
CBMM Memo No. 114 July 24, 2022

From Associative Memories to Deep Networks

Tomaso Poggio

Abstract

Associative memories were implemented as simple networks of threshold neurons by Willshaw
and Longuet-Higgins in the ’60s. Today’s deep networks are quite similar: they can be regarded as
approximating look-up tables, similar to Gaussian RBF networks. Thinking about deep networks as
large associative memories provides a more realistic and sober perspective on the promises of deep
learning.

Such associative networks are not powerful enough to account for intelligent abilities such as lan-
guage or logic. Could evolution have discovered how to go beyond simple reflexes and associative
memories? I will discuss how inventions such as recurrence and hidden states can transform look-up
tables in powerful computing machines.

In a more recent update I will outline a framework describing how deep networks may work, in-
cluding transformers. The framework is based on proven results plus a couple of conjectures – still
open.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

From Associative Memories to Deep Networks

Tomaso Poggio

Abstract
Associative memories were implemented as simple networks of threshold neurons by

Willshaw and Longuet-Higgins in the ’60s. Today’s deep networks are quite similar: they can
be regarded as approximating look-up tables, similar to Gaussian RBF networks. Thinking
about deep networks as large associative memories provides a more realistic and sober
perspective on the promises of deep learning.

Such associative networks are not powerful enough to account for intelligent abilities such
as language or logic. Could evolution have discovered how to go beyond simple reflexes and
associative memories? I will discuss how inventions such as recurrence and hidden states can
transform look-up tables in powerful computing machines.

1 Introduction
The starting observation is that associative memories such as Willshaw nets and most deep
networks are essentially look-up tables that, depending on hyperparamers, may be able not
only to retrieve training examples but also to perform some simple interpolation among similar
training examples – called generalization in machine learning. I will argue that associative
memories of this kind are not powerful enough to underlie the intelligence needed in language and
logic and ask how evolution may have discovered the step beyond memory towards intelligence.
In particular, I will describe a way, among many other possibilities, to transform a look-up table
into a powerful computing machine..

2 Willshaw Nets
Holograms store information in the form of an optical interference pattern recorded in a pho-
tosensitive optical material. Light from a single laser beam illuminates a noise-like reference
image (originally generated from ground glass) as well as the pattern to be stored, yielding an
interference pattern stored in the hologram. Many thousand such pairs of associations can be
recorded on a single hologram. Each stored data can then be read-out from the hologram by
using as input its associated reference pattern.

An associative memory AX,Y can be modeled as a one layer “shallow” network [1] storing the
correlation matrix between input and output. Figure 1 shows the training phase of the network.
In the read-out phase, the output y can be retrieved by inputting the associated x into the

1

Figure 1: A original figure from Willshaw et al. [1] showing an associative memory network.
The matrix of connections correspond to the matrix W of weights in a shallow network, that is
a = Wb where a and b are the output and the input vectors respectively and W is the matrix of
weights. In the text we use y instead of a and x instead of b.

2

network, that is by computing AX,Y ◦ x (Willshaw computed R ◦AX,Y ◦ x where R represents a
set of thresholds on the outputs to improve accuracy retrieval in a otherwise linear network).

The basic intuition is explained by a simple linear model. Suppose that we want to associate
each pattern yn, n = 1, · · · , N to a noise-like key vector xn, where x, y ∈ RD and in this
simple example N = D. The noise-like assumption on the xn is equivalent to assuming that
XTX ≈ I, where X is the matrix of all the inputs (xn are the columns of X). The optimal
least-square solution of the equation AX = Y is A = Y XT if the columns or the rows of X
are orthonormal. Thus, to retrieve yi, it is sufficient to input the key xi to the network and
get Axi ≈ yi,jδi,j = yi. In dealing with binary vectors, this linear associative network can be
improved by using thresholds to clean up the output as Willshaw did.

2.1 Networks: shallow, deep and recurrent

Willshaw experimented “de facto” with multilayer networks when he found that a recurrent
version of his one layer network performed quite well. In any case, this is still a one layer network,
quite different from modern multilayer networks. It turns out that Willshaw experimented “de
facto” with multilayer networks when he found that a recurrent version of his one layer network
performed quite well. As he reported “...it was found by computer simulation...that the initial
response to a given cue could be improved by feeding the output back into the associative net
and continuing until the sequence of outputs so generated converged onto a single pattern...”.
Furthermore, “The same "cleaning-up behavior" was seen when patterns were stored in sequence.
Pattern A was associated with B. B with C. C with D. and so on, the last pattern being stored
with A. When a fragment of A was used as a cue and then the output used as the next input,
after a few passes the sequence of retrieved patterns converged onto the stored sequence, even
when the initial cue was a very poor representation of one of the stored patterns. Simulation
experiments were performed to see what cycle of outputs would result from any arbitrarily selected
cue. (Because each input determines the next output and there is only a finite number of possible
outputs, the sequence of outputs must eventually lead into a cycle.)..” Of course a recurrent
network is just a multilayer network with shared weights across different layers[2]. In any case, the
ideas of single layer as well as recurrent associative networks – as well as their implementations –
were alive and well fifty years ago!

Let us now consider a deep network written as

f(x) = (VLσ(VL−1 · · ·σ(V1x))) (1)

where sigma is the RELU nonlinearity. The equation can also be rewritten as

f(xj) = VLDL−1(xj)VL−1 · · · · · ·Vk+1Dk(xj)Vk · · ·D1(xj)V1xj (2)

where Dk(xj) is a diagonal matrix with 0 and 1 entries depending on whether the corresponding
RELU is active or not for the specific input xj , that is Dk−1(xj) = diag[σ′(Nk(xj)] with Nk(xj)
the input to layer k.

3

The claim is that deep and recurrent networks can be regarded as stacked associative one-layer
networks of the Willshaw type and they perform the same basic computation, just a bit more
than a look-up table. In this view depth and recurrence increase retrieval performance but do
not change the computational power.

This conclusion is reinforced by the following argument. An example of an “interpolating”
look-up table is a RBF network with Gaussian units (see Figure 2.1). A Gaussian unit computes

e−
(x−xi)

2

σ2 where xi is the “center” of unit i. Increasing σ changes the network from a look-up table
kind of memory, that recognizes only the training data, to a “learning” system that combines a
few examples similar to each other and thus “generalizes”. It turns out that under certain training
conditions (e.g. starting with “largish” norms for the matrices weights) a deep network converges
to a set of weight matrices that corresponds to a standard kernel machine with the so called NTK
kernel[3], which is quite similar[4] to a radial kernel of the Laplacian type. A similar message –
many neural networks are similar to look-up tables – is conveyed by the tale of NetTalk, one of
the very first success stories of neural networks in the 80s. NETtalk learned to pronounce written
English text by being shown text as input and matching phonetic transcriptions for comparison.
After the initial claims it turned out that a nearest-neighbor classifier could do as well. The
boundary between associative networks – shallow or deep — and learning networks is very thin,
since the underlying machinery is very much the same and the difference is just in parameter
values.

3 Evolution: from associative memories to computing machines?

3.1 Look-up tables cannot support the kind of intelligence required for lan-
guage and logic

Clearly human intelligence is not just one associative memory. Thus intelligence is not just one
deep learning network trained end-to-end. Even if we accept that associative networks are an
important part of how we think, from visual and speech recognition to Kahneman’s System One,
we still have to explain System Two which is more deliberative, and more logical.

3.2 From memory to powerful computing machines

The question then is: is it possible to build powerful computing machines from a set of look-up
tables? A positive answer would make easier to understand how intelligence may have evolved
from simple associative reflexes.

It turns out that a finite state machine (think of it as a Turing machine that can run only T
steps) can be synthesized from associative modules containing the instruction set of the machines,
that is a memory mapping states and inputs into states and outputs. From this point of view a
recurrent network with state variables is a finite state machines with the weights representing
the look-up table with the program. Thus it may have been quite easy for evolution to go
from associative modules to computing machines. Another direction, among the many schemes
equivalent to the finite state machine, is to think of recurrent associative networks as the basis

4

VIEW ANGLE

implies

Radial Basis Function networks

X1

f

Xl

equivalent to

Figure 2: A kernel machine with Gaussian radial basis functions is a look-up table for very small
standard deviation of the Gaussian kernel. It is an approximating look-up table otherwise.

5

memory network

xt

xt+1

st

st+1

Te 2 tricks

Figure 3: A recurrent network consisting of one (or more) associative memory layers that map
inputs and state x(t), s(t) into outputs and new state x(t+ 1), s(t+ 1) is the core of a computing
machine roughly equivalent to a finite state machine.

for computational capabilities similar to the Lambda calculus and LISP, along the lines described
by Plate in his Holographic Reduced Representations[5].

At this point there are several questions we may be tempted to ask. Is the intelligence of
a honeybee explainable in terms of a finite state machine? Did evolution discover the trick to
a universal computing machine? Were a number of primitive routines implemented in fixed
neural circuits? How did flexible calling of routines evolve? Did this step involve the ability to
flexibly copy synaptic weights? There may be a more or less fixed set of routines and intelligence
may have evolved the ability to use them in more and more complex program. Was language
the key in this discovery or merely one of its main results? Are internal simulations a way to
develop or learn new programs, for instance using virtual worlds the way Deep Mind has done
with AlphaZero? And how did the ability to transmit information to future generations increase
human intelligence1?

The challenge for neuroscience is to find out which circuits underly our intelligence and how
are they different with respect to associative networks. I regard this as the core problem in our
present quest to understand human intelligence and replicate it in machines.

1And the illusions we have about it.
6

4 Theoretical Framework: How Deep Nets May Work
I propose here in July 2022a theoretical framework that aims to explain how deep networks work
as well as they do and what are the properties of different architectures.

The key assumption is about the world, that is about the tasks that networks can learn. The
assumption -let me call it the PL thesis – is that all learnable functions must have a representation
with the property of compositional sparsity, that is they can be represented as compositional
functions with a function graph comprising constituent functions with a bounded – and "small" –
dimensionality. The assumption is justified by a theorem stating that all efficiently computable
functions are compositionally sparse.

• Theorem 1 For functions that are compositionally sparse, approximation is possible
without incurring in the curse of dimensionality.
In the overparametrized square loss case, generalization depends on solving a sort of
regularized ERM, that consists of finding minimizers of the empirical risk with zero loss,
while selecting the one with lowest complexity. Recent work has provided theoretical and
empirical evidence that this can be accomplished by SGD (with norm regularization under
the square loss or without regularization under an exponential loss). The conjecture is
then that this optimization problem can be solved if the graph of the underlying regression
function

1. is known and
2. takes the form of a sparse graph, such as, for instance, a convolutional network.

A further conjecture is that for dense networks the same problem cannot be solved using
`2 minimization. Sparsity must be explicit in the architecture of the network for `2
minimization to work.

• The second part of our framework is about the case of unknown function graph and sparsity
constraints in optimization. I propose the conjecture that when the sparse graph structure
of the underlying regression function is not known, optimization with sparsity constraints
such as `0 or `1 is needed. In particular, two situations should be considered. The main
one is focused on transformers, the second on dense networks under sparsity constraints.
For transformers the claim is that the self-attention layer finds a sparse representation of
the input in a way similar to `0 minimization, assuming its existence. I will show that
the stages of self-attention and MLP with normalization and residual connections can be
seen as an iteration of IHT followed by an iteration of a one-layer MLP. The first set of
iterations implements sparsity on y = f(HD(X̄(X̄)T) where HD(x) = xH(x) with H being
a threshold on x. The second is a multilayer dense network – or a recurrent dense net – on
a sparse input.
For dense networks it is known that a CNN-like inductive bias can be learned from data
and through training by using a modified `1 regularization. Consistent with this empirical
finding, pruning of a dense network by using iterative magnitude pruning (IMP) also works.

7

In summary, the claim is that sparsity of the underlying regression function is the key
assumption in machine learning. Sparsity then leads to sparsity-biased optimization techniques
during optimization. This is the case of transformers. `2 techniques however can be used when
the sparsity is known and implemented in the architecture of the network.

4.1 Selfattention selects a sparse support

What does self-attention do? We claim it finds a sparse representation of the input in a way
similar to l0 minimization. The transformers layers without MLP but with layer normalization
and residuals are similar to iterations of IHT (Iterative Hard Thresholding), implementing sparsity
by regressing on y = f(HD(X̄(X̄)T) where HD(x) = xH(x) where H is a (soft) threshold on x.
A connection with associative memories may be found via the RIP property that is imposed on
X via the matrices Q,K – that is HD(XWQW

T
KX

T) should show RIP – and that corresponds to
the “noiselike” signals of holographic memories.

In summary, we address the question of how do transformers deal with unknown function
graphs. We propose that 1) they assume that the underlying function depends on an unknown
subset of the input variables and is thus sparse (in fact compositionally sparse) and 2) they solve
the constrained `0 problem

min||x||0 s.t. b = Ax+ ε (3)

by finding x and at the same time the matricesWQ andWK such that A = QKT , with Q = XWQ,
K = XWK , has the RIP property.

Furthermore our claim is that they do that by implementing a greedy sparsity algorithm of
the Iterative Hard Thresholding type through several of the transformer layers (self-attention
and MLPs) with residual connections.

4.1.1 Sparse solutions of Ax = y

In linear algebra, the restricted isometry property (RIP) characterizes matrices which are nearly
orthonormal, at least when operating on sparse vectors. The concept, which is a formalization of
the old concept of noiselike" signals used in the context of holographic memories, was introduced by
Emmanuel Candès and Terence Tao. It has been shown that with exponentially high probability,
random Gaussian, Bernoulli, and partial Fourier matrices satisfy the RIP property with a number
of measurements nearly linear in the sparsity level.

Let A be an m × p matrix and let 1 ≤ s ≤ p be an integer. Suppose that there exists a
constant δs such that, for every m× s submatrix As of A and for every s-dimensional vector y,

(1− δs)||y||22 ≤ ||Asy||22 ≤ (1 + δs)||y||22. (4)

Then, the matrix A is said to satisfy the s-restricted isometry property with restricted isometry
constant δs. This condition is equivalent to the statement that for every m× s submatrix As of
A we have

8

||(As)TAs − Is×s||2 ≤ δs. (5)

where Is×s is the identity matrix and || · ||2 is the operator norm. Finally this is equivalent to
stating that all eigenvalues of are in the interval [1− δs, 1 + δs].

4.1.2 Iterative hard thresholding

The iterative hard thresholding algorithm is an iterative algorithm to solve the rectangular system
Az = y, knowing that the solution is s-sparse. We shall solve the square system ATAz = AT y
instead, which can be interpreted as the fixed-point equation

z = (Id −AT)z +AT y. (6)

Classical iterative methods suggest the fixed-point iteration xn+1 = (Id − ATA)xn + AT y.
Since we target s-sparse vectors, we only keep the (Id −ATA)xn +AT y = xn +AT (y −Axn) at
each iteration. The resulting algorithm reads as follows:

xn+1 = HD(xn +AT (y −Axn)) (7)

4.1.3 Transformers

4.2 K, Q, V

X ∈ RT,din ; Q = XWQ with WQ ∈ Rdin,dk ; K = XWK with WK ∈ Rdin,dk ; V = XWV with
WV ∈ Rdin,dout

The matrix XWQW
T
KX

T ∈ RT,T can be a RIP matrix with appropriate choices of WK ,WQ.
Notice that the standard formulation of the transformer layers can be written as

y = x+MLP (LayerNorm(x+Attention(LayerNorm(x)))

.
This implies that the sparsity function and the nonlinear association are intertwined. There

is however a parallel formulation with similar empirical performance (see PALM paper) which
can be written as

y = x+MLP (LayerNorm(x)) +Attention(LayerNorm(x))

which is easier to analyze in our framework

4.2.1 Self-attention and IHT

For our goals consider the equation Ax = y. Computes as a first approximation x1 = HD(AT y),
assuming A is a RIP matrix and thus AAT ≈ I. This gives ATAx ≈ AT y. Thus x ≈ HD(AT y).
This is the first step in the iteration. HD(x) is the Donoho soft threshold HD(x) = xH(x), where
H is the Heaviside step function.

9

Self attention in the first layer computes H(XQKTXT)XWV this is a slight extension of
Donoho soft-thresholding (because of WV).

The iterations in IHT correspond to successive layers in a transformer (it is important for
this interpretation that there are residual connections).

4.2.2 Pruning

We remark that dense networks cannot learn convolution under L2 minimization but can under
L1 minimization. In particular, the possibility of learning CNN-like inductive bias from data
and through training was investigated in Neyshabur (2020). It was shown that training using
a modified L1 regularization is a way to induce local masks for visual tasks. Consistent with
this finding, pruning of a dense network by using iterative magnitude pruning (IMP) on FCNs
trained on a low resolution version of ImageNet uncovers [?] sub-networks characterized by
local connectivity, especially in the first hidden layer, and masks leading to local features with
patterns very reminiscent of the ones of trained CNNs. Notice that IMP is an iterative algorithm
that converges under appropriate conditions to L0 minimizers.

This is similar to our results on pruning: enforcing sparsity during training leads to structures
characterized by locality. d’Ascoli et al. (2019) studies the role of CNN-like inductive biases by
embedding convolutional architectures within the general FCN class. It shows that enforcing
CNN- like features in an FCN can improve performance even beyond that of its CNN counterpart.
Finally, Tolstikhin et al. (2021) shows that by considering a particular multilayer perceptron
architecture, called MLP-mixer, some of the CNN features can be learned from scratch using a
large training dataset.

Acknowledgments I am grateful to to Ron Rivest, Santosh Vempala and Owen Kunhardt
for useful comments. This material is based upon work supported by the Center for Minds,
Brains and Machines (CBMM), funded by NSF STC award CCF-1231216, and part by C-BRIC,
one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored
by DARPA.

10

References
[1] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory.

Nature, 222(5197):960–962, 1969.

[2] Q. Liao and T. Poggio. Bridging the gap between residual learning, recurrent neural networks and
visual cortex. Center for Brains, Minds and Machines (CBMM) Memo No. 47, also in arXiv, 2016.

[3] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
Exact Computation with an Infinitely Wide Neural Net. arXiv e-prints, page arXiv:1904.11955, April
2019.

[4] Ronen Basri, Meirav Galun, Amnon Geifman, David Jacobs, Yoni Kasten, and Shira Kritch-
man. Frequency Bias in Neural Networks for Input of Non-Uniform Density. arXiv e-prints, page
arXiv:2003.04560, March 2020.

[5] T Plate. Holographic reduced representations: Convolution algebra for compositional distributed
representations. International Joint Conference on Artificial Intelligence, pages 30–35, 1991.

[6] A. Rahimi and B. Recht. Random features for large-scale kernel machines. NIPS, pages 1177–1184,
2007.

[7] T. Poggio and W. Reichardt. On the representation of multi-input systems: Computational properties
of polynomial algorithms. Biological Cybernetics, 37, 3, 167-186., 1980.

[8] Tim Salimans and Diederik P. Kingm. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. Advances in Neural Information Processing Systems,
2016.

[9] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[10] G Palm. On associative memory. Biological Cybernetics, 36:19–31, 1980.

[11] T. Poggio and Q. Liao. Generalization in deep network classifiers trained with the square loss. CBMM
Memo No. 112, 2019.

[12] Paulo Jorge S. G. Ferreira. The existence and uniqueness of the minimum norm solution to certain
linear and nonlinear problems. Signal Processing, 55:137–139, 1996.

[13] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Theory I: Why and when can deep -
but not shallow - networks avoid the curse of dimensionality. Technical report, CBMM Memo No.
058, MIT Center for Brains, Minds and Machines, 2016.

[14] H.N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory perspective.
Analysis and Applications, pages 829– 848, 2016.

[15] H. N. Mhaskar"and T. Poggio. Function approximation by deep networks, 2020.

[16] T. Poggio, F. Anselmi, and L. Rosasco. I-theory on depth vs width: hierarchical function composition.
CBMM memo 041, 2015.

11

[17] Christos H. Papadimitriou, Santosh S. Vempala, Daniel Mitropolsky, Michael Collins, and Wolfgang
Maass. Brain computation by assemblies of neurons. Proceedings of the National Academy of Sciences,
117(25):14464–14472, 2020.

[18] T Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 19(4):201–209, 1975.

[19] Y. Han, G.Roig, G. Geiger, and T. Poggio. Scale and translation-invariance for novel objects in
human vision. Scientific Reports, 10(1):1411, 2020.

[20] Adi Shamir, Odelia Melamed, and Oriel BenShmuel. The dimpled manifold model of adversarial
examples in machine learning. CoRR, abs/2106.10151, 2021.

[21] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg,
and Ian J. Goodfellow. Adversarial spheres. CoRR, abs/1801.02774, 2018.

[22] Partha Niyogi, Federico Girosi, and Tomaso Poggio. Incorporating prior information in machine
learning by creating virtual examples. Proceedings of the IEEE, 86:2196 – 2209, 12 1998.

[23] Zhiyuan Li, Yi Zhang, and Sanjeev Arora. Why are convolutional nets more sample-efficient than
fully-connected nets? CoRR, abs/2010.08515, 2020.

[24] Eran Malach and Shai Shalev-Shwartz. Computational separation between convolutional and fully-
connected networks. CoRR, abs/2010.01369, 2020.

[25] W. Reichardt, T.Poggio, and K. Hausen. Figure-ground discrimination by relative movement in the
visual system of the fly ii: towards the neural circuitry. biol. cybern. 46, 1-30. Biological Cybernetics,
46:1–30, 01 1983.

12

5 Appendix: old and new remarks, some related to the subject
of the memo

5.1 Observations about depth

The solution of AX = Y with X ∈ RD,N is A = Y X† = Y (XTX)−1XT . When D > N
X†X = I with the matrix I ∈ RN,N 2. Thus A = Y X† is always the optimal solution in the
least square sense of AX = Y . This also implies that minimization of square loss in a one layer
network with weights W over a training set X,Y has a minimum for W = Y X†. For D ≥ N ,
the optimal solution for W2 in a 3-layer network with W1 = XT and W3 = Y is W2 = (XTX)−1.
Interestingly, the computation of W2 could also be learned by a recurrent network that may be
easier to train (see Appendix).

So far I have described linear networks. The RELU nonlinearity after unit summation can be
added as follows. Let us assume a deep network written as

f(x) = (VLσ(VL−1 · · ·σ(V1x))) (8)

where σ(x) = σ′(x)x, which captures the homogeneity property of the RELU activation. The
equation can be rewritten for each training example as

f(xj) = VLDL−1(xj)VL−1 · · · · · ·Vk+1Dk(xj)Vk · · ·D1(xj)V1xj (9)

where Dk(xj) is a diagonal matrix with 0 and 1 entries depending on whether the corresponding
RELU is active or not for the specific input xj , that is Dk−1(xj) = diag[σ′(Nk(xj)] with Nk(xj)
the input to layer k.

The presence of theD(x) matrices makes the network more powerful in terms of approximating
any continous functions instead of just linear functions. It also requires more than the simple
linear analysis described above.

Remarks

• Consider instead of Wi,j = (XTX)i,j the choice

Wi,j = K(xi, xj) =
∞∑
`

λ`φ`(xi)Φ`(xj) = ΦT (xi)Φ(xj) (10)

where the (possibly infinite) column vector Φ is Φ(x) = λ
1
2
i φ`(x) and the λ` are the

eigenvalues of the integral operator associated with K. A shift-invariant kernel such as
the Gaussian kernel has φ`(x) which are orthonormal Fourier eigenfunctions. It can be
approximated by random Fourier features e−iωx with ω drawn from a Gaussian distribution
[6].

2In the case of D < N the solution A = Y X† with X† = XT (XXT)−1 is still the best in the optimal square
sense.

13

Figure 4: Setting K = I−XTX allows the recurrent network as well as its unrolled deep network
counterpart to compute (XtX)−1.

• The “holographic” scheme of using a “noiselike” key vector associated with a signal is
almost exactly the algorithm at the core of spread spectrum CDMA techniques used to
encode and decode cell phones communication.

5.2 ResNets

Assume that the weight matrix of the recurrent network is learned to be

W2 = (I −XXT), ∀i = 1, · · · , L− 1., (11)

Since division of operators can be approximated by its power expansion, that is I
I−K = (I +K +

K2 + · · ·), a recurrent network as shown in Figure 4 computes (I −K)−1. If K = I −XXT , the
recurrent network computes (XXT)−1. Alternatively, a recurrent network can be replaced by a
deep residual network (ResNet) of L−1 layers with the sameK (see Figure and [7, 2]. Convergence
requires the condition ||XXT − I|| < 1, which is usually satisfied if the weight matrices are
normalized (for instance by weight normalization[8] or indirectly by batch normalization[9]).
Estimates about retrieval errors in such associative memories and ways to reduce them by using
thresholds are given in [1, 10].

Thus training a recurrent network under the square loss on a training set (X,Y) by unrolling
it in L layers and imposing shared weights for the first L − 1 layers should converge to the
solution suggested by Equations.

14

Remarks

• The convergence of a recurrent network for L→∞ – where L is the number of iterations – is
guaranteed by Brower’s fixed point theorem if the operator Tz = Wz is non-expansive, that
is if ||Tx−Ty|| ≤ ||x− y||. The fact that the operator corresponding to the transformation
of each layer of the network is non-expanding follows from the fact that ||Wz|| ≤ ||W ||||z||,
assuming that ||W || = 1 because of batch normalization(BN) (see [11] for the importance
of BN). Notice that this holds for linear networks but also for networks with RELU
nonlinearities. If the inputs x satisfy ||x|| ≤ 1 the set of fixed points of T contains a unique
minimum norm element (see [12])

• Deep networks with L− 1 layers of identical input and output dimensionality and shared
weights across layers are equivalent to a one-layer recurrent network run for L−1 iterations.
Empirically it seems[2] that non-shared weights give a small advantage despite the much
larger number of parameters with respect to equivalent shared-weights networks. It is
unclear why it is so. From this perspective, multiple layers may be required only to exploit
the blessing of compositionality[13, 14]. In other words, depth main purpose may be to
implement graphs where the nodes compose different functions3.

5.3 Deep learning and signal processing

• The old associative networks assumed noise-like inputs that are approximately orthogonal
(like in the original concept of holography implementing an associative memory), that
is xTi xj = δi,j . A recent analysis [11] of deep network trained under the square loss
identifies a bias towards orthogonality induced by normalization techniques such as batch
normalization. Quasi-orthogonality makes it easy to invert a deep network as it is required
in an autoencoder. Notions related to random projections and the Johnson-Lindestrauss
lemma may also be relevant.

• The architecture of conv-nets, that is deep convolutional networks reflects a specific type of
Directed Acyclic Graph (DAG). It turns out that all functions of several variables can be
decomposed according to one or more DAGs as compositional functions, that is functions of
functions[14]. Often such decompositions satisfy a hierarchical locality condition: even if the
dimension of the overall function is arbitrarily high, the constituent functions are of small,
bounded dimensionality. For these functions and these decompositions, approximation
theory proves[14] that deep networks reflecting the underlying compositional DAG can
avoid the curse of dimensionality, whereas shallow networks cannot. Convolutional networks
are an example of this (locality of the kernel rather than weight sharing is the key property
in avoiding exponential complexity, see [15]). Not accidentally, convolutional networks
represent one of the main success stories of deep learning. Thus the main reason for deep
networks as opposed to shallow, recurrent networks may in fact be to escape the curse of

3Often this implies some kind of “pooling” (even just by subsampling)

15

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

Figure 5: The figure shows the graph of a function of eight variables (f : R8 → R)) with
constituent functions of dimension two.

dimensionality by exploiting compositionality, which can use (to reduce number of units)
subsampling or “pooling”, that is stages at which the outputs of constituents functions
undergoes aggregation , as in Figure 5.

• Compositional architectures can be regarded as reflecting iterated functional relations of
the kind “compose parts” as in f(x1, x2, x3) = f1(f2(x2, x3), f3(x3)), where f1 reflects the
composition of f2 and f3 and f2 composes x1 and x2. A deep associative network of this
type is then closely related to what is called “hierarchical vector quantization (VQ)”[16].
The similarity is especially strong if we assume weight matrices that are derived from
RBF kernels. This corresponds to memorizing, at the lowest level, the association of
basic features and then the association of their associations (think of hierarchical JPEG
encoding)4.

• The claim that deep networks are quite similar to “linear” RBF networks is supported by
recent results[3] on the Neural Tangent Kernel (NTK). It turns out that under certain
training conditions (e.g. starting with “largish” norms for the matrices weights) a deep
network converges to a set of weight matrices that corresponds to a standard kernel machine
with the NTK kernel. Furthermore, classification performance is quite good – though
not the best possible – and the NTK itself is equivalent[4] to a classical RBF kernel, the
Laplacian.

• An alternative to deep networks as models of the brain are neural assemblies. The idea
received new life from some recent very interesting work [17]. The obvious question is about

4Starting from a small number of primitive features, there is a hierarchy of more complex features each one
being an association of simple features. If the simple features are stored then only some of the more complex ones
– only the ones which are used – need to be stored as associations. This is similar to a dictionary storing only some
of the infite number of words that may be created from a finite alphabet of letters.

16

connections between neural assemblies and associative memories. As Santosh Vempala
says “Certainly our work on assemblies can be viewed as closely related to RNNs, with the
following remarks

1. the nonlinearity is a k-cap: only the top k neurons fire in each round of the RNN.
2. the training algorithm is Hebbian plasticity

And yet, assemblies emerge, with small overlap for distinct stimuli, and allow for pattern
completion.“

• If deep networks are just a way to associate inputs xi to outputs yi with the ability to
interpolate among them, there may be simpler way to achieve this goal, without an expensive
optimization stage to find the weights Wk. An idea is to combine circular convolution [5]
with kernel based dot products.

6 Replacing Backpropagation with layer-wise training and local
learning rules

We consider the option to train one layer at the time, keeping fixed all other layers. We start
by assuming for simplicity that yn has the same dimension D as xn n = 1, · · · , D and thus
for all layers of the network. The process starts with one layer network in which the first layer
W 1
i,j are randomly initialized with mean zero and unitary Frobenius norm. Then the weights

are optimized to minimize the error
∑
||`1n||2 =

∑
n ||σ(W 1xn) − yn||2; GD is one option for

optimization. Then a second layer is added, together with a skip connection from the first layer
to the output. The second layer is optimized by minimizing

∑
n ||σ(W 2(σ(W 1xn))− `1n||2 over

the weights W 2. The process is repeated until the last layer L which gives the oupt of the full
network (without skip connections) output WL(· · · (σ(W 2(σ(W 1x))). At each step one finds the
best corrections of the form σ(W k · · · (σ(W 1xn)) to the previous optimal network. Once the final
layer L is added, the first layer is optimized again to minimize the current residual error. Then
the first layer is fixed and the second is optimized and so on. Mutatis mutandis the proof of
Theorem 4.2 in [18] should apply here showing that the iterative minimization process should
converge to a limit estimator which is the optimal L2 estimator in the class of polynomials with
the same degree and monomials as the full network. Notice that minimization at each stage is
linear in the weights and can be achieved by gradient descent.

6.1 Invariance in Deep Learning and in Cortex

To simulate the psychophysics experiment of [19], I think a good way is the following:

• run image of the target face i through a deep net pretrained with ImageNet (the face is at
a scale within a range of scales); keep last layer activities (before classifier) Mi.

17

• run image of the test face k (same face or different face at a range of scales); keep activity
of last layer Tk.

• train binary classifier on Mi, Tk with correct output reflecting identity (+1 if same, −1 if
different) , invariant to scale over a training set of M,T .

The idea is that the classifier will pick up invariant features (for equivariant features tk and
for transformations gi, it should learn to pick up or compute an invariant

∑
i σ(gitk)).

Probably good to start with 1) standard pretrained ImageNet network, 2) linear classifier.
This can be changed later if necessary. The linear case will train a linear classifier g on top of
one or more of the top layers of a pretrained deep net f , where f is a vector of activities. The
classifier is given by g(f(x), f(z)) = A(f(x), f(z)). The task is to learn A using a training set of
images xi, i = 1, · · · , N and transformed images Txi where T is a legal transformation such as
scaling, rotation, affine and their combination. The training set consists of a large (>> N) set of
input-output examples where the input is (f(xi), f(T kxm)) and the output is 1 if xm = xi and
−1 otherwise.

6.2 Conjecture: Human Robustness to Adversarial Examples

The puzzle is not that adversarial examples exist. Several general underlying mechanisms
have been suggested (see for instance [20, 21]), all based on the high dimensionality and
overparametrization of the classifiers. The real puzzle is why human vision seems largely immune
to the adversarial attacks that affect deep networks. My current conjecture follows from the
widespread intuition that human vision disregards perturbations that are not natural or common.
For instance Shamir writes “...through a combination of millions of years of evolution and
individual experience during the first few years of life (during which the baby is only exposed to
natural images), the human visual system had learned to recognize large parts of the manifold of
natural images, which includes regions consisting of faces, animals, landscapes, etc. Once the
visual system learns this low dimensional manifold, it can perform a projection of any given image
to this manifold during its processing.” So far, however, this idea does not explain how the visual
system learns the manifold of natural images and does not provide a solution to the problem of
adversarial attacks. Shamir writes “However, at the moment we do not know how to define this
manifold with sufficient precision.” My conjecture, if correct, provides an answers. The conjecture
says that the manifold of natural images can be characterized by a large set of images – say
an ImageNet database – and invariances to several natural transformations: translation, affine
transformations (e.g. scaling, small rotation, stretch etc.), blurring, contrast and illumination
changes. Thus a network that can perform recognition invariant to these transformations should
also be robust to adversarial attacks. A simple way to check this may be the following. Train a
classifier to identify features in the output of a deep net (ResNet pretrained with ImageNet) that
are invariant to all transformations for a specific object class (eg faces or cars). If the conjecture
is correct the use of these features should avoid adversarial attacks for this class of objects.

We look for a projection matrix P that projects the last layers features onto an invariant
manifold. To do this we find P that minimizes |P (f(xi) − f(T kxm))|2 under the constraint

18

xm = xi, where f is a vector of activities, xi, i = 1, · · · , N and transformed images T kxi where T k
is one of the many legal transformations such as scaling, rotation, affine and their combination. .
One could use a contrastive loss function that finds P that maximize similarity between activities
induced by an image and its transforms and maximizes dissimilarity when images are different,
irrespectively of transformations. Transformations should be natural transformations for human
vision.

6.2.1 In support of the conjecture

Invariances can be imposed via virtual examples (nowdays called data augmentation) or via
regularization. As conjectured by [22], regularization and virtual examples can be equivalent.
The fact that invariances are equivalent to (many) additional data strongly suggest they may
help considerably in defining a manifold of images; the same is true when thinking of invariances
corresponding to constraints on the space of functions.

6.3 Conjecture: it is more difficult to learn a compositional target function
for a dense network than a CNN (without weight sharing)

The approximation results of [14] find an exponential gap in terms of rate of approximation
between shallow and CNNs for compositional functions. It is an open problem however whether
there is a similar gap in sample complexity or computational complexity of learning a compositional
functions between CNNs and dense networks.

There are results by [23] on sample complexity and by [24] on computational complexity for
simple local networks that suggest the conjecture is correct. Both approaches are superficially
unrelated to the approximation results. The first approach is based on equivariance properties of
networks+algorithms5.

Lemma 2 The VC dimension of polynomials in d variables of degree k is
(d−1+k

d

)
, which is the

number of monomials of degree at most k formed from d variables.

Lemma 3 An upper bound (m = O(· · ·)) for any distribution and interpolating algorithms is
m ≤ cV Cε log(1

ε) + 1
ε log(1

δ).
A lower bound (m = Ω(· · ·)) on sample complexity is provided by m ≥ cV Cε + 1

ε log
1
δ for at

least a distribution Px shattered by H and any algorithm.

The idea is to use the lower bound for the dense polynomials and the upper bound for the
sparse polynomials.

Consider the architecture of the figure with the nonlinearity being σ(z) = zk and pooling on
the outputs of the d

2 hidden units. For the dense network, the output of each the hidden units
is an homogeneous polynomial of degree k in d variables; for the binary tree network each of
the d

2 hidden units is a polynomial of degree k in 2 variables. The VC dimension of each hidden
5My intuition is that equivariance to large groups – like the permutation group – implies large capacity and

large sample complexity.
19

Figure 6: Assume that at each node there is a univariate polynomial of degree k. The

unit in the dense network case is
(d+k
d

)
(which for small k is ≈ dk) and for the sparse networks is(2+k

2
)
which is (k+2)(k+1)

k . For k = 2 V Cdense = (d+2)(d+1)
2 and V Csparse = 6. Thus the sample

complexity of the networks in the Figure is in the order mdense = O(d2) whereas msparse = O(d)
when in the sparse network there is no weight sharing and msparse = O(1) with weight sharing.
The latter bound agrees with Arora.

Consider the more general case of a dense network somehow computing a full polynomial of
degree 2L in d = 2L variables: the VC dimension is in the order of dd. A sparse polynomial of
degree 2L computed by a binary tree with L layers and an activation function σ(z) = z2 has a
VC dimension proportional to the number of distict monomials which in this case is ≈ 2L = d.

It seems to me that it should be possible to use the upper and lower bounds to establish a
gap in sample complexity between a homogeneous sparse polynomial computed by a binary tree
network vs the homogeneous polynomial computed by a “denser” network. The only missing
part is to exhibit a task for which both the dense and the sparse network satisfy the conditions

20

of the theorem. Such a task for a one layer net could be: detect a local pattern of pixels (2
neighboring white pixels, as suggested by Arora or a k-pattern as suggested by Malach et al.).

The point of this is to illuminate a pretty strong connection between the approximation result
– which ultimately depends on number of monomials for the sparse and the shallow networks –
and this sample complexity claims. What is missing here are statements about GD.

6.4 Question: learning functions with GD and layerwise minimum-norm least
square

It seems that a sparse polynomial can be learned with GD and min norm...question is what is
sample complexity for dense and for CNN network? Min norm can be used layerwise...can this
work irrespectively of sparse polynomial starting with zero initialization?

6.5 Conjecture: sample complexity for learning hierarchy is big, sample com-
plexity for learning shared weights is small

Can I just use lower bounds on sample complexity based on VC dimension? What is VC
dimension of a set of d2 polynomials of degree 2 in 2 variables? It is d

26 whereas VC of polynomial
in d variables of degree 2 is (d+2)(d+1)

2 . Thus the sample complexity is O(dk) vs O(d2k). The
latter complexity – of the blue network – reduces to O(2k), that is independent of d for the case
of shared weights (because it is enough to train one of the 2-inputs nodes instead of all of them
(which are d

2).
Let us reformulate VC bounds (given in in approximation paper in terms of number of bits

and parameters) as lower bounds in terms of straight VC for polynomial classifiers. Then the
estimates above answer the question for simple one hidden layer networks. With polynomial
activation functions the analysis can be extended to multilayer nets.

21

Conjecture: neural circuits underlying
the self-attention module of transforers

Figure 7: The neural circuit for figure-ground discrimination in the fly, see [25]

7 Remarks on neural circuits for transformers
Circuits of the lateral inhibition type are an obvious implementation of the self attention module
of transformers. An old version of such nonlinear inhibitory circuits can be found in [25] where
the Figure depicts a version of the circuit with a pool cell inhibiting all other neurons (this is
equivalent to nonlinear lateral inhibition).

22

	Introduction
	Willshaw Nets
	Networks: shallow, deep and recurrent

	Evolution: from associative memories to computing machines?
	Look-up tables cannot support the kind of intelligence required for language and logic
	From memory to powerful computing machines

	Theoretical Framework: How Deep Nets May Work
	Appendix: old and new remarks, some related to the subject of the memo
	Observations about depth
	ResNets
	Deep learning and signal processing

	Replacing Backpropagation with layer-wise training and local learning rules
	Invariance in Deep Learning and in Cortex
	Conjecture: Human Robustness to Adversarial Examples
	In support of the conjecture

	Conjecture: it is more difficult to learn a compositional target function for a dense network than a CNN (without weight sharing)
	Question: learning functions with GD and layerwise minimum-norm least square
	Conjecture: sample complexity for learning hierarchy is big, sample complexity for learning shared weights is small

	Remarks on neural circuits for transformers

