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Abstract

In solving a system of n linear equations in d variables Az = b, the condition number of the n,d
matrix A measures how much errors in the data b affect the solution x. Bounds of this type are
important in many inverse problems. An example is machine learning where the key task is to estimate
an underlying function from a set of measurements at random points in a high dimensional space
and where low sensitivity to error in the data is a requirement for good predictive performance. Here
we discuss the simple observation, which is well-known but surprisingly little quoted, that when the
columns of A are random vectors, the condition number of A is highest if d = n, that is when the
inverse of A exists. An overdetermined system (n > d) as well as an underdetermined system (n < d),
for which the pseudoinverse must be used instead of the inverse, typically have significantly better, that
is lower, condition numbers. Thus the condition number of A plotted as function of d shows a double
descent behavior with a peak at d = n.
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In solving a system of n linear equations in d variables Az = b, the condition
number of the n,d matrix A measures how much errors in the data b affect the
solution z. Bounds of this type are important in many inverse problems. An
example is machine learning where the key task is to estimate an underlying function
from a set of measurements at random points in a high dimensional space and where
low sensitivity to error in the data is a requirement for good predictive performance.
Here we discuss the simple observation, which is well-known but surprisingly little
quoted (see Theorem 4.2 in [1]) that when the columns of A are random vectors,
the condition number of A is highest if d = n, that is when the inverse of A exists.
An overdetermined system (n > d) as well as an underdetermined system (n < d),
for which the pseudoinverse must be used instead of the inverse, typically have
significantly better, that is lower, condition numbers. Thus the condition number
of A plotted as function of d shows a double descent behavior with a peak at d = n.

The concept of condition number was introduced by Turing in 1948 [2] and has since played a
key role in the theory of algorithms. The condition number of a function measures how much the
output value of the function can change for a small change in the input argument. The condition
number most commonly associated with Ax = b is defined as the ratio of the relative error in z
to the relative error in the data b. In terms of the lo norm on z and b, this leads to the following
definition for the the condition number of A, denoted by x(A) = ||A||||AT|| with ||A|| being the
operator norm of the m,n matrix A and Af! the pseudoinverse. the operator norm is defined as
||A|| = sup, ||ax|| with ||z|| = 1. it is easy to see that xk(A) = ?"#z((f)) is the ratio of the maximal
and minimal singular values of A.

The plot in the figure [I] can be easily checked by calling the function “cond” in matlab.
The double descent pattern is apparently quite robust to choices of d and n, such that their
ratio v = 7 is the same. The fact that the worse conditioning occurs when the inverse exists
uniquely (v = 1) seems at first surprising. This simple observation must have been realized by
many. The proof is also simple because of a well-known characterization of the eigenvalues of
random matrices [3]. In fact, consider the n,d random matrix a. we characterize its condition
number by using the Marchenko—Pastur law, which describes the asymptotic behavior of singular
values of large rectangular random matrices. We assume that the entries of a are independent,
identically distributed random variables with mean 0 and variance o?. We consider the limit



for n — oo with 4§ — . Marchenko—Pastur claims that for v < 1 the smallest and the largest
singular values of éaa are, respectively (1 — ,/7)? and (1+ /)% for v > 1 the largest and the
smallest eigenvalues of 1 a a are (14 /1?2 and (1 — /y~1)2. When 7 = 1, and the entries are
i.i.d. sub-gaussian, the max1mal singular value is concentrated around 2, but the minimal one is
min{n~!, d~"}(max{y/n — vd — 1,v/d — v/n — 1})?, as was observed in [4].

For the system of linear equations ax = b, the implication is that is better to have more
variables than data: the condition number associated with the minimum norm solution = = afb
is usually much better — that is closer to 1 — than the condition number of a well-determined
system with n = d, if the matrix a is random (see for instance [5]).

There are interesting observations for machine learning. The most obvious is that kernel
methods, which are a popular workhorse in machine learning, do not require reqularization in
order to be well-conditioned, if the kernel matrices are based on high dimensional i.i.d data,
especially when « < 1. This claim follows from recent results on kernels. The simplest form
of the kernel matrix K(zj,z;) is K = XX'. We consider random matrices whose entries are
K (z!zj) with i.i.d. vectors z; in R? drawn from a normal distribution. Assuming that f is
sufficiently smooth and the distribution of z;’s is sufficiently nice, El Karoui [6] showed that
the spectral distributions of kernel dot-product matrices K (z;,z;) = f(3XX?) behave as if f is
linear in the Marchenko—Pastur limit. In fact, El Karoui showed that under mild conditions, the
kernel matrix is asymptotically equivalent to a linear combination of X X?, the all-1’s matrix,
and the identity, and hence the limiting spectrum is Marcenko-Pastur. As a consequence, the
claims about the condition number of a random matrix A should also apply to kernel matrices
with random data.

More intriguing is the fact that the behavior of the condition number of KT is similar to the
double descent behavior of the test error by linear and kernel interpolants, which after pioneering
work by Belkin ([7], see also [8]) has recently attracted much attention [9} 10} [7) [1T), 12}, T3, [14].
We will address the key role of stability, discussed in some detail in previous versions of this
memo, in a separate paper currently in preparation.
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Figure 1: Typical double descent of the condition number (y axis) of a random data matrix
distributed as N'(0,1): the condition number is worse when n = d, better if n > d (on the right
of n = d) and also better if n < d (on the left of n = d).
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