
n

∑
x∈X(∇f(x))(∇f(x))T , where ∇f(x) is

the gradient of a predictor, was recently proposed in [1] as a foundational mathematical observation.
The claim was that this framework characterizes feature learning across diverse neural network archi-
tectures and machine learning models. In the original paper [2], Radhakrishnan et al. had proposed
Recursive Feature Machines (RFM) for feature learning, utilizing AGOP to update the feature matrix
M = WTW , in an extension of kernel machines, proposed long ago with the name of Hyper Basis
Function Networks (HyperBF) [3]. M is a positive semi-definite, symmetric feature matrix providing
a weighted distance for a kernel K. It is given by KM (x, z) = exp (−γ|x− z|M ).

To explore ideas related to kernel methods and optimization-free learning, we utilized the HyperBF
method on an image classification problem. HyperBF extends the concept of Radial Basis Function
(RBF) networks by replacing the Euclidean distance measure with a Mahalanobis-like distance. Fol-
lowing the suggestions in [3] (see Appendix 3.1), we updated the feature matrix M using gradient
descent and compared it with the Recursive Feature Machines (RFM) techniques of Belkin et al. [2],
which updates M using AGOP.

In Table 1, we compared the two methods for updating M : the AGOP method and gradient descent
on W as in the footnote. Despite their different update mechanisms, the empirical results of these two
methods were remarkably similar. The primary distinction lies in their update techniques: ”moving
centers” uses GD, while ”fixed centers” uses AGOP.

Table 1: Experimental results on CIFAR10 [4] and MINIST [5].

CIFAR10 MNIST

Acc ↑

RFM 46.30 96.56

Ours (AGOP) 45.78 96.88

Ours (GD) 46.60 97.34

The comparable performance raises questions about the underlying relationship between these two
techniques. In fact,we found that AGOP can be regarded as a greedy approximation of gradient
descent. A detailed argument is below.

2 Proof

Let us consider a general scenario described by the following expression:

H(f(x)) =
1

2
(y − f(x))2, f∗(x) = h

(
W (t)x

)
(1)

In this context, h is an activation function, and W (t) represents the weight matrix at time step t.
The MSE is used as the objective function.

The gradient of this expression is given by:

∂H(f)

∂W
= ∇Wh

(
W (t)x

)(
y − hW (t)x

)
xT (2)

Gradient descent as in [3] can then be formulated as:

W (t+1) = W (t) + η∇Wh
(
W (t)x

)(
y − hW (t)x

)
xT (3)

Assume an initial condition W (0) = 0, we have:

W (t) = C(t)xT (4)

Now, if we examine the gradient outer product and substitute W (t) with Eq. 4, the gradient outer
product can be reformulated as:

2



∇xf(x)∇xf(x)
T = ∇h

(
W (t)x

)
W (t) ·

((
∇hW (t)x

)
W (t)

)T
= W (t)

(
∇hW (t)x

)T (
∇hW (t)x

)
W (t)

= xC(t)
(
∇hW (t)x

)T (
∇hW (t)x

)
C(t)xT

=
(
xxT

)
(· · · )

∝ xxT

(5)

Therefore, ∇xf(x)∇xf(x)
T is proportional to xxT . Furthermore,

W (t)TW (t) = xC(t)TC(t)xT ∝ xxT

∇f(x)∇f(x)T ∝ W (t))TW (t)
(6)

Hence, ∇xf(x)∇xf(x)
T serves as an estimator for W (t)TW (t).
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3 Appendix

3.1 Learn M using Gradient Descent

A full description of the method can be found in the [3]. Here are the main equations:

f∗(x) =

n∑
α=1

cαG
(
∥x− tα∥2W

)
, G(·) = exp

(
−∥x− z∥2W

L

)
, ∥x− z∥2W = (x−xi)

TWTW (x−xi) (7)

∂H [f∗]

∂cα
= −2

N∑
i=1

∆iG
(
∥xi − tα∥2W

)
(8)

∂H [f∗]

∂tα
= 4cα

N∑
i=1

∆iG
′
(
∥xi − tα∥2W

)
W TW (xi − tα) (9)

∂H [f∗]

∂W
= −4W

N∑
α=1

cα

N∑
i=1

∆iG
′
(
∥xi − tα∥2W

)
(xi − tα)(x− tα)

T , (10)

where

∆i = yi −
N∑

d=1

Cα exp

(
− (xi − tα)

⊤
W⊤W (xi − tα)

L

)
(11)

G′ = exp

(
−
∥xi − tα∥2w

L

)
(12)

3.2 Recursive Feature Machine

The RFM is introduced in [2] and detailed in Algorithm 1.

Algorithm 1 Recursive Feature Machine (RFM)

1: Input: X, y,KM , T ▷ Training data: (X, y), kernel function: KM , and number of iterations: T
2: Output: α,M ▷ Solution to kernel regression: α, and feature matrix: M
3: M = Id×d ▷ Initialize M to be the identity matrix
4: for t = 1 to T do
5: Ktrain = KM (X,X) ▷ KM (X,X)i,j := KM (xi, xj)
6: α = yK−1

train

7: M = 1
n

∑train
x∈X(∇f(x))(∇f(x))T ▷ f(x) = αKM (X,x) with KM (X,x)i := KM (xi, x)

8: end for
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