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Abstract

In solving a system of n linear equations in d variables Ax = b, the condition number of the n,d
matrix A measures how much errors in the data b affect the solution x. Bounds of this type are
important in many inverse problems. An example is machine learning where the key task is to estimate
an underlying function from a set of measurements at random points in a high dimensional space and
where low sensitivity to error in the data is a requirement for good predictive performance. Here we
report the simple observation that when the columns of A are random vectors, the condition number
of A is highest, that is worse, if d = n, that is when the inverse of A exists. An overdetermined system
(n > d) and especially an underdetermined system (n < d), for which the pseudoinverse must be used
instead of the inverse, typically have significantly better, that is lower, condition numbers. Thus the
condition number of A plotted as function of d shows a double descent behavior with a peak at d = n.
We discuss implications to recent machine learning developments.
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In solving a system of n linear equations in d variables Ax = b, the condition
number of the n,d matrix A measures how much errors in the data b affect the
solution z. Bounds of this type are important in many inverse problems. An
example is machine learning where the key task is to estimate an underlying function
from a set of measurements at random points in a high dimensional space and where
low sensitivity to error in the data is a requirement for good predictive performance.
Here we discuss the simple observation, which is well-known but surprisingly little
quoted (see Theorem 4.2 in [1]) that when the columns of A are random vectors,
the condition number of A is highest if d = n, that is when the inverse of A exists.
An overdetermined system (n > d) as well as an underdetermined system (n < d),
for which the pseudoinverse must be used instead of the inverse, typically have
significantly better, that is lower, condition numbers. Thus the condition number
of A plotted as function of d shows a double descent behavior with a peak at d = n.

The concept of condition number was introduced by Turing in 1948 [2] and has since played
a key role in the theory of algorithms. The condition number of a function measures how much
the output value of the function can change for a small change in the input argument. The
condition number most commonly associated with Az = b is defined as the ratio of the relative
error in x to the to the relative error in the data b. In terms of the o norm on x and b, this
leads to the following definition (see Box1) for the the condition number of A, denoted by

k(A = ||A]|||AT||, where ||A]| is the operator norm of the m,n matrix A is defined in terms of
the vector norm of K", K™ as [|Al| = sup,cxn 420 % and At is the pseudoinverse. It is easy

to see that k(A) = % that is the ratio of the maximal and minimal singular values of A.

The plot in the Figure [I| can be easily checked by calling the function “cond” in MatLab.
The double descent pattern is apparently quite robust to choices of d and n, such that their
ratio v = 7 is the same. The fact that the worse conditioning occurs when the inverse exists
uniquely (v = 1) seems at first surprising. This simple observation must have been realized by
many. The proof is also simple because of a well-known characterization of the eigenvalues of
random matrices [3]. In fact, consider the n,d random matrix A. We characterize its condition
number by using the Marchenko—Pastur law, which describes the asymptotic behavior of singular

values of large rectangular random matrices. We assume that the entries of A are independent,



identically distributed random variables with mean 0 and variance o2. We consider the limit
for n — oo with § — v. Marchenko—Pastur claims that for v < 1 the smallest and the largest
singular values of éAAT are, respectively (1 — \ﬁ)Q and (1+ \ﬁ)z For v > 1 the largest and the
smallest eigenvalues of £ ATA are (14 /7 1)% and (1 — /v~ T)%. When v = 2, and the entries
are i.i.d. sub-Gaussian, the maximal singular value is concentrated around 2, but the minimal
one is min{n ', d~'}(max{y/n — vd — 1,v/d — \/n — 1})?, as was observed in [4].

For the system of linear equations Az = b, the implication is that is better to have more
variables than data: the condition number associated with the minimum norm solution z = Afb
is usually much better — that is closer to 1 — than the condition number of a well-determined
system with n = d, if the matrix A is random (see for instance [5]).

There are interesting observations for machine learning. The most obvious is that kernel
methods (see Box1), which are a popular workhorse in machine learning, do not require regu-
larization in order to be well-conditioned, if the kernel matrices are based on high dimensional
i.i.d data, especially when v < 1. This claim follows from recent results on kernels. The simplest
form of the kernel matrix K (zj,7;) is K = XXT. We consider random matrices whose entries
are K(zl'z;) with i.i.d. vectors x; in R? with normalized distribution (in Figure [3{ we consider a
radial kernel K (||z; — z;]|?) for which similar arguments are likely to hold). Assuming that f
is sufficiently smooth and the distribution of z;’s is sufficiently nice, El Karoui [6] showed that
the spectral distributions of kernel dot-product matrices K (z;,z;) = f(XXT) behave as if f is
linear in the Marchenko—Pastur limit. In fact, El Karoui showed that under mild conditions, the
kernel matrix is asymptotically equivalent to a linear combination of X X7, the all-1’s matrix,
and the identity, and hence the limiting spectrum is Marcenko-Pastur. As a consequence, the
claims about the condition number of a random matrix A also apply to kernel matrices with
random data, see Figure

More intriguing is the fact that the behavior of the condition number of KT is similar to the
double descent behavior of the test error by linear and kernel interpolants, which after initial
work by Belkin ([7], see also [8]) has recently attracted much attention [9} 10, [7) [1T), 12} T3, [14].
It is natural to expect that some measure of stability of the interpolant solution should play a
key role in determining the prediction error. We know that in the “classical” regime of fixed
hypothesis space and n — oo, stability, defined as cross-validation leave-one-out (CVy,,) error,
is important. We expect a similar notion of stability to be required in the “modern” high
dimensional regime of & — oo, in which the minimum norm pseudoinverse plays a key role. In
both cases, well-posedness, that is existence, uniqueness and especially stability of the solution,
are the key requirement for predictivity. Stability is usually guaranteed during minimization of
the empirical loss by complexity control under the form of (possibly) vanishing regularization (as
in the definition of the pseudoinverse) or as implicitely provided by iterative gradient descent
[15]. The notion of CVy,, stability (defined as the difference between the error made by the
predictor obtained by using ERM on the training set S vs. the error of the predictor obtained
from a slightly perturbed training set S%) turns out to be necessary and sufficient for distribution
independent generalization and consistency in the classical framework of ERM with a fixed
hypothesis space [16, [I7]. Here we can use a special case of CV,, stability called uniform stability



[18] and defined as

Definition 1 An algorithm has uniform stability 3 with respect to the loss function V if VS € Z™,
Vie{l,---,n}, sup,ezn |[V(fs,2) =V (fg, 2)| <B.

We derive a straightforward bound for interpolating kernel regressors for appropriate distri-
butions of the data as (assuming Lipschitz properties of the loss function and k(z, z) = k?)

8 < 1 ka, XK < ke, XK Y] = Okl 2)onty <K2Coml, (1)

min min

+in does (when 2 < 1 then

Omin = (1 — \/%)2) . Thus 8 < k?Co! . Using Equation 1.3 in [19], we have with probability

min’

where k and C do not depend on n,d of the training set S but o

1 — ¢ that the expected error of the algorithm is

RUA) < (VFB + ) los() @)

where B is a uniform bound on the loss function. Thus we obtain

R(4) < (VBkm(l -\ e ) 3)

It is interesting to observe that 5 and R(A) are controlled by the minimum norm solution
for any given n,d. This is true in the modern and also in the classical regime, as it is clear by
rewriting the bound on the expected error for the general case of regularized kernel regression
with a regularization parameter A:

R(4) = R 4) < (TRIC(K +nAD) | + )y o). (1)

For d fixed, A has to go to zero slower than % in order for the right-hand side to go to
zero. In this regime 8 — 0 with n — oo in a distribution-independent way, implies uniform
convergence and compactness of the hypothesis space: the interpolation error is not zero but the
generalization gap goes to zero. For % fixed and n — oo, A can be set to A = 0; the minimum
expected error then follows from the minimum of £, which itself follows from the minimum norm
property of the pseudoinverse ||KT||. The bound shows the double-descent property with respect
to n,d when ||KT|| does, for instance for random data, and thus in a distribution-dependent
way. In summary, the property of uniform (or CVy,,) stability provides the crucial link between
(minimum) norm and expected error.

In the modern regime, the expected error R(A) remains different from the zero empirical
error (interpolation) also for n — oo. An example is shown in Figure [3| demonstrating that even
this simple estimate seems to capture the “double-descent” behavior of the test error.

Of course these bounds are loose. The condition number of the kernel matrix is not sufficient
by itself to accurately estimate the out-of-sample error. An elegant and complex estimate of the



test error for kernel interpolators has been recently given [20, 21] adding intriguing details to the
basic double descent behavior described by our simple analysis.

The open question is whether a stability condition such as uniform stability can also provide
the expected behavior for the case of overparametrized deep neural networks. It has been shown
recently [22] 23], 24] that with the exponential loss, gradient descent induces a dynamics such
that the weight matrix for each layer of the network converges to a minimum norm solution.
In fact, for a K-layer network a simple bound on on f is given by C||[Wk]||---||[W1i]|. As we
mentioned, the weights W - - - Wik to which gradient descent converges are the minimum norm
solutions (for margin greater or equal to 1) for each layer. Then, following the same logic we
used above for kernel interpolants, the expected error — assuming zero-error interpolation on the

data — is R(A) < (/TC'||[Wk]]---[|[Wh]] + %) log(%) and is a minimum because each of the
W) is a minimum norm solution.

Acknowledgments We thank Gil Strang and Felipe Cucker and Lorenzo Rosasco and
especially Silvia Valle. This material is based upon work supported by the Center for Minds,
Brains and Machines (CBMM), funded by NSF STC award CCF-1231216, and part by C-BRIC,
one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored
by DARPA. This research was also sponsored by grants from the National Science Foundation
(NSF-0640097, NSF-0827427), and AFSOR-THRL (FA8650-05-C-7262).

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to T.Poggio
(email: tp@ai.mit.edu).

Author Contribution All developed the basic theory.



120 .
100 .
o
0
E 80 + .
>
c
c
i
: : -
c
@]
@)

10 20 30 40 50 60 70 80 90 100
n

Figure 1: Typical double descent of the condition number (y axis) of a random data matrix
distributed as N'(0,1): the condition number is worse when n = d, better if n > d (on the right
of n = d) and also better if n < d (on the left of n = d).
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Figure 2: Typical double descent of the condition number (y axis) of a radial basis function
/112
kernel K (z,2') = exp (—%) built from a random data matrix distributed as AV(0,1): as

in the linear case, the condition number is worse when n = d, better if n > d (on the right of
n = d) and also better if n < d (on the left of n = d). The parameter o was chosen to be 5.
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Figure 3: Plot of ||K (z, X)|| ||K (X, X)||, where z is a out-of-sample data point (not in X) and
K is a radial basis function kernel K (z,z') = exp (—%E), plotted with ¢ = 8. Both the

dataset X and the out-of-sample point were generated from the N(0, 1) distribution.

Boxes



Bozl: ERM and Kernel Machines

Consider “learning the function f from data S = (x1,y1; 22, Y2, - * Tn,Yn) by computing
min 3 (f(x) — i) (5)

We assume that f(x) = Y7, ¢;K(x;,x) and that f is in the ball Br of radius R in H (eg
|fllx < R). Then H = Ix(Bpg) is compact — where I : Hx < C(X) is the inclusion and C'(X)
is the space of continuous functions with the sup norm [25]. In this case the minimizer of the
generalization error I[f] is well-posed. Minimization of the empirical risk (Equation (5)) is also
well-posed: it provides a set of linear equations to compute the coefficients c of the solution f as

Ke=y (6)

where y = (y1,...,yn) and (K); ; = K(x;,%;). Notice that this last set of linear equations is
well-posed even without the constraint || f||x < R: if K is symmetric and positive definite and
the x; are distict the K 1 exists and || f||% is automatically bounded, with a bound that increase
with n. For any fixed n the condition number of K is finite. A regularized form of ERM is
1 & 2 2
min ~ > (f(x:) —4i)” + Al flI% (7)

fEHTLZ 1

which gives the following set of equations for ¢ (with A > 0)
(K+nX)c=y, (8)

which for A = 0 reduces to Equation @ In both cases, stability of the empirical risk minimizer
provided by Equation can be characterized using the classical notion of condition number of
the problem. The change in the solution f due to a variation in the data y can be bounded as

% < HK—i—n/\IHH(K—i—nAI) ‘ H||A3"‘” where the condition number ||K + nAI||[|(K +nAI)7}|

is controlled by nA. A large value of nA gives condition numbers close to 1, whereas ill-conditioning
may result if A = 0 and the ratio of the largest to the smallest eigenvalue of K is large. Though
this was the classical argument, it is now clear (because of recent results such as El Karoui [6])
that random K matrices are typically well-conditioned even for A = 0. In other words, for i.i.d
high-dimensional data,

IAfI ”H H Ayl

[V Iyl

and the condition number x(K) = HKHH(K)TH is close to 1, especially if d is different from n.

(9)




Boz2: Classical Learning Theory

In the classical setting, a key property of a learning algorithm is generalization: the empirical
error must converge to the expected error when the number of examples n increases to infinity,
while the class of functions H, called the hypothesis space, is kept fixed. An algorithm that
guarantees good generalization will predict well, if its empirical error on the training set is
small. Empirical risk minimization (ERM) on H represents perhaps the most natural class of
learning algorithms: the algorithm selects a funcion f € H that minimizes the empirical error —
as measured on the training set.

One of the main achievements of the classical theory was a complete characterization of the
necessary and sufficient conditions for generalization of ERM, and for its consistency (consistency
requires asymptotic convergence of the expected risk to the minimum risk achievable by functions
in H; for ERM generalization is equivalent to consistency). It turns out that consistency of ERM is
equivalent to a precise property of the hypothesis space: H has to be a uniform Glivenko-Cantelli
(uGC) class of functions.

Later work showed that an apparently separate requirement — the well-posedness of ERM — is
in fact equivalent to consistency of ERM. Well-posedness usually means existence, uniqueness
and stability of the solution. The critical condition is stability of the solution. Stability is
equivalent to some notion of continuity of the learning map (induced by ERM) that maps training
sets into the space of solutions, eg L : Z" — H. In particular, it was proved [16] [I7] that
distribution-independent CV),, stability guarantees generalization and for ERM is equivalent to
consistency.

We recall the definition of leave-one-out cross-validation (in short, C'V,,) stability:

Vi € {1, - ,n} Pg {’V(fs,zi) — V(fsi,zl‘)‘ < ﬁov} >1—dcv, (10)

where V (f, z) is a loss function that is Lipschitz and bounded for the range of its arguments and
z = ((x,y). CVyy, stability measures the difference between the errors at a point z; when it is in
the training set S of fg wrt when is not. The definition of CVy,, was introduced to deal with
general situations in which H may not have a norm. The definition of leave-one-out stability is
simpler in the framework of inverse problems when H is a RKHS and the noise in the data can
be assumed to affect only the “outputs” y;. Then a condition number can be defined: a good
condition number close to 1 implies then good CV,, stability. Both definitions capture the basic
idea of stability of a well-posed problem: the function “learned” from a training set should, with
high probability, change little in its pointwise predictions for a small change in the training set,
such as deletion of one of the examples or label noise affecting some of the training data.

In the modern regime, in which both n and d grow to infinity, the generalization gap does not go
to zero. The classical approach — of asymptotic generalization and then consistency — cannot be
used because there is no fixed hypothesis space and the setup must be distribution-dependent.
However, the requirement of well-posedness, including stability, should remain. The argument at
the end of the main text may suggest how to formally show that uniform stability explains the
main properties of both the classical and the modern regime including the distribution-dependent
double descent property of the latter.
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