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Abstract

In this paper, we conduct an empirical study of the feature learning process in deep classi�ers. Recent
research has identi�ed a training phenomenon called Neural Collapse (NC), in which the top-layer feature
embeddings of samples from the same class tend to concentrate around their means, and the top layer's
weights align with those features. Our study aims to investigate if these properties extend to intermediate
layers. We empirically study the evolution of the covariance and mean of representations across di�erent
layers and show that as we move deeper into a trained neural network, the within-class covariance decreases
relative to the between-class covariance. Additionally, we �nd that in the top layers, where the between-class
covariance is dominant, the subspace spanned by the class means aligns with the subspace spanned by the
most signi�cant singular vector components of the weight matrix in the corresponding layer. Finally, we
discuss the relationship between NC and Associative Memories (Willshaw et al., 1969).

1 Introduction

Deep learning has emerged as a powerful technique for solving various problems in diverse domains such as
computer vision He et al. (2016); Simonyan & Zisserman (2014), natural language processing Vaswani et al.
(2017); Brown et al. (2020), and decision making in novel environments Silver et al. (2016). Despite its suc-
cesses, there remains a signi�cant gap between its empirical performance and our theoretical understanding,
even for simple supervised learning problems in classi�cation or regression.
A major line of work (e.g., Jacot et al. (2018); Du et al. (2019, 2018); Arora et al. (2019); Yang (2020); Yang &
Littwin (2021); Littwin et al. (2020)) aims to understand neural networks at their in�nite-width limit. In this
framework, it is shown that in�nitely wide neural networks converge to a solution of a kernel least squares
problem with a kernel associated with the network's architecture, known as the Neural Tangent Kernel
(NTK). While this approach provides valuable insights into the solutions of optimization problems in the
�kernel regime�, it has limitations when it comes to understanding the representations learned by �nite neural
networks. For instance, Chen et al. (2020); Allen-Zhu & Li (2019); Malach et al. (2021) identi�ed classes
of functions that can be learned e�ciently by deep architectures, but not with kernel methods. In Allen-
Zhu & Li (2020), they characterized a �backward feature correction� process in which features are learned
hierarchically by SGD. Additionally, Woodworth et al. (2020) studied how the scale of initialization controls
the transition between the �kernel� and �feature learning� regimes.
In a recent study, Papyan et al. (2020) empirically observed that when training overparameterized deep neural
networks for Cross-Entropy loss minimization on a given classi�cation task, several structural properties tend
to emerge in the last layer. These properties, known as Neural Collapse (NC) list four conditions: (NC1) the
features of examples within the same class collapse to their mean, (NC2) class means of the features spread
out to form an equiangular tight frame, (NC3) the weights of the classi�er converge to the class means of the
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features, and (NC4) the deep network becomes a nearest class center classi�er. These observations raise the
question of whether similar phenomena also occur in the intermediate layers of the neural network.
Contributions. In this paper, we investigate whether similar phenomena to Neural Collapse (NC) occur
in intermediate layers of deep classi�ers. We study the process of feature learning in terms of the �rst and
second-order statistics of representations at di�erent layers. Our results show that when deep networks
exhibit NC at the last layer, they also display signs of collapse in intermediate layers. We identify layers where
the within-class covariance of representations is dominated by the between-class covariance (NC1) and
observe that in these layers, class means to form a simplex ETF (NC2), the subspaces spanned by class means
are aligned with the input subspace of linear transformations (NC3), and nearest class center classi�cation
using the layer's representations align with the decision of the deep network (NC4). This is the �rst study to
provide a comprehensive description of NC in intermediate layers, and we also measure the rank of weight
matrices and covariances of representations to understand how features are transformed in the NC regime.

2 Related Work

Neural collapse. The phenomenon of Neural Collapse (NC) was �rst described in full in Papyan et al.
(2020), although the observation of a certain geometric clustering of features within the same class had
been made in earlier papers, such as Goldfeld et al. (2019). Since the initial NC paper, which showed the
phenomenon occurring with the cross-entropy loss, there has been a surge of research into theoretical and
empirical descriptions of NC. Han et al. (2022)demonstrated NC using the Mean Squared Error (MSE)
loss, while papers such as Xu et al. (2023); Ergen & Pilanci (2020) have shown that di�erent optimization
algorithms can lead to NC solutions when trained to zero MSE loss. The emergence of NC solutions using
cross-entropy was also shown in other papers (Wojtowytsch et al., 2020; Fang et al., 2021; Lu & Steinerberger,
2020). Several papers such as Zhu et al. (2021); Zhou et al. (2022); Mixon et al. (2020); Tirer & Bruna (2022);
Ji et al. (2021) have also explored the Unconstrained Features Model (UFM), which analyzes the last layer
features and classi�er as optimization variables. The abstraction of the UFM has provided a simpli�ed model
for deriving the emergence of NC theoretically.
Feature learning in deep networks. Since deep networks are organized as hierarchical layers, the structure
of the representations learned at intermediate layers has also been an object of study in order to understand
how deep networks work. In Recanatesi et al. (2019) and Ansuini et al. (2019), the authors study how
di�erent measures of the dimension of intermediate representations progresses through the network. Both
papers show that the dimension of the representations �rst blows up and later reduces as one goes through
deeper layers of the classi�er. We later show that networks that exhibit neural collapse also show this behavior.
Attempts to understand the evolution of deep network representations through the lens of information theory
were made by Shwartz-Ziv & Tishby (2017). They described the representations learned by intermediate
layers through the mechanism of the information bottleneck. Their observations on the dynamics of the
representations and their connections to generalization were later shown to be highly dependent on the
architectures and non-linearities used Saxe et al. (2019), as well as the type of binning Goldfeld et al. (2019)
used in the estimation of mutual information.
Clustering properties of intermediate layers of deep networks. In the literature on feature learning, a
particular focus is placed on clustering properties that emerge in intermediate layers of the network, as they
indicate that samples can be easily classi�ed at early stages of the network. For instance, in Alain & Bengio
(2017), it was demonstrated that linear probing of intermediate layers in a trained network becomes more
accurate as we move deeper into the network. This �nding was also supported in Cohen et al. (2018), where
the authors demonstrated that a k-nearest neighbors classi�er using intermediate representations performed
well, particularly using the �nal layer of the deep network.
Following the work of Papyan et al. (2020), several papers Ben-Shaul & Dekel (2022); Galanti et al. (2022a);
He & Su (2022) investigated the applicability of the nearest class center (NCC) classi�cation rule (NC4)
to intermediate layers in neural networks. While these papers demonstrate that the accuracy of the NCC
classi�er improves across the layers, they do not explore the entire set of NC properties. While Tirer & Bruna
(2022) explores a two-layer unconstrained features model, they only present experimental evidence for NC1
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and NC2 in the layer prior to the last hidden layer. Their theoretical results show the emergence of NC in the
classi�er and the features at the penultimate layer in the case of ReLU non-linearities, but do not describe the
emergence of NC in intermediate layers.
Deep networks as associative memories. Associative memories have been a popular topic in neural
networks for over half a century, starting with the work of Kohonen (1989) who proposed a mathematical
model for a non-hierarchical pattern storage system. This work inspired many subsequent studies, including
the Self-Organizing Map algorithm by Kohonen (1989) and the Simple Recurrent Network by Anderson
(1972). Hop�eld (1982) later proposed the Hop�eld network, a recurrent neural network that can store
and recall multiple patterns. Kanerva (1992) proposed the sparse distributed memory, which uses high-
dimensional binary vectors for e�cient pattern storage. Associative memories have also been used in signal
processing applications such as holography prior to their being studied as neural networks Willshaw et al.
(1969).
The notion of associative memories can be used to interpret and understand the layers of a deep neural
network, and in some cases, describe the entire network. This approach, known as the dual form of neural
networks Irie et al. (2022); Aizerman et al. (1964), allows for interesting practical applications such as editing
generative models Bau et al. (2020) and classi�er rules Santurkar et al. (2021). Recent research Dai et al.
(2021); Geva et al. (2020); Meng et al. (2022) has also focused on exploring the connection between associative
memories and transformer architectures.

3 Problem Setup

We consider the problem of training deep neural networks to solve multi-class classi�cation problems between
an input space X � Rd and a label spaceYC with cardinality C. We use a one-hot encoding for the label
space. The deep neural network classi�ers f W : X ! RC that we study consist of compositions of parametric
transformations and can be de�ned as:

f W (x ) = TL � : : : � T1(x );

where Tl : Rpl ! Rpl +1 is a parametric transformation with parameters W ` . For instance, T` could be a
fully-connected layer with a nonlinearity, T` (z) = � (W ` z), or a residual block T` (z) = � (z + W 2

` � (W 1
` z))

or a convolutional layer. Here, � : R ! R is a non-linear function that is applied coordinate-wise, such as the
ReLU activation function � (x) = max(0 ; x). We useW = f W L ; W L � 1; : : : ; W 1g to denote the parameters of
each one of the layers. In this paper, we will be interested in the characteristics of the featurescomputed by
the deep network at each layer. We de�ne features at layer ` for the input x i;c ash ` (x i;c ) = T` � : : : � T1(x i;c )) .
In this setting, we aim to learn the classi�er from a balanced training dataset S := f (x i;c ; yi;c )gN;C

i =1 ;c=1 of CN
samples consisting of N independent and identically distributed (i.i.d.) samples drawn from each of the C
classes. To train the classi�er, we typically minimize the regularized empirical loss function

L �
S (f W ) :=

1
CN

CX

c=1

NX

i =1

L (f W (x i;c ); yi;c ) + � R(W )

where L : RC � Y C ! [0; 1 ) is a non-negative loss function (e.g., squared error or cross-entropy losses)
and regularizer R(W ) (such as L 2 regularization) controls the complexity of the function f W and typically
improves generalization.

4 Intermediate Neural Collapse

In a recent paper, Papyan et al. (2020) described four properties of the terminal phase of training (TPT) in
deep networks using the cross-entropy loss function. TPT starts at the point where the training error becomes
zero and continues until training is stopped. During TPT, the training error remains e�ectively zero while the
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training loss continues to decrease. Direct empirical measurements expose an inductive bias they call Neural
Collapse (NC), involving four interconnected properties. In this paper, we extend the characterization of
Neural Compression (NC) by examining its presence in intermediate layers, in addition to its previously
studied presence at the last layer features and weights.
Before mathematically describing the conditions of Intermediate Neural Collapse, we �rst de�ne the following
�rst and second-order statistics of features in deep networks. The mean class features and the global mean
features for layer ` are computed as follows:

� `
c :=

1
N

NX

i =1

h `
i;c � `

G :=
1
C

CX

c=1

� `
c

The within-class, between-class, and total covariance matrices for layer ` are computed as:

� `
W =

1
NC

CX

c=1

NX

i =1

(h `
i;c � � `

c)(h `
i;c � � `

c)>

� `
B =

1
C

CX

c=1

(� `
c � � `

G )( � `
c � � `

G )>

� `
T =

1
NC

CX

c=1

NX

i =1

(h `
i;c � � `

G )(h `
i;c � � `

G )>

We note that the total covariance can be decomposed into the within and between class covariances� `
T =

� `
W + � `

B . We now characterize Intermediate Neural Collapse through the following conditions:
(NC1) Feature variability suppression. Most of the total covariance of the features in a layer is contained
in the between-class covariance. We compare the normalized within-class variance Tr(� `

W )=Tr(� `
T ) and

the normalized between-class variance Tr(� `
B )=Tr(� `

T ). An intermediate layer shows feature variability
suppression if the normalized within-class variance is smaller than a threshold, Tr(� `

W )=Tr(� `
T ) < � . From

our experiments, we observe that � � 0:2 is a reasonable choice. Since� `
W + � `

B = � `
T , this means that

most of the variability in the features comes from the distance between the between-class covariance and the
within-class variability is suppressed. This is a weaker requirement than the original de�nition of NC1 in the
last layer, which claims that Tr(� L

W � (� L
B )y) ! 0.

(NC2) Simplex ETF structure. The class means at layer̀ show a simplex ETF structure if the following
two conditions are satis�ed: 1)

�
�k� `

c � � `
G k2 � k � `

c0 � � `
G k2

�
� ! 0, or the centered class means of the layer

features become equinorm; and 2) if we de�ne ~� `
c = � `

c � � `
G

k� `
c � � `

G k2
, then we have h~� `

c; ~� `
c0i = � 1

C � 1 for c 6= c0,

or the centered class means are also equiangular. This condition is the same as the original simplex ETF
de�nition for the last layer class means.

(NC3) Alignment between features and weights: Let us consider the matrix of centered class means at
layer ` given by M ` = [ � `

c � � `
G ]Cc=1 2 Rp` � C and its alignment with W ` 2 Rp` +1 � p` . At the last layer, these

matrices have the same dimension and hence we say the last layer features and classi�er are aligned when�
�
�
�
�
� W >

L
kW L kF

� M L
kM L kF

�
�
�
�
�
� ! 0, since each row of the weight matrix corresponds to the relevant class mean column

in M ` .
At intermediate layers we �nd the Principal Angles Between Subspaces (PABS) Jordan; Björck & Golub
(1973) � 1; : : : ; � C between the range space ofM ` and the top C rank input space of W ` . An intermediate
layer shows feature-weight alignment if 1

C

P C
k=1 cos(� k ) ! 1, and the top C singular values of W ` are equal

to each other. At the last layer, the alignment and distance-based de�nitions of NC3 are equivalent.
(NC4) Behavioral equivalence to nearest center classi�cation. For a given layer, NC4 is satis�ed if the
decision of the deep classi�er and that of the nearest-class-center (NCC) decision rule using the features at
layer ` converge to each other: arg maxchW c

L ; hL (x )i ! arg minc kh ` (x ) � � `
ck2.

In the next section we will see that for deep networks which show NC in the last layer, there exists a hidden
layer in the network beyond which all subsequent layers show the above four conditions of intermediate NC.
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5 Results

In this section, we will present and analyze the results of our experiments that demonstrate the existence of
intermediate Neural Collapse (NC). The experimental details can be found in Appendix A. For the results,
we used four datasets - MNIST, FashionMNIST, CIFAR10, and SVHN - and three architectures - Multilayer
Perceptrons (MLPs), Convolutional Neural Networks, and Residual Networks.

5.1 Intermediate Neural Collapse

We present a list of �gures that support our claim that intermediate Neural Collapse (NC) occurs in deep
networks. These �gures demonstrate results from the MNIST and CIFAR10 datasets on three di�erent
networks. Results from additional datasets can be found in appendix C. Each �gure is divided into two rows,
with the top row showing results from the MNIST dataset and the bottom row showing results from the
CIFAR10 dataset. The two �gures in each column display results from the same type of network. A vertical
green line is used to indicate the layer at which intermediate collapse begins in all �gures.
In Fig. 1, we investigate the suppression of feature variability through the layers of the network. In the top
half of each sub�gure, we plot the within-class covariance Tr(� `

W ) (dotted), between-class covariance Tr(� `
B )

(dashed), and total covariance Tr(� `
T ) (solid). In the bottom half, we plot the normalized within-class

covariance Tr(� `
W )=Tr(� `

T ) (dotted) and normalized between-class covariance Tr(� `
B )=Tr(� `

T ). From the
normalized plots, we can observe that at a certain layer in the deep classi�er, the between-class covariance
becomes much more signi�cant than the within-class covariance. In all subsequent layers, the within-class
covariance remains a small fraction of the total covariance. These layers can be referred to as the �collapsed�
layers. In Fig. 4, we see that the accuracy of the nearest class center classi�er (NCC) matches the accuracy of
the classi�er in the collapsed layer.
In Fig. 2, we present results showing the convergence of class means to a simplex equiangular tight frame
(ETF) in collapsed layers. Speci�cally, we plot the average value of cos(\ (� `

c � � `
G ; � `

c0 � � `
G )) + 1

C � 1 , its
normalized (by the mean) standard deviation, and the normalized (by the mean) standard deviation of
k� `

c � � `
G k2 in the top, middle, and bottom panels of each sub�gure. We can observe that the class means

approach a simplex ETF in the deepest layers, while in earlier collapsed layers, there may still be some
variability, especially in the case of convolutional neural networks.
In Fig. 3, we investigate the alignment between features and weights across layers. We plot the average of
the cosines of the principal angles between the subspaces spanned by the centered class meansM ` and the
input subspace of the weight matrix W ` . We can observe that the alignment between class means and weight
matrices is strongest in the collapsed layers, and that this alignment is much higher than at initialization,
where the features and weights are essentially random. Moreover, in Fig. 5 we see that in the collapsed layers,
the top C singular values of the weights are nearly equal. These two observations establish NC3. In the case
of residual neural networks, it is interesting to note that the alignment is strongest at layers just before a
residual connection, and that the features within a residual block are not as well aligned with their weights.

5.2 Stable Rank of intermediate features and weights

Having established the conditions of intermediate NC, we further investigate the structure of the weights
and features that are learned in deep networks.
Low rank and near orthogonal weights. In the top row of Fig. 5, we present the singular value spectrum
of the weight matrices/kernels through the layers. We observe that in the collapsed layers of MLPs and
resnets, the topC singular values are signi�cantly larger than the remaining singular values, indicating that
the weights have a low-rank structure. Additionally, these top C singular values are highly concentrated,
indicating that the weights are nearly orthogonal. This structure is less pronounced in the convnet, but
we can still see a concentration of the top singular values. These observations align with the conclusions
in Papyan (2020), which found that the feature class means at di�erent layers are also near orthogonal.
Stable rank of intermediate features. In the bottom row of Fig. 5, we present the results of the stable rank
analysis of the matrix of within-class features centered around their class means H `

c = [ h `
i;c � � `

c]Cc=1 . The
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Figure 1: (NC1) Feature variability suppression: There is a layer in a deep classi�er (vertical green line)
where Tr(� `

W ) (dotted) contributes a smaller fraction to Tr(� `
T ) (solid) than Tr(� `

B ) (dashed). In all
subsequent layers this fraction remains below this threshold, showing feature variability suppression

stable rank, which is a lower bound of the actual rank and can be computed without storing the entire matrix,
is de�ned as kH `

ck2
F =kH `

ck2
2. We can see that the rank of the class features decreases in the collapsed layers,

which is consistent with our observation that in those layers the within-class covariance becomes a smaller
fraction of the total covariance. This is also expected with low-rank weight matrices in these layers, as we can
see in the top row of Fig. 5. In the layers below the top layer, we can see that the rank of the features is very
high. This suggests that the deep network �rst projects the samples into a high-dimensional space, where it
is easier to �nd a classi�cation boundary, and then extracts the most discriminative features to classify the
samples. This �hunchback� structure in the dimensionality of the features was also observed in previous
studies such as Recanatesi et al. (2019); Ansuini et al. (2019), though both of these papers used a nonlinear
measure of dimension to establish this observation.

5.3 Fixing all Collapsed Layers with Simplex ETFs

One implication of neural collapse Zhu et al. (2021) is that the last layer of a deep network can be �xed to a
simplex ETF, without negatively impacting performance. In a similar fashion, we test whether one can �x all
of the collapsed layers to be simplex ETFs and still maintain good performance. In this experiment, we train
the bottom L layers and �x the rest of the 10� L layers to be canonical simplex ETFs (Fig. 6). Speci�cally, the
last layer is set to be a rank C � 1 simplex ETF (for a C class problem), while the layers below are set to be
rank H � 1 simplex ETFs (where H is the width of the network). Namely, the rank K canonical simplex ETF

is
q

K
K � 1

�
I K � 1

K 1K 1>
K

�
. At the last layer we set W >

L =
q

C
C � 1 P

�
I C � 1

C 1C 1>
C

�
where P 2 Rd� C contains

the �rst C columns of a d � d identity matrix, which lifts a C � C ETF to ad � K matrix Zhu et al. (2021). In
Fig. 6 we present the results of this experiment using MLPs on MNIST and FashionMNIST. We observe that
replacing the collapsed layers (layers 7-10) with �xed simplex ETFs does not negatively impact performance,
but replacing non-collapsed layers (layers 2-6) does. This observation suggests that the features learned in
the bottom half of the network are most crucial.
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Figure 2: (NC2) Convergence of class means to a Simplex ETF: We see that as training progressesf � `
c � � `

G g
approach equinorm and maximal equiangularity in the collapsed layers, though this is most clearly achieved
in the layers closest to the output.
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Figure 3: (NC3) Feature-Weight Alignment: In collapsed layers we see feature weight alignment measured
as the average of the cosines of the principal angles between the subspaces. This is signi�cantly above the
alignment between random subspaces (at initialization).
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Figure 4: (NC4) Equivalence to Nearest Class Center (NCC) classi�cation NCC classi�er agrees with f W

in the collapsed layers.
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