Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime).

Tomaso Poggio

1 Center for Brains, Minds, and Machines, MIT

Abstract

I consider here the class of supervised learning algorithms known as Empirical Risk Minimization (ERM). The classical theory by Vapnik and others characterize universal consistency of ERM in the classical regime in which the architecture of the learning network is fixed and \(n \), the number of training examples, goes to infinity. We do not have a similar general theory for the modern regime of interpolating regressors and overparameterized deep networks, in which \(d > n \) as \(n \) goes to infinity.

In this note I propose the outline of such a theory based on the specific notion of stability of the learning algorithm with respect to perturbations of the training set. The theory suggests that for interpolating regressors and separating classifiers (either kernel machines or deep RELU networks)

1. minimizing cross-validation leave-one-out stability minimizes the expected error
2. minimum norm solutions are the most stable solutions

The hope is that this approach may lead to a theory encompassing both the modern regime and the classical one.
Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime).

Tomaso Poggio

July 19, 2020

Abstract

I consider here the class of supervised learning algorithms known as Empirical Risk Minimization (ERM). The classical theory by Vapnik and others characterize universal consistency of ERM in the classical regime in which the architecture of the learning network is fixed and \(n \), the number of training examples, goes to infinity. We do not have a similar general theory for the modern regime of interpolating regressors and overparamerized deep networks, in which \(d > n \) as \(n \) goes to infinity.

In this note I propose the outline of such a theory based on the specific notion of CV\textsubscript{loo} stability of the learning algorithm with respect to perturbations of the training set. The theory suggests that for interpolating regressors and separating classifiers (either kernel machines or deep RELU networks)

1. minimizing CV\textsubscript{loo} stability minimizes the expected error;
2. minimum norm solutions are the most stable solutions; for linear kernel machines the minimum norm minimizer is unique but for deep networks in general it is not.

The hope is that this approach may lead to a theory encompassing both the modern regime and the classical one.

1 Foundations of Learning Theory

Developing theoretical foundations for learning is a key step towards understanding intelligence. Supervised learning is a paradigm in which natural or artificial networks learn a functional relationship from a set of \(n \) input-output training examples. A main challenge for the theory is to determine conditions under which a learning algorithm will be able to predict well on new inputs after training on a finite training set. What should be optimized in ERM to minimize the expected error and, for \(n \to \infty \), to achieve consistency? Ideally, we would like to have theorems spelling out, for instance, that consistency depends on constraining appropriately the hypothesis space.

Indeed a milestone in classical learning theory was to formally show that appropriately restricting the hypothesis space – that is the space of functions represented by the networks –
ensures consistency (and generalization) of ERM. The classical theory assumes that the hypothesis space is fixed while the number of training data \(n \) increases to infinity. Its basic results thus characterize the “classical” regime of \(n > d \), where \(d \) is the number of parameters to be learned. The classical theory, however, cannot deal with what we call the “modern” regime, in which the network remains overparametrized \((n < d)\) when \(n \) grows. In this case the hypothesis space is not fixed.

In trying to develop a theory that can deal with the classical and the modern regime, it seems natural to abandon the idea of the hypothesis space as the object of interest and focus instead on properties of the algorithms. Twenty years ago, while trying to formulate principles of learning beyond ERM (and beyond the use of measures of complexity such as VC dimension, covering numbers and Rademacher numbers), we noted [1] that any supervised learning algorithm is a map \(L \) from data sets to hypothesis functions. For a general theory, we asked: what property must the learning map \(L \) have for good generalization error? The answer was that LOO stability (see [1]) together with CV\textsubscript{loo} stability of the algorithm, both going to zero for \(n \to \infty \) is sufficient for generalization for any supervised algorithm; CV\textsubscript{loo} stability alone is necessary and sufficient for generalization and consistency of ERM. At the time, the surprising connection between stability and predictivity promised a new framework for the foundations of learning theory (see also [2, 3]).

In this paper I sketch how this old proposal may become a learning theory encompassing both the classical and the modern regime for ERM (extensions beyond ERM seem natural but I leave them to future work). I provide several arguments about why low expected error should correspond to stable gradient descent algorithms in the modern regime. In particular, an interpolating algorithm that minimizes a bound on CV\textsubscript{loo} stability should minimize the expected error. Stability optimization may thus provide a unifying principle that could explain, among other properties, the predictivity of deep networks as well as the double descent curve found recently in several learning techniques including kernel machines\(^1\).

1.1 Classical Regime

In the classical setting, a key property of a learning algorithm is generalization: the empirical error must converge to the expected error when the number of examples \(n \) increases to infinity, while the class of functions \(\mathcal{H} \), called the hypothesis space, is kept fixed. An algorithm that guarantees good generalization will predict well, if its empirical error on the training set is small. Empirical risk minimization (ERM) on \(\mathcal{H} \) represents perhaps the most natural class of learning algorithms: the algorithm selects a function \(f \in \mathcal{H} \) that minimizes the empirical error – as measured on the training set.

One of the main achievements of the classical theory was a complete characterization of the necessary and sufficient conditions for generalization of ERM, and for its consistency (consistency requires asymptotic convergence of the expected risk to the minimum risk achievable by functions

\(^1\)One may argue that from the point of view of this proposal, the main role of Tikhonov regularization may be to deal with the pathological situation of \(d = n \), since asymptotically the inverse of the kernel does not exist if \(\lambda = 0 \). Of course, presence of noise (significant SNR) has the effect of requiring regularization also for cases close to \(d = n \).
in \mathcal{H}; for ERM, generalization is equivalent to consistency). It turns out that consistency of ERM is equivalent to a precise property of the hypothesis space: \mathcal{H} has to be a uniform Glivenko-Cantelli (uGC) class of functions (spaces of indicator functions with finite VC dimension are a special case) of uGC.

Our later work [1] showed that an apparently separate requirement – the well-posedness of ERM – is in fact equivalent to consistency of ERM. Well-posedness usually means existence, uniqueness and stability of the solution. The critical condition is stability of the solution. Stability is equivalent to some notion of continuity of the learning map (induced by ERM) that maps training sets into the space of solutions, e.g. $L: Z^n \rightarrow \mathcal{H}$. We recall the definition of leave-one-out cross-validation (in short, CV$_{loo}$) stability under the distribution P_S:

$$\forall i \in \{1, \ldots, n\} \quad P_S \left\{ |V(f_S, z_i) - V(f_{S \setminus i}, z_i)| \leq \beta_{CV}^P \right\} \geq 1 - \delta_{CV},$$

where $V(f, z)$ is a loss function that is Lipschitz and bounded for the range of its arguments and $z = ((x, y)$. CV$_{loo}$ stability of an algorithm measures the difference between the errors at a point z_i when it is in the training set S of f_S wrt when is not.

We proved [2] that For ERM, CV$_{loo}$ stability with β_{CV}^P and δ_{CV} in Equation 1 converging to zero for $n \rightarrow \infty$ guarantees, if valid for all P, generalization and consistency (and is in fact equivalent to them).

Notice that CV$_{loo}$ stability is a weaker requirement than the uniform stability of Bousquet and Elisseeff which is sufficient but not necessary for consistency of ERM in the classical regime. Of course uniform stability implies CV$_{loo}$ stability.

1.2 Modern Regime

Recently, a different regime has been characterized, first in neural networks [4] and then in linear and kernel regression, mainly because of the pioneering work by Belkin ([5], see also [6] and [7, 8, 9, 10, 11, 12]). In this modern regime, both n (the number of training data) and d (the number of parameters) grow to infinity with $\frac{n}{d}$ constant. If $d \geq n$ there may be exact fitting of the training set and the generalization gap does not go to zero. The classical approach – based on the analysis of the hypothesis space to infer asymptotic generalization and then consistency – cannot be used because there is no fixed hypothesis space. However, the notion of stability, which refers to the algorithm and not the hypothesis space, is not affected by this problem. Since in the “classical” regime of fixed hypothesis space and $n \rightarrow \infty$, stability is important, I expect that a similar notion of stability may work in the “modern” high dimensional regime of $\frac{n}{d} < 1$.

The conjecture discussed in this paper is that in both cases, stability remains the key requirement for predictivity. Maximum stability – that is minimum β_{CV}^P – is usually guaranteed during minimization of the empirical loss (that is by ERM) by complexity control under the form of regularization (possibly vanishing, as in the definition of the pseudoinverse or as implicitly provided by iterative gradient descent [13]). As I said earlier, the notion of CV$_{loo}$ stability turns out to be necessary and sufficient for distribution independent generalization and consistency in the classical framework of ERM with a fixed hypothesis space [2, 1]. In the modern regime,
when the empirical error is zero, the definition of CV$_{loo}$ stability seems closely related to the definition of the expected error for interpolating algorithms (under specific data distributions). It is thus natural to conjecture that minimization of stability, in a distribution dependent way, is for ERM a sufficient condition across the classical and the modern regime for minimizing expected error. In the next section I will show that CV$_{loo}$ stability is almost equivalent in expectation to the expected error for interpolating regressors or classifiers. Then I will discuss the separate conjecture that optimizing CV$_{loo}$ stability for overparametrized networks is equivalent to selecting minimum norm solutions.

2 Stability and Expected error

Let us recall the definition in expectation of leave-one-out cross-validation (in short, CV$_{loo}$) stability under the distribution P_S:

$$\forall i \in \{1, \ldots, n\} \ E_S |V(f_S, z_i) - V(f_{S^i}, z_i)| = \beta_{CV},$$

(2)

where $V(f, z)$ is a loss function that is Lipschitz and bounded for the range of its arguments and $z = ((x, y)$). CV$_{loo}$ stability of an algorithm measures the difference between the errors at a point z_i when it is in the training set S of f_S wrt when is not.

We want now to consider the case – typical for overparametrized models – of interpolating regressors or separating classifiers, that is the case in which the regressors or classifiers can usually satisfy $V(f_S, z_i) = 0$, that is they fit the training data under the appropriate loss function (e.g. square loss or classification loss, for instance the function c of 14). The idea is that then the first term in Equation 2 is negligible for specific distributions of the data and CV$_{loo}$ stability becomes essentially equal, in expectation, to the expected loss. This intuition, however, needs to be made rigorous.

To do so, I use the following positivity property of exact ERM [2]

$$V(f_{S^i}, z_i) - V(f_S, z_i) \geq 0.$$

(3)

Then $E_S |V(f_S, z_i) - V(f_{S^i}, z_i)| = E_S[V(f_{S^i}, z_i)] - E_S[V(f_S, z_i)]$

Thus

$$\forall i \in \{1, \ldots, n\} \ E_S |V(f_S, z_i) - V(f_{S^i}, z_i)| = E_S[I_{S^i}] - E_SI_{S}$$

(4)

where I_{S} is the expected error of f_{S^i} and $I_{S}[f_S]$ is the empirical error of f_S. Under specific assumptions on the algorithm and the distribution P_S, the term $E_SI_{S}[f_S]$ can be negligible, as we will see later. In these cases, CV$_{loo}$ stability is indeed equal to $I[f_{S^i}]$. In turn for ERM $I[f_{S^i}]$ converges in probability to $I[f_S]$ for $n \to \infty$. As an example of the $I[f_{S^i}]$ term, consider the case in which V is the square loss and $f_{S^i}(z_i) = W_{S^i}x_i$. Then

$$V(f_{S^i}, z_i) = (W_{S^i}x_i - y_i)^2 = (W_{S^i}x_i - W_Sx_i)^2 = ((W_{S^i} - W_S)x_i)^2$$

(5)
We have

Theorem 1 (very informal) For distributions P_S for which a given regressor (or classifier) has an expected zero empirical error on the training set, CV_{loo} stability in expectation is equivalent to expected error of the regressor (or classifier).

Remark

The same result can be obtained for quasi-ERM, which selects an almost minimizer of the empirical risk, in the limit of $n \rightarrow \infty$ by using the almost positivity property of quasi-ERM.

In the following we consider the expected error term in CV_{loo} stability, effectively assuming that the empirical error is negligible.

3 Stability and Minimum Norm

I conjecture that asymptotically for $t \rightarrow \infty$ the minimum norm solutions have optimum stability among the zero-loss solutions provided by ERM in the overparametrized case. I do not know how to prove this in full generality. It has been proven for kernel machines. I will state it as a conjecture for deep networks. The conjecture is

Conjecture 2 The solutions for f_S satisfying $V(f_S, z_i) = 0$, $\forall i$ that are minimum norm are the most stable.

For later use, I recall the following result, linking minimum norm and maximum margin in the case of classification (see [15]):

Lemma 3

The maximum margin problem

\[
\max_{W_K,..,W_1} \min_n y_n f(W; x_n), \quad \text{subj. to} \quad \|W_k\| = 1, \quad \forall k. \tag{6}
\]

is equivalent to

\[
\min_{W_k} \frac{1}{2} \|W_k\|^2, \quad \text{subj. to} \quad y_n f(W; x_n) \geq 1, \quad \forall k, \quad n = 1, \ldots, N. \tag{7}
\]

The conjecture presents a puzzle. Consider regression under the square loss: in general with large overparametrization we expect several solutions with the same minimum norm. Will they have the same stability and thus the same expected error? Or is an additional property needed, beyond the norm, to characterize the most stable solution?
3.1 Linear Regressors

The first argument is about linear functions \(f_S(z_i) = W_Sx_i \). Fitting the training set provides the set of \(n \) equations

\[
W_S X - Y = 0
\]

(8)

Assume \(W_S \in \mathbb{R}^{1,d} \), \(X \in \mathbb{R}^{d,n} \) and \(Y \in \mathbb{R}^{1,n} \) with \(n < d \). Then there are an infinite number of solutions for \(W_S \) given by \(W_S = XY^\dagger + (I - XX^\dagger)z \) where \(z \) is any vector. The solution of minimum norm is \(W_S = XY^\dagger \).

Let us explain the intuition that the minimum norm solution is the most stable. The minimum norm solution among all the infinite solutions is \(W_S = XY^\dagger \). In the case in which \(S \) is perturbed by deleting one data point we expect the change \(\Delta X \) in \(X \) to be small and decreasing with \(n \). Consider \(W_{SI} = (Y + \Delta Y)(X + \Delta X)^\dagger \). Suppose \(X \) is a \(d,n \) matrix with \(n < d \). Then \(X^\dagger = (X^TX)^{-1}X^T \) and \((X + \Delta X)^\dagger = ((X + \Delta X)^T(X + \Delta X))^{-1}(X + \Delta X)^T \) Let us assume that \(\|\Delta X\| \) is small and \(\|X^T X\|^{-1} \) is large. Let us call \(X^TX = A \) and \(\Delta X = \Delta \).

Then \((X + \Delta)^\dagger \approx (A + X\Delta^T + \Delta X^T)^{-1}(X + \Delta)^T \). Consider \((A + X\Delta^T + \Delta X^T)^{-1} \approx A^{-1} - A^{-1}(X^T \Delta X + \Delta X^TX)A^{-1} \). Thus \((X + \Delta)^\dagger \approx [A^{-1} - A^{-1}(X^T \Delta + \Delta^T X)A^{-1}][(X + \Delta)^T] \). Putting things together and inspecting the various terms shows that \(W_{SI} = W_S + D \) where \(D \) are terms that all contain the factor \(A^{-1} \) and delta factors in either \(X \) or \(Y \) or both. The conclusion is \(\|W_{SI} - W_S\| \approx \|X^T X\|^{-1} \|\Delta X + \Delta Y\| \). In other words, stability depends on \(\|X^T X\|^{-1} \) an therefore on the norm \(\|W\| \). This proof sketch should be cleaned up to show that the minimum norm solution is the most stable solution and vice versa. An obvious observation is that the same argument about the behavior of \(\|X^\dagger\| \) in [16] can be used here. It shows that for random inputs \(X \), \(CV_{loo} \), stability is expected to exhibit a double-descent curve implying a double-descent curve for the expected error.

3.2 Deep Networks

Let us first introduce some notation. We define a deep network with \(K \) layers with the usual coordinate-wise scalar activation functions \(\sigma(z) : \mathbb{R} \rightarrow \mathbb{R} \) as the set of functions \(f(W;x) = \sigma(W^K \sigma(W^{K-1} \ldots \sigma(W^1))) \), where the input is \(x \in \mathbb{R}^d \), the weights are given by the matrices \(W^k \), one per layer, with matching dimensions. There are no bias terms: the bias is instantiated in the input layer by one of the input dimensions being a constant. We consider the case in which \(f \) takes scalar values, implying that the last layer matrix \(W^K \) is has size \(1 \times h_{K-1} \), where \(h_k \) denotes the size of layer \(k \). The weights of hidden layer \(k \) has size \(h_k \times h_{k-1} \). In the case of binary classification which we consider here the labels are \(y \in \{-1, 1\} \). The activation function is the ReLU activation. For the network, homogeneity of the ReLU implies \(f(W;x) = \prod_{k=1}^K \rho_k f(V_1, \ldots, V_K; x) \), where \(W_k = \rho_k V_k \) with the matrix norm \(||V_k||_p = 1 \) and \(||W_k|| = \rho_k \).

There are several ways to show that changes in the weights due to small changes in the training set will be proportional to the norm of the weights. A simple observation goes as follows. In a deep net, the product of the norms in a \(K \)-layer networks is \(\rho_1 \cdots \rho_K \). Since we know that if...
the ρ_k start equal then they grow at the same rate under gradient descent and thus remain equal (see [13]), we assume that the total norm of the network is ρ^K (the argument is valid even if the ρ_k are different). Assume now that the weights of each layer are perturbed because of a change, such as leave-one-out, in the training set. Then the overall norm will change as

$$\rho^K \rightarrow K\rho^{K-1}\Delta\rho,$$

implying that for $V(f, z) = c_\gamma(f(x), y)$ as defined in section 4.2.2 of [17]

$$V(f_{S^i}(x_i) - f_S(x_i)) \leq \frac{1}{\gamma}||f_{S^i}(x_i) - f_S(x_i)||||x|| \leq \frac{1}{\gamma}\rho^{K-1}(\rho - \Delta\rho)$$

Thus minimizing the norm ρ (for a fixed margin) minimizes a bound on $E_S|Vf_{S^i}(x_i) - f_S(x_i)|$, that is on CV_{loo} stability. The same argument is valid for other loss functions such as the square losss.

3.3 A General Approach?

A possibly more general approach to establish that stable solutions are minimum norm and viceversa may rely on the *implicit function theorem* or on the more powerful *constant rank theorem*. The observation is that fitting the training set corresponds to the equation

$$F(X,Y,W) = 0$$

where X^*, Y^* is the training set, W is the set of weights and $F(X,Y,W)$ is a set of n equations for each of the data points (columns of X and Y). Under assumptions of differentiability of F, the interpolating or separating property defines a mapping $W(X,Y)$ in the neighborhood of the solution X^*, Y^*, W^* such that $F(X,Y, W(X,Y)) = 0$ in that neighborhood. Furthermore $\frac{\partial W}{\partial X}$ may be computed in terms of the Jacobian of F and other derivatives. In the case of $F(X,Y,W) = WX - Y$, this approach would then provide $\Delta W(X) \approx \frac{\partial W}{\partial X} \Delta X \approx X^\dagger \Delta X$. Thus

Conjecture 4 (very informal) Using the implicit function theorem, CV_{loo} stability for kernel regressors+classifiers and for deep nets can be bounded by the norm of the weights. Thus minimum norm solutions (xslocally) optimize stability.

3.4 Hard margin SVM

In the case of hard margin linear SVM it is not clear in terms of the classical theory (there are separate arguments, such as the perceptron learning theorem) why one should select the maximum margin solution among all the separating hyperplanes. Our approach provides an answer: one must choose the most stable solutions in order to minimize the expected error, and the most stable solution in the case of hard margin linear SVM is the minimum norm one for margin equal to 1 (which is equivalent to the maximum margin solution, see section in [15] on maximum margin and minimum norm).
3.5 Gradient Descent (GD) and Selection of Minimum Norm Solutions

Until now I have discussed ERM, without discussing the optimization algorithm used for minimization. The summary is that in order to ensure good expected error for interpolating regressors, it is necessary to select the most stable solutions and to do that one needs to select the minimum norm solutions among all the infinite solutions that achieve zero empirical loss. So ERM is not enough by itself in the overparametrized case. However, it turns out that if GD is used to perform ERM, GD will select among the empirical minimizers the ones with minimum norm both in the case of kernel regression ([13]) and of deep networks (in this latter case the loss must be of the exponential type (see [15]).

4 Caveats

In summary, the two main claims of this paper are 1) that minimizing CVloo stability minimizes the expected error and 2) choosing the minimum norm solutions among all the solutions with zero empirical error minimizes stability (locally). This latter claim is proven so far for kernel machines; an outline of a possible proof was given in this paper for deep networks under exponential-type losses.

It is now important to derive more formal bounds for both the case of kernel regressors and the case of deep networks. Two papers in preparation will [18, 19] describe those results.

5 Conclusions

In summary, optimization of CVloo-type stability minimizes for \(n \to \infty \) the expected error in both the classical and the modern regime of ERM. It is thus a sufficient condition for predictivity in ERM (but probably beyond ERM, see [11]).

In the classical regime, stability implies generalization and consistency. In the modern regime, stability probably explains the double descent curve in kernel interpolants [13] and why maximum margin solutions in deep networks trained under exponential-type losses may minimize expected error (this does not mean they are globally optimal), see [19].

Conditions for learnability and stability in learning theory may have deep, almost philosophical, implications: as remarked by V. Vapnik, they can be regarded as equivalent conditions that guarantee any scientific theory to be predictive and therefore 'scientific'. The condition coming from classical learning theory corresponds to choosing the theory from a fixed “small” set of theories that best fit the data. The condition prescribed by the modern theory corresponds to choosing a theory from a “large” hypothesis set (that can even increase before new data arrive) that fits the data and is simplest (Occam razor, Einstein). These two conditions can be summarized and unified by the principle of selecting the most stable theory — the one that most of the time changes the least if data are perturbed or when new data arrive. Thus Thomas Kuhn scientific revolutions are allowed, as long as they do not happen too often!
Acknowledgments We thank Gil Kur, Andy Banbuski, and especially Silvia Villa and Lorenzo Rosasco. This material is based upon work supported by the Center for Minds, Brains and Machines (CBMM), funded by NSF STC award CCF-1231216, and part by C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA. This research was also sponsored by grants from the National Science Foundation (NSF-0640097, NSF-0827427), and AFSOR-THRL (FA8650-05-C-7262).

Correspondence Correspondence and requests for materials should be addressed to T.Poggio (email: tp@ai.mit.edu).

References

