
CBMM Memo No. 117 June 15, 2022

Deep Classifiers trained with the Square Loss

Mengjia Xu1,2, Akshay Rangamani1, Andrzej Banburski1, Qianli Liao1, Tomer Galanti1, Tomaso Poggio1

1Center for Brains, Minds and Machines, MIT,
2Division of Applied Mathematics, Brown University

Abstract
Here we consider a simplified model of the dynamics of gradient flow under the square loss in ReLU networks.

We study the convergence to a solution with the absolute minimum ρ, which is the product of the Frobenius
norms of each layer weight matrix, when normalization by a Lagrange multiplier (LM) is used together with Weight
Decay (WD). In the absence of LM + WD, good solutions for classification may still be achieved because of the
implicit bias towards small norm solutions in the dynamics of gradient descent introduced by close-to-zero initial
conditions on the norms of the weights. The main property of the minimizers that bounds their expected error is
ρ: we prove that among all the close-to-interpolating solutions, the ones associated with smaller ρ have better
margin and better bounds on the expected classification error. We also prove that quasi-interpolating solutions
obtained by SGD in the presence of WD have a bias for low rank solutions; they also show the recently discovered
behavior of Neural Collapse. Our analysis supports the idea that the advantage of deep networks relative to other
standard classifiers is greater for the problems to which specific deep architectures such as CNNs can be applied.
The deep reason is that CNNs reflect the function graph of certain locally compositional target function – which
have small intrinsic dimensionality – and thus can be approximated well by sparse networks without incurring in
the curse of dimensionality. Despite overparametrization the sparse networks show good generalization (because
of the "small" covering numbers).

This is effectively an update of CBMM Memo 112, with some of the same material, more figures on experiments and a better discussion of generalization.
Material which is interesting but less relevant, especially in the Appendices, is only in Memo 112.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

Dynamics in Deep Classifiers Trained with the Square
Loss: Normalization, Low Rank, Neural Collapse and

Generalization Bounds
Mengjia Xu1,2, Akshay Rangamani1, Andrzej Banburski1, Qianli Liao1, Tomer

Galanti1, Tomaso Poggio1

1Center for Brains, Minds and Machines, MIT
2Division of Applied Mathematics, Brown University

August 6, 2022

Abstract
Here we consider a simplified model of the dynamics of gradient flow under the square loss in

ReLU networks. We study the convergence to a solution with the absolute minimum ρ, which is
the product of the Frobenius norms of each layer weight matrix, when normalization by a Lagrange
multiplier (LM) is used together with Weight Decay (WD) under forms of gradient descent. In the
absence of LM +WD, good solutions for classification may still be achieved because of the implicit
bias towards small norm solutions in the dynamics of gradient descent introduced by close-to-zero
initial conditions on the norms of the weights. The main property of the minimizers that bounds their
expected error is ρ: we prove that among all the close-to-interpolating solutions, the ones associated
with smaller ρ have better margin and better bounds on the expected classification error. We also
prove that quasi-interpolating solutions obtained by SGD in the presence of WD have a bias towards
low rank solutions; they also enjoy the recently discovered behavior of Neural Collapse. Our analysis
supports the idea that the advantage of deep networks relative to other standard classifiers is greater
for the problems to which specific deep architectures such as CNNs can be applied. The deep reason
is that CNNs reflect the function graph of certain locally compositional target function – which have
small intrinsic dimensionality – and thus can be approximated well by sparse networks without
incurring in the curse of dimensionality. Despite overparametrization the sparse networks show good
generalization (because of the “small” covering numbers).

1 Introduction
A widely held belief in the last few years has been that the cross-entropy loss is superior to the square
loss when training deep networks for classification problems. As such, the attempts at understanding
the theory of deep learning has been largely focused on exponential-type losses [1, 2], like the cross-
entropy. For these losses, the predictive ability of deep networks depends on the implicit complexity
control of Gradient Descent algorithms that leads to asymptotic maximization of the classification
margin on the training set [3, 1, 4]. Recently however, [5] has empirically demonstrated that it is
possible to achieve a similar level of performance, if not better, using the square loss, paralleling older
results for Support Vector Machines (SVMs) [6]. Can a theoretical analysis explain when and why
regression should work well for classification? This question was the original motivation for this paper
and preliminary versions of it [7].
In deep learning, unlike the case of linear networks, we expect from previous results (in the absence
of regularization) several global minima with zero square loss, thus corresponding to interpolating
solutions (in general degenerate, see [8, 9] and reference therein). Although all the interpolating
solutions are optimal solutions of the regression problem, they will in general correspond to different
margins and to different expected classification performance. In other words, zero square loss does
not imply by itself neither large margin nor good classification on a test set. When can we expect the
solutions of the regression problem obtained by GD to have a large margin?

1

We introduce a simplified model of the training procedure that uses square loss, binary classification,
gradient flow and Lagrange Multipliers (LN) for normalizing the weights. With this model we show
that obtaining large margin interpolating solutions depends on the scale of initialization of the weights
close to zero, in the absence of regularization (also called weight decay). Assuming convergence, we
describe the qualitative dynamics of the deep network’s parameters and show that ρ, which is the
product of the Frobenius norms of the weight matrices, grows non-monotonically until small ρ, that is
large margin, solutions are reached. Assuming that local minima and saddle points can be avoided,
this analysis suggests that with small initialization and weight decay, gradient descent techniques may
yield convergence to a minimum with a ρ biased to be as small as possible.
In the presence of weight decay, perfect interpolation of all data points cannot occur and is replaced
by quasi-interpolation of the labels. In the special case of binary classification case in which yn = ±1,
quasi-interpolation is defined as ∀ n : |f(xn) − yn| ≤ ε, where ε > 0 is small. Our experiments and
analysis of the dynamics show that, depending on the regularization parameter, there is a weaker
dependence on initial conditions, as has been observed in [5]. We show that weight decay helps
stabilize normalization of the weights, in addition to its role in the dynamics of the norm.
We then describe how to extend our model from gradient flow to an approximation of gradient descent.
Next, the study of SGD reveals surprising differences relative to GD. In particular, in the presence of
regularization, SGD does not converge to a perfect equilibrium: there is always, at least generically,
SGD noise.The underlying reason is a rank constraint that depends on the size of the minibatches. This
also implies a SGD bias towards small rank solutions that reinforces a similar bias due to maximization
of the margin under normalization (that can be inferred from [10]).
Next we show that these quasi-interpolating solutions satisfy the recently discovered Neural Collapse
(NC) phenomenon [11], assuming Stochastic Gradient Descent with minibatches. According to Neural
Collapse, a dramatic simplification of deep network dynamics takes place – not only do all the margins
become very similar to each other, but the last layer classifiers and the penultimate layer features form
the geometrical structure of a simplex equiangular tight frame (ETF). Here we prove the emergence of
Neural Collapse for the square loss under some assumptions.
Finally, we apply basic bounds on expected error to the solutions provided by SGD (for λ > 0), which
have minimum ρ. The bounds though vacuous are much closer to the empirical test error than previous
estimates. This is encouraging because in our setup large overparametrization, corresponding to
interpolation of the training data, coexists with a relatively small Rademacher complexity.

Contributions The main contributions in this paper are
• We analyze the dynamics of deep network parameters, their norm, and the margins under

gradient flow on the square loss, using Lagrange normalization (LN). We describe the evolution
of ρ, and the role of Weight Decay and normalization in the training dynamics. We show a bias
towards minimum ρ. The analysis is extended to the case of Gradient Descent in Section F.

• We show that when training the network using SGD with weight decay, there is always SGD
noise, even asymptotically. In addition, there is a bias towards solutions of low rank.

• We show that critical points of SGD with weight decay and normalization that satisfy a certain
pattern of interpolation and margins satisfy the conditions of Neural Collapse for deep networks
trained with square loss.

• In our experiments with weight decay the generalization bounds are not far from being non-
vacuous. In any case, they predict several qualitative observations on the relation between margin
and generalization.

Outline The rest of the paper is organized as follows. We start by describing related work (section 2).
In section 4 we formulate a model that assumes three simplifying assumptions. For this model we
analyze the dynamics of gradient flow under the square loss for a binary classification problem. We use
an analysis of its continuous dynamics to illuminate the role ofWeight Decay andWeight Normalization
in deep learning. We extend in Appendix F our model from Gradient Flow to an approximation of
Gradient Descent. We then turn to analyze SGD, the associated noise and its bias towards low-rank
solutions. In section 6 we use our analysis of the dynamics in the binary classification case to justify an
assumption of margins being very close to each other at convergence to predict the phenomenon of

2

Neural Collapse when training on the square loss. A simple generalization bound links margin, which
is the inverse of ρ, to expected error, in particular in the interpolation or quasi-interpolation case when
the empirical error is zero or close to zero. Throughout we describe experiments on CIFAR10 that
illustrate several of the theoretical results. We conclude in section 9 with a discussion of our results
and their implications for generalization.

2 Related Work
There has been much recent work on the analysis of deep networks and linear models trained using
exponential-type losses for classification. The implicit bias of Gradient Descent towards margin
maximizing solutions under exponential type losses was shown for linear models with separable data
in [12] and for deep networks in [1, 2, 13, 14]. Recent interest in using the square loss for classification
has been spurred by the experiments in [5], though the practice of using the square loss is much older
[6]. Muthukumar et. al. [15] recently showed for linear models that interpolating solutions for the
square loss are equivalent to the solutions to the hard margin SVM problem (see also [7]). Recent
work also studied interpolating kernel machines [16, 17] which use the square loss for classification.
In the recent past, there have been a number of papers analyzing deep networks trained with the square
loss. These include [18, 19] that show how to recover the parameters of a neural network by training
on data sampled from it. The square loss has also been used in analyzing convergence of training in
the Neural Tangent Kernel (NTK) regime [20, 21, 22]. Detailed analyses of two-layer neural networks
such as [23, 24, 25] typically use the square loss as an objective function. However these papers do not
specifically consider the task of classification.
Several papers in recent years have studied the relationship between implicit regularization in linear
neural networks and rank minimization. A main focus was on the matrix factorization problem, which
corresponds to training a depth-2 linear neural network with multiple outputs w.r.t. the square loss
(see references in [10]). Beyond factorization problems, it was shown that in linear networks of output
dimension 1, gradient flow w.r.t. exponential-type loss functions converges to networks where the
weight matrix of every layer is of rank 1. However, for nonlinear neural networks things are less
clear. Empirically, several studies (see references in [10]) showed that replacing the weight matrices
by low-rank approximations results in only a small drop in accuracy. This suggests that the weight
matrices in practice are not too far from being low-rank.
Neural Collapse (NC) [11] is a recently discovered empirical phenomenon that occurs when training
deep classifiers using the cross-entropy loss. Since its discovery, there have been a few papers analyti-
cally proving its emergence when training deep networks. Mixon et. al. [26] show NC in the regime
of “unconstrained features”. Recent results in [27] perform a more comprehensive analysis of NC in
the unconstrained features paradigm. There have been a series of papers analytically showing the
emergence of NC when using the cross-entropy loss [28, 29, 30]. In the study of the emergence of NC
when training using the square loss, Ergen and Pilanci [31] (see also [32]) derived it through a convex
dual formulation of deep networks. In addition to that, [33] and [34] show the emergence of NC in the
unconstrained features regime. Our independent derivation is different from these approaches, and
shows that NC emerges in the presence of normalization and weight decay.

3 Problem Setup
In this section, we describe the training settings considered in our work. We study training deep
neural network with ReLU non-linearity using square loss minimization for classification problems. In
the proposed analysis, we apply a specific normalization techniques: Weight Normalization, which
is equivalent to Lagrange Multiplier, as well as regularization (also called Weight Decay), since
such mechanisms seem commonly used for reliably training deep networks using gradient descent
techniques [35, 5].

3.1 Assumptions
Throughout the theoretical analysis we make in some places simplifying assumptions relative to
standard practice in deep neural networks. We mostly consider the case of binary classification though
our analysis of Neural Collapse includes multiclass classification. We restrict ourselves to the square

3

loss. We consider gradient descent techniques but we assume different forms of them in various
sections of the paper. In the first part, we assume continuous Gradient Flow (GF) instead of GD or
Stochastic Gradient Descent (SGD). Gradient flow is the limit of discrete Gradient Descent algorithm
with the learning rate being is infinitesimally small. In other sections, we describe an approimation
of Gradient Descent within a Gradient Flow approach. SGD is specifically considered and shown to
bias rank and induce asymtotic noise that is uniq to it. The analysis of Neural Collapse is carried out
assuming GF on minibatches. Furthermore, we assume weight normalization by a Lagrange multiplier
term added to the loss function, that normalizes the weight matrices. This is equivalent to Weight
Normalization but is not equivalent to the more commonly used Batch Normalization.
We also assume throughout that the network is overparametrized and that that there is convergence
to global minima with appropriate initialization, parameter values and data. A recent analysis [36]
provide a powerful new criterion for convergence, assuming that the input dimension is greater than
the number of data points.

3.2 Classification with Square Loss Minimization
In this work we consider a square loss minimization for classification along with regularization and
weight normalization. We consider a binary classification problem given a training dataset S =
{(xn, yn)}Nn=1, where xn ∈ Rd are the inputs (normalized such that ‖xn‖ ≤ 1) and yn ∈ {±1} are the
labels. We use deep rectified homogeneous networks with L layers to solve this problem. For simplicity,
we consider networks fW : Rd → Rp of the following form fW (x) = WLσ (WL−1 . . . σ (W1x) . . .), where
x ∈ Rd is the input to the network and σ : R→ R, σ(x) = max(0, x) is the rectified linear unit (ReLU)
activation function that is applied coordinate-wise at each layer. The last layer of the network is linear
(see Figure 1).
Due to the positive homogeneity of ReLU (i.e., σ(αx) = ασ(x) for all x ∈ R and α > 0), one
can reparametrize fW (x) by considering normalized1 weight matrices Vk = Wk

‖Wk‖ and define ρk =

‖Wk‖ obtaining fW (x) = ρLVLσ (ρL−1 . . . σ (ρ1V1x) . . .). Because of homogeneity of the ReLU it is
possible to pull out the product of the layer norms as ρ =

∏
k ρk and write fW (x) = ρfV (x) =

ρVLσ (VL−1 . . . σ (V1x) . . .). Notice that the two networks – fW (x) and ρfV (x) – are equivalent repa-
rameterizations of the same function (if ρ =

∏
k ρk) but their optimization generally differ. We define

fn := fV (xn)
We adopt in our definition the convention that the norm ρj of the convolutional layers is the norm of
their filters and not the norm of their associated Toeplitz matrices. The reason is that the calculation of
the covering numbers must take into account the associated shift invariance (see section 3.3 in [37] and
[38]). The ρj calculated in this way is the quantity that enters the generalization bounds of section 8.
In practice, certain normalization techniques are used in order to train neural networks. This is usually
performed using either batch normalization (BN) or, less frequently, weight normalization (WN). BN
consists of standardizing the output of the units in each layer to have zero mean and unit variance.
WN normalizes the weight matrices (section 10 in [4]). In our analysis, we model normalization by
normalizing the weight matrices, using a Lagrange Multiplier (LN) term added to the loss function. This
approach is equivalent to WN.
In the presence of normalization, we assume that all layers are normalized, except for the last one, via
the added Lagrange multiplier. Thus, the weight matrices {Vk}Lk=1 are constrained by the Lagrange
multiplier term to be close to, and eventually converge to, unit norm matrices (in fact to fixed norm
matrices); notice that normalizing VL and then multiplying the output by ρ, is equivalent to letting
WL = ρVL be unnormalized. Thus, fV is the network that at convergence has L− 1 normalized layers
(see Figure 1).
Minimization of the regularized loss function under the constraint ‖Vk‖2 = 1 can be summarized in
the following manner

LS(ρ, {Vk}Lk=1) : =
1

N

∑
n

(ρfn − yn)2 +

L∑
k=1

νk(‖Vk‖2 − 1) + λρ2

=
1

N

∑
n

(1− ρf̄n)2 +

L∑
k=1

νk(‖Vk‖2 − 1) + λρ2,

(1)

1We choose the Frobenius norm here to simplify our calculations.

4

where νk are the Lagrange multipliers and λ > 0 is a predefined parameter.

Separability and Margins. Two important aspects of classification are separability and margins. For
a given sample (x, y) (train or test sample) and model fW , we say that fW correctly classifies x, if
f̄n = ynfn > 0. In addition, for a given dataset S = {(xn, yn)}Nn=1, separability is defined as the
condition in which all training samples are classified correctly, ∀ n ∈ [N] : f̄n > 0. Furthermore, when∑N
n=1 f̄n > 0, we say that average separability is satisfied. The minimum of LS for λ = 0 is usually zero

under our assumption of overparametrization. This corresponds to separability.
Notice that if fW is a zero loss solution of the regression problem, then ∀ n : fW (xn) = yn, which is
also equivalent to ρfn = yn, where we call ynfn = f̄n the margin2 for xn. By multiplying both sides of
this equation by yn, and summing both sides over n ∈ [N], we obtain that ρ∑n f̄n = N . Thus, the
norm ρ of a minimizer is inversely proportional to its average margin µ in the limit of λ = 0, with
µ = 1

N

∑
n f̄n. It is also useful to define the margin variance σ2 = M − µ2 withM = 1

N

∑
n f̄

2
n. Notice

thatM = 1
N

∑
n f̄

2
n = σ2 + µ2 and that bothM and σ2 are not negative.

Interpolation and Quasi-interpolation. Assume that the weights Vk are normalized at convergence.
Then
Lemma 1 In the absence of regularization, there are solutions that interpolate all data points with the same
margin and achieve zero loss. For λ > 0 there are no solutions that have the same margins and interpolate.
However there are solutions with the same margins that quasi-interpolate and are critical points of the gradient.

Proof Consider the lossLS = 1
N

∑
n(1−ρf̄n)2+λρ2 = 1−2ρµ+ρ2M+λρ2. For λ = 0, a zero of the loss

LS = 0 implies ∀ n ∈ [N] : µ = f̄n and µ = 1
ρ . However, for λ > 0 the assumption that all f̄n are equal

yieldsM = µ2 and thus LS = ρ2µ2 − 2ρµ+ (1 + λρ2). Setting LS = 0 gives a second order equation in
ρwhich does not have real-valued solutions for λ > 0. Thus in the presence of regularization, there
exist no solutions that have the same margin for all points and reach zero empirical loss. However,
solutions that have the same margin for all points and correspond to zero gradient w.r.t. ρ exist. To see
this, assume σ = 0, setting the gradient of LS w.r.t. ρ equal to zero, yielding ρµ2 − µ+ λρ = 0. This
gives ρ = µ

µ2+λ . This solution yields ρµ < 1, which corresponds to non-interpolating solutions.

Experiments Weperformedbinary classification experiments using the standardCIFAR10dataset [39].
Image samples with class labels 1 and 2 were extracted for the binary classification task. The total
number of training and test data points are 10000 and 2000, respectively. The model architecture
in Fig. 1b contains four convolutional layers, two fully connected layers with hidden sizes 1024 and
2. The number of channels for the four convolutional layers are 32, 64, 128 and 128, the filter size is
3× 3. The first fully connected layer has 3200× 1024 = 3, 276, 800 weights and the very last layer has
1024 × 2 = 2048 weights. At the top layer of our model, there is a learnable parameter ρ (Fig. 1b).
Following each convolution layer, we applied a ReLU nonlinear activation function andWeight Normal-
ization (WN) to all layers, freezing the weights of the WN parameter “g” in the Weight Normalization
algorithm and normalizing the {Vk}L−1

k=1 matrices at each layer w.r.t. their Frobenius norm, while the
top layer’s norm is denoted by ρ.

4 Training Dynamics
4.1 Gradient Flow Equations
The gradient flow equations are as follows

ρ̇ = −∂LS(ρ, {Vk}Lk=1)

∂ρ
=

2

N

∑
n

(1− ρf̄n)f̄n − 2λρ

V̇k = −∂LS(ρ, {Vk}Lk=1)

∂Vk
=

2

N

∑
n

(1− ρf̄n)ρ
∂f̄n
∂Vk

− 2νkVk.

(2)

2Notice that the term “margin” is usually defined as minn∈[N] f̄n. Instead, we use the term “margin for xn” to distinguish
our definition from the usual one.

5

In the second equation we can use the unit norm constraint on the ‖Vk‖ to determine the Lagrange
multipliers νk. Using a structural property of the gradient3, the constraint ‖Vk‖2 = 1 implies ∂‖Vk‖2

∂t =

V Tk V̇k = 0, which gives

νk =
1

N

∑
n

(ρf̄n − ρ2f2
n) =

1

N

∑
n

ρf̄n(1− ρfn). (4)

Thus the gradient flow is the following dynamical system

ρ̇ =
2

N

[∑
n

f̄n −
∑
n

ρ(f̄n)2

]
− 2λρ and V̇k =

2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
(5)

In particular, we can also write
ρ̇ = 2(µ− ρ(M + λ)), (6)

hence, at critical points (when ρ̇ = 0 and V̇k = 0), we have

ρ = ρeq :=
1
N

∑
n f̄n

λ+ 1
N

∑
n f̄

2
n

=

∑
n f̄n

λ+
∑
n f̄

2
n

=
µ

M + λ
. (7)

Thus the gap to interpolation due to λ > 0 is ε = (ρλ=0 − ρλ)µ = 1− µ
M+λµwhich gives

ε =
µ2

µ2 + σ2 + λ
. (8)

Notice that since the Vk are bounded functions they must take their maximum and minimum values
on their compact domain – the sphere – because of the extremum value theorem. Also notice that for
normalized Vk, V Tk V̇k = 0 always, that is for normalized Vk the change in Vk is always orthogonal to
Vk, that is Vk can only rotate. If V̇k = 0 then the weights Vk are given by4

Vk =

∑
n `n

∂fn
∂Vk∑

`nfn
, (9)

where `n = 1− ρf̄n.
As a consequence of the above derivation, we can represent the loss function in terms of ρ, ρ̇ and µ in
the following manner.

Lemma 3 Let fW (x) = ρfV (x) be a neural network, with ∀ k ∈ [L] : ‖Vk‖ = 1. The square loss can be
written as LS(ρ, {Vk}Lk=1) = 1− ρ(1

2 ρ̇+ µ)

Proof First, we consider that

LS(ρ, {Vk}Lk=1) =
1

N

∑
n

(ρfn − yn)2 +

L∑
k=1

νk(‖Vk‖2 − 1) + λρ2

=
1

N
(ρ2f2

n − 2ynρfn + y2
n) + λρ2

= 1− 2ρµ+ ρ2M + λρ2,

where the second equations follows from ∀ k ∈ [L] : ‖Vk‖ = 1 and the third from y2
n = 1, µ =

∑
n ynfn

andM =
∑
n f

2
n. On the other hand, by Equation 6, ρ̇ = 2µ−2ρM−2λρwhich gives 2ρM = 2µ−2λρ−ρ̇.

Therefore, we conclude that LS(ρ, {Vk}Lk=1) = 1− 1
2ρρ̇− ρµ = 1− ρ(1

2 ρ̇+ µ) as desired.

3Let fW (x) be a ReLU neural network. The following structural property of the gradient holds.

Lemma 2 (Lemma 2.1 of [40]) Let fW (x) = WLσ(WL−1 . . . σ(W1x)) : Rd → R be a ReLU neural network. Then, we can write:

∀x ∈ Rd :
∑
i,j

∂fW (x)

∂W i,j
k

W i,j
k =

〈
Wk,

∂fW (x)

∂Wk

〉
= fW (x). (3)

4This overdetermined system of equations – with as many equations as weights – can also be used to reconstruct the training
set from the Vk , the yn and the fn.

6

Convergence. A favorable property of optimization of the square loss is the convergence of the
relevant parameters. With gradient descent, the loss function cannot increase, while the trainable
parameters may potentially diverge. A typical scenario of this kind happens with cross-entropy
minimization, where the weights typically tend to infinity. In light of the theorems in Section 4.2,
we could hypothetically think of training dynamics in which the loss function’s value L(ρ, {Vk}Lk=1)
decreases while ρ oscillates periodically within some interval. As we show next, this is impossible
when the loss function’s value converges to zero.

Lemma 4 Let fW (x) = ρfV (x) be a neural network and λ = 0. Assume that during training time, we have
limt→∞ L(ρ, {Vk}Lk=1) = 0 and ∀ k ∈ [L] : ‖Vk‖ = 1. Then, ρ and Vk converge (i.e., ρ̇→ 0 and V̇k → 0).

Proof Note that if limt→∞ L(ρ, {Vk}Lk=1) = 0, then, for all n ∈ [N], we have: (ρfn − yn)2 → 0. In
particular, ρfn → yn and ρf̄n → 1. Hence, we conclude that µρ→ 1. Therefore, by Lemma 3, ρρ̇→ 0.
We note that ρ→ 0 would imply ρfn → 0 which contradicts L(ρ, {Vk}Lk=1)→ 0, since the labels yn are
non-zero. Therefore, we conclude that ρ̇→ 0. To see why V̇k → 0, we recall that

V̇k =
2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
.

We note that ‖Vk‖ = 1, |f̄n| = 1 and ∂f̄n
∂Vk

is bounded (assuming that ∀ n ∈ [N] : ‖xn‖ ≤ 1 and
∀ k ∈ [L] : ‖Vk‖ = 1). Hence, since ρ converges, ρf̄n → 1, implying (for λ = 0) V̇k → 0.

4.2 Landscape of the empirical risk
As a next step, we establish key properties of the loss landscape. The landscape of the empirical loss
contains a set of degenerate zero-loss global minima (for λ = 0) that under certain overparametrization
assumptions may be connected in a single zero-loss degenerate valley for ρ ≥ ρ0. Figure 2 shows a
landscape which has a saddle for ρ = 0 and then goes to zero loss (zero crossing level, that is the
coastline) for different values of ρ (look at the boundary of themountain). Aswewill see in our analysis
of the gradient flow, the descent from ρ = 0 can encounter local minima and saddles with non-zero
loss. Furthermore, even though the valley of zero loss may be connected, the absolute minimum ρ
point may be unreachable by gradient flow from another point of zero loss even in the presence of
λ > 0, because of the possible non-convex profile of the coastline (see inset of Figure).
The degeneracy of the global minimizers achieving zero loss of the unregularized loss function
LS =

∑n
i=1(fW (xi)− yi)2 was established recently under the assumption that the network f is over-

parametrized with a number of weights d� n and that the network is able to interpolate the training
data, achieving minW L(fW) = 0 which implies ∀i ∈ [n] : fW (xi) = yi.
If we assume overparametrized networks with d � n, where d is the number of parameters and n
is the number of data points [9] proved that the global minima of L(w) are highly degenerate5 with
dimension d− n.

Theorem 1 ([41], informal) We assume an overparametrized neural network fW with smooth ReLU acti-
vation functions and square loss. Then the minimizers W ∗ achieve zero loss and are highly degenerate with
dimension d− n.

Furthermore, for “large” overparametrization, all the global minima – associated to interpolating
solutions – are connected within a unique, large valley. The argument is based on Theorem 5.1 of [42]:
Theorem 2 ([42], informal) If the first layer of the network has at least 2N neurons, where N is the number
of training data and if the number of neurons in each subsequent layer decreases, then every sublevel set of the
loss is connected.

5This result is also what one expects from Bezout theorem for a deep polynomial network. As mentioned in Terry Tao’s blog
“from the general “soft” theory of algebraic geometry, we know that the algebraic set V is a union of finitely many algebraic
varieties, each of dimension at least d-n, with none of these components contained in any other. In particular, in the under-
determined case n < d, there are no zero-dimensional components of V , and thus V is either empty or infinite”(see references
in [41]).

7

In particular, the theorem implies that zero-square-loss minima with different values of ρ are connected. A
connected single valley of zero loss does not however guarantee that SGD with WD will converge to the
global minimumwhich is now> 0, independently of initial conditions. The reason is that the connected valley
will in general twist in the space of parameters in such a way that following it may not monotonically
increase or decrease ρ.
For large ρ (mainly in the case λ = 0) we expect many solutions. The existence of several solutions for
large ρ is based on the following intuition: the last linear layer is enough – if the layer before the linear
classifier has more units than the number of training points – to provide solutions for a given set of
random weights in the previous layers (for large ρ and small fi). This also means that the intermediate
layers do not need to change much under GD in the iterations immediately after initialization. The
emerging picture is a landscape in which there are no zero-loss minima for ρ smaller than a certain
minimum ρ, which is network and data-dependent. With increasing ρ from ρ = 0 there will be a
continuous set of zero square-loss degenerate minima with the minimizer representing an interpolating
(for λ = 0) or almost interpolating solution (for λ > 0). We expect that λ > 0 results in a “pull”
towards the minimum ρ0 within the local degenerate minimum of the loss.

4.3 Qualitative Dynamics
Recall that ∀ n ∈ [N] : 0 ≤ |f̄n| ≤ 1 because the assumption ‖x‖ ≤ 1, yields ‖f(x)‖ ≤ 1 by taking into
account the definition of ReLUs and the fact that matrix norms are sub-multiplicative. Depending on
the number of layers, the maximum margin that the network can achieve for a given dataset is usually
much smaller than the upper bound 1, because the weight matrices have unit norm and the bound ≤ 1
is conservative. Thus, in order to guarantee interpolation, namely, ρfnyn = 1, ρmust be significantly
larger than 1. For instance, in the experiments plotted in this paper, the maximal f̄n is≈ 0.002 and thus
the ρ needed for interpolation (for λ = 0) is in the order of 500. We assume then that for a given dataset
there is a maximal value of ynfn that allows interpolation. Correspondingly, there is a minimum value
of ρ that we call, as mentioned earlier, ρ0.
We now provide some intuition for the dynamics of the model. Notice that ρ(t) = 0 and fV (x) = 0 (if
all weights are zero) is a critical unstable point. A small perturbation will either result in ρ̇ < 0 with ρ
going back to zero or in ρ growing if the average margin is just positive, that is µ > λρ > 0.

Small ρ initialization. First, we consider the case where the neural network is initialized with a
smallish ρ, that is ρ < ρ0. Assume then that at some time t, µ > 0, that is average separability holds.
Notice that if the fn were zero-mean, random variables, there would be a 50% chance for average
separability to hold. Then Equation (5) shows that ρ̇ > 0. If full separability takes place, that is
∀ n : fn > 0, then ρ̇ remains positive at least until ρ = 1. This is because Equation (5) implies that
ρ̇ ≥ 2(µ−ρµ) sinceM ≤ µ. In general, assuming eventual convergence, ρmay grow non-monotonically,
that is there may oscillations in ρ for "short" intervals, until it converges to ρ0.
Following Lemma 3, if ρ̇ becomes negative during training, then, the average margin µmust increase
since GD cannot increase but only decrease L. In particular, this implies that ρ̇ cannot be negative
for long periods of time. Notice that short periods of decreasing ρ are “good” since they increase the
average margin!
If ρ̇ turns negative, it means that it has crossed ρ̇ = 0. This may be a critical point for the system if the
values of Vk corresponding to V̇k = 0 are compatible (since the matrices {Vk}Lk=1 determine the value
of f̄n). We assume that this critical point – either a local minimum or a saddle – can be avoided by the
randomness of SGD or by an algorithm that restarts optimization when a critical point is reached for
which L > 0.
Thus, ρ grows (non-monotonically) until it reaches an equilibrium value, close to ρ0. Recall that for
λ = 0 this corresponds to a degenerate global minimum L = 0, usually resulting in a large attractive
basin in the loss landscape (see Appendix 4.2). For λ = 0, a zero value of the loss L = 0 implies
interpolation: thus all the fn have the same value, that is all the margins are the same. Notice that all
ρk of Figure 1 are basically constant because of weight normalization, see Figure 3.

Large ρ initialization. If we initialize a network with large norm ρ > ρ0, Equation 1 shows that ρ̇ < 0.
This implies that the norm of the network will decreases until eventually an equilibrium is reached. In
fact since ρ� 1 it is likely that there exists an interpolating (or near interpolating) solution with ρ that

8

is very close to the initialization. In fact, for large ρ it is usually empirically possible to find a set of
weights VL such that ρf̄n ≈ 1. To understand why this may be true, recall that if there are at least N
units in the top layer of the network (layer L) with given activities and ρ� ρ0 there exist values of VL
that yield interpolation due to Theorem 2. In other words, it is easy for the network to interpolate with
small values f̄n. These large ρ, small f̄n solutions are reminiscent of the Neural Tangent Kernel (NTK)
solutions [22], where the parameters do not move too far from their initialization. A formal version of
the same argument is based on the following result.
We now assume that the network in the absence of weight decay has converged to an interpolating
solution
Lemma 5 Let fV be a neural network with weights {Vk}Lk=1, such that, ∀ n ∈ [N] : ρf̄n = ρµ∗ = 1. Further
assume that the classifier VL and the last layer features h are aligned, ie, yn〈VL, h(xn)〉 = ||h(xn)||2, where the
vector h denotes the activities of the units in the last layer. Then, perturbing VL into another unit-norm vector
V ′L ∈ Rp, such that, V TL V ′L = α ∈ (0, 1) yields a neural network f̂(x) = 〈V ′L, h(x)〉 with the property that ρα f̂
is an interpolating solution, corresponding to a critical point of the gradient but with a larger ρ.

Proof Consider the margins of the network f̂(x) = 〈V ′L, h(x)〉, we have that ¯̂
fn = yn〈V ′L, h(xn)〉. Since

the classifier weights and the last layer features are aligned (as it may happen for λ→ 0), we have that
ynh(xn) = ||h(xn)|| × VL. This means ¯̂

fn = ||h(xn)|| × 〈V ′L, VL〉. We also have from the interpolating
condition that ρf̄n = ρµ∗ = 1, which means ||h(xn)|| = 1

ρ . Putting all this together, we have ρ
α

¯̂
fn = 1,

which concludes the proof.

Thus if a network exists providing an interpolating solution with a minimum ρ and VL ∝ h, there
exist networks, that differ only in the last VL layer, that are also interpolating but with larger ρ. As a
consequence there is a continuum of solutions that differ only in the weights VL of the last layer.
Of course there may be interpolating solutions corresponding to different sets of weights in layers
below L, to which the above statement does not apply. These observations suggest that there is a valley
of minimizers for increasing ρ, starting from a zero-loss minimizer which have the neural collapse
property (see section 6).
In Figure 4 we show the dynamics of ρ alongside train loss and test error. We show results with
and without Weight Decay in the top and bottom rows of Figure 4 respectively. LS decreases with µ
increasing and σ decreasing. The figures show that in our experiments the large margins of some of the
data points decrease during GD, contributing to a decrease in σ. Furthermore Equation (4.1) suggests
that for small ρ, the termdominating the decrease inLS is−2ρµ. For larger ρ, the term ρ2M = ρ2(σ2+µ2)
becomes important: eventually LS decreases because σ2 decreases. The regularization term, for
standard small values of λ, is relevant only in the final phase, when ρ is in the order of ρ0. For λ = 0
the loss at the global equilibrium (which happens at ρ = ρ0) is LS = 0 (since µ = 1

ρ0
,M = µ2, σ2 = 0).

To sum up, starting from small initialization, gradient techniques will explore critical points with ρ
growing from zero. Thus quasi-interpolating solutions with small ρ (corresponding to large margin
solutions) may be found before the many large ρ quasi-interpolating solutions which have worse
margins (see Figure 4, upper and lower row). This dynamics can take place even in the absence of
regularization; however, λ > 0 makes the process more robust and bias it towards small ρ.

5 The origin of SGD noise and a bias towards low-rank weight ma-
trices

In the previous sections we assumed that ρ and Vk are trained using GF. In this section we consider a
slightly different setting where SGD is applied instead of GF. Specifically, Vk and ρ are first initialized
and then iteratively updated simultaneously in the following manner

ρ← ρ− η · LS
′(ρ, {Vk}Lk=1)

∂ρ
and Vk ← Vk − η ·

LS′(ρ, {Vk}Lk=1)

∂Vk
, (10)

where S ′ is selected uniformly as a subset of S of size B and η > 0 is the learning rate.
An intriguing argument for small rank weight matrices is the following observation that follows from
Equation (5) (see also [7]).

9

Lemma 6 Let fW be a neural network. Assume that we iteratively train ρ and {Vk}Lk=1 using the process
described above with weight decay λ > 0. Suppose that training converges, that is ∂LS′ (ρ,{Vk}

L
k=1)

∂ρ = 0 and

∀ k ∈ [L] :
∂LS′ (ρ,{Vk}

L
k=1)

∂Vk
= 0 for all mini-batches S ′ ⊂ S of size B < |S|. Assume that ∀ n ∈ [N] : f̄n 6= 0.

Then, the ranks of the matrices Vk are at most ≤ 2.

Proof We would like to show that the matrix ∂fW (x)
∂Vk

is of rank ≤ 1. We note that for any input
x ∈ Rn, the output can be written as follows, fV (x) = VL ·DL−1(x) · · ·D1(x) · V1 · x, where Di(x) =
diag[σ′(ui(x)))] and ui(x) = Wi ·DL−1(x) · · ·D1(x) · V1 · x. With measure 1 over the selection ofW ,
the matrices {Dl(x)}L−1

l=1 are constant in the neighborhood ofW . Let a> = VL ·DL−1(x) · · ·Dk(x) and
b = Dk−1(x) ·Wk−1 · · ·W1x. We can write fV (x) = a(x)> · Vk · b(x). Since the derivatives of a and b
with respect to Vk are zero and a, b are vectors, we have ∂f̄n

∂Vk
= yn · ∂fV (xn)

∂Vk
= yn · a(xn) · b(xn)> which

is a matrix of rank ≤ 1.
Since ∀ k ∈ [L] :

∂LS′ (ρ,{Vk}
L
k=1)

∂Vk
= 0 for all mini-batches S ′ = {(xij , yij)}Bj=1 ⊂ S of size B < |S|, we

have
∂LS′(ρ, {Vk}Lk=1)

∂Vk
=

2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= 0. (11)

Since interpolation is impossible when training with λ > 0, there exists at least one n ∈ [N] for which
ρf̄n 6= 1. We consider two batches S ′i and S ′j of size B that differ by sample, (xi, yi) and (xj , yj). We
have

∀ i, j ∈ [N] : 0 =
∂LS′i(ρ, {Vk}

L
k=1)

∂Vk
−
∂LS′j (ρ, {Vk}

L
k=1)

∂Vk

=
2

B
· ρ
[(

1− ρf̄i
)(
−Vkf̄i +

∂f̄i
∂Vk

)
−
(
1− ρf̄j

)(
−Vkf̄j +

∂f̄j
∂Vk

)]
.

(12)

Assume that there exists a pair i, j ∈ [N] for which (1− ρf̄i)f̄i 6= (1− ρf̄j)f̄j . Then, we can write

Vk =

[
(1− ρf̄i) · ∂f̄i∂Vk

+ (1− ρf̄j) · ∂f̄j∂Vk

]
[(1− ρf̄i)f̄i − (1− ρf̄j)f̄j]

. (13)

Since ∂f̄i
∂Vk

and ∂f̄j
∂Vk

are matrices of rank≤ 1, we obtain that Vk is of rank≤ 2. Otherwise, assume that for
all pairs i, j ∈ [N], we have α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j . In this case we obtain that for all i, j ∈ [N],
we have (

1− ρf̄i
)
· ∂f̄i
∂Vk

=
(
1− ρf̄j

)
· ∂f̄j
∂Vk

= U. (14)

Therefore, since α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j , by Equation 11,

0 =
2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= −2ραVk + 2ρU. (15)

Since the network cannot perfectly fit the dataset when trained with λ > 0, we obtain that there exists
i ∈ [N] for which (1− ρf̄i) 6= 0. Since f̄i 6= 0 for all i ∈ [N], this implies that α 6= 0. We conclude that
Vk is proportional to U which is of rank ≤ 1.

5.1 Origin of SGD noise
Lemma 6 shows that there cannot be convergence to a unique set of weights {Vk}Lk=1 that satisfy
equilibrium for all minibatches. More details of the argument are illustrated in [43]. When λ = 0,
interpolation of all data points is expected: in this case, the GD equilibrium can be reached without
any constraint on the weights. This is also the situation in which SGD noise is expected to essentially
disappear: compare the histograms on the left and the right hand side of Figure 5.
Thus, during training, the solution {Vk}Lk=1 is not the same for all samples: there is no convergence to a
unique solution but instead attempts to “jump” from one to another during training.

10

The absence of convergence to a unique solution is not surprising for SGD when the landscape is not
convex6 7.

5.2 Margins variance
Unregularized square loss minimization in which we have interpolation of all labels implies that all
margins are the same (σ2 =

∑
n(f̄n −

∑
f̄n)2) = 0). We have shown however that in SGD, differently

from GD, there is SGD noise. This is equivalent to saying that that SGD does not converge to a unique
solution that corresponds to zero gradient for all data point. This also means that there is variance in
the values of f across different minibatches and correspondingly for the associated values of ρ.
To have an intuition of the order of magnitude of the fluctuations in the margin that may be expected
consider the following simple case: assume that for one specific minibatch of size B the network would
exactly interpolate with all the same B margins f̄n = 1

ρeq
if λ = 0; for the same B data points but

with λ > 0 the network will quasi-interpolate with ρ = µ
B+λ and with the same margins for all the B

datapoints.
In this example the gap to interpolation is the same ε which is relevant for Neural Collapse (see
later assumption 2). If, in this binary case, we consider margins separately for the + and − one-hot
encodings, as in the multiclass case (see later), then 1 > f+(x+) > 1− ε and ε > f+(x−) > 0, with ε
and fluctuations around it (for individual data points). Figure 5 shows that the variance of the noise
depends on λ and becomes very small when λ = 0 (for the square loss).

6 Neural Collapse
A recent paper [11] described four empirical properties of the terminal phase of training (TPT) deep
networks, using the cross-entropy loss function. TPT begins at the epoch where training error first van-
ishes. During TPT, the training error stays effectively zero, while training loss progressively decreases.
Direct empirical measurements expose an inductive bias they call Neural Collapse (NC), involving
four interconnected phenomena. Informally, (NC1) Cross-example within-class variability of last-layer
training activations collapses to zero, as the individual activations themselves collapse to their class
means. (NC2) The class means collapse to the vertices of a simplex equiangular tight frame (ETF).
(NC3) Up to rescaling, the last-layer classifiers collapse to the class means or in other words, to the
simplex ETF (i.e., to a self-dual configuration). (NC4) For a given activation, the classifier’s decision
collapses to simply choosing whichever class has the closest train class mean (i.e., the nearest class
center decision rule). In this section we show that we can derive the conditions of Neural Collapse
by studying the dynamics of Stochastic Gradient Descent on the square loss function with Lagrange
Normalization and Weight Decay.
We now formally define the four neural collapse conditions. We consider a network fW (x) = WLh(x),
where h(x) ∈ Rp denotes the last layer feature embedding of the network, andWL ∈ RC×p contains the
parameters of the classifier. The network is trained on a C-class classification problem on a balanced
dataset S = {(xcn, ycn)}N,Cn=1,c=1 with N samples per class. We can compute the per-class mean of the
last layer features as follows

µc =
1

N

N∑
n=1

h(xcn), (16)

The global mean of all features as follows

µG =
1

C

∑
c

µc =
1

NC

C,N∑
c=1,n=1

h(xcn).

6Suppose that the loss landscape has two equivalent minima separated by a low, smooth hill. SGD, as well as as a standard
Langevin process, may jump between the two minima, while the average of the SGD parameters may correspond to the hill in
between!

7The following theorem ([44]), that says that the set of full rank matrices in Rm×n is connected, may be relevant, since it
implies that matrices of the same rank are on a smooth manifold while matrices of a different rank are on disconnected manifolds.

Theorem 3 The set of allm × n rectangular real matrices of rank r has only one connected component whenm 6= n or r < m = n.
Furthermore, all these connected components are connected by analytic regular arcs.

11

Furthermore, the second order statistics of the last layer features are computed as:

ΣW =
1

C

C∑
c=1

1

N

∑
n=1

(h(xcn)− µc)(h(xcn)− µc)>

ΣB =
1

C

C∑
c=1

(µc − µG)(µc − µG)>

ΣT =
1

NC

C,N∑
c=1,n=1

(h(xcn)− µG)(h(xcn)− µG)>.

(17)

Here, ΣW measures the within-class-covariance of the features, ΣB is the between-class-covariance,
and ΣT is the total covariance of the features (ΣT = ΣW + ΣB).
We can now list the formal conditions for Neural Collapse:

NC1 (Variability collapse) Variability collapse states that the variance of the feature embeddings of
samples from the same class tends to zero, or formally, Tr(ΣW)→ 0.

NC2 (Convergence to Simplex ETF) |‖µc − µG‖2 − ‖µc′ − µG‖2| → 0, or the centered class means
of the last layer features become equinorm. Moreover, if we define µ̃c = µc−µG

‖µc−µG‖2 , then we have
〈µ̃c, µ̃c′〉 = − 1

C−1 for c 6= c′, or the centered class means are also equiangular. The equinorm condition
also implies that∑c µ̃c = 0, i.e., the centered features lie on a simplex.

NC3 (Self-Duality) If we collect the centered class means into a matrix M = [µc − µG], we have∣∣∣∣∣∣ W>‖W‖F −
M
‖M‖F

∣∣∣∣∣∣ → 0, or that the classifier W and the last layer feature meansM become duals of
each other.

NC4 (Nearest Center Classification) The classifier implemented by the deep network eventually
boils down to choosing the closest mean last layer feature argmaxc〈W c

L, h(x)〉 → argminc‖h(x)− µc‖2.

6.1 Binary Classification
We first consider the case of binary classification since this closely follows our development in the
previous section. The loss function is the same one defined in 1, and we consider minimization using
Stochastic Gradient Descent with a batch size of 1.
We can obtain the conditions for Neural Collapse from the convergence of SGD if wemake the following
assumption:

Assumption 1 (Symmetric Quasi-interpolation (Binary Classification)) Consider a binary classifica-
tion problem with inputs in a feature spaceX and labels space {+1,−1}. A classifier fW : X → R symmetrically
quasi-interpolates a training dataset S = {(xn, yn)}Nn=1 if for all training examples ¯fWn = ynfW (xn) = 1− ε,
where ε is the interpolation gap.

Though we do not carry a formal derivation here, we believe that the assumption follows from our
analysis of the gradient flow equation by the following argument. The margins fn are all the same for
λ = 0 because we assume zero loss, that is interpolation of all xn. For λ > 0 the gap to interpolation is
given by Equation 8, that is ε = µ2

µ2+σ2+λ , with σ = 0 for λ = 0. Assuming continuous dependence of σ
on λ (and continuous dependence of the solution of the ODE equations 2) we expect the margins fn to
be very close to each other (fj − fi << ε, ∀i, j) with a difference that goes to zero for λ→ 0.
The assumption has also empirical support: we show in Figure 6 that all the margins converge to be
roughly equal. Once within class variability disappears, and for all training samples, the last layer
features collapse to their mean, then, the outputs and margins also collapse to the same value. We can
see this in the left plot of Figure 5 where all of the margin histograms are concentrated around a single
value. We visualize the evolution of the training margins over the training epochs in Figure 6 which
shows that the margin distribution concentrates over time. At the final epoch the margin distribution

12

(colored in yellow) is much narrower than at any intermediate epochs. Notice that our analysis of the
origin of the SGD noise shows that "strict" NC1 never happens with SGD, in the sense that the margins
are never, not even asymptotically, exactly equal to each other, but just very close!

Theorem 4 Let S = {(xn, yn)}Nn=1 be a dataset. Let (ρ, V) be the parameters of a ReLU network f such
that VL has converged when training using SGD with batches of size 1 on the square loss with LN+WD. Let
µ+ = 1

N

∑N
n=1,yn=1 h(xn), µ1 = 1

N

∑N
n=1,yn=−1 h(xn). Assume that f satisfies Assumption 1. Then, it also

satisfies the conditions of Neural Collapse as described below.

• NC1: µ+ = h(xn) for all n ∈ [N], yn = 1, µ− = h(xn) for all n ∈ [N], yn = −1;

• NC2: µ+ = −µ−, which is the structure of an ETF with two vectors;

• NC3: VL ∝ µ+, µ−;

• NC4: sign(ρfV (x)) = arg minc∈{+1,−1} ‖µc − h(x)‖.

Proof The update equations for SGD on the square loss function with LN+WD are given by:

V
(t+1)
L = V

(t)
L − η ∂L

∂V
(t)
L

=⇒ V
(t+1)
L = V

(t)
L − η ×

(
2ρ(ρf̄n − 1)ynh(xn) + 2ν

(t)
L V

(t)
L

) (18)

We can apply the unit norm constraints ||V (t+1)
L ||2 = 1 and ||V (t)

L ||2 = 1 and ignore all terms that are
O
(
η2
) to compute ν(t)

L as:

2ν
(t)
L = 2ρynV

(t)>
L h(xn)(1− ρf̄n)

=⇒ ν
(t)
L = ρf̄n(1− ρf̄n)

(19)

This gives us the following SGD update:

V
(t+1)
L = V

(t)
L − η × 2ρyn(ρf̄n − 1)

(
h(xn)− fnV (t)

L

)
(20)

Using assumption 1, we can see that for every training sample in class yn = 1, h(xn) = (1−ε)
ρ VL, and

for every training sample in class yn = −1, h(xn) = (−1+ε)
ρ VL. This shows that within class variability

has collapsed and that all last layer features collapse to their mean, which is the condition for NC1. We
can also see that µ+ = −µ−, which is the condition for NC2 when there are 2 vectors in the Simplex
ETF. The SGD convergence condition also tells us that VL ∝ µ+ and VL ∝ µ−, which gives us the NC3
condition. NC4 follows then from NC1-NC2, as shown by theorems in [11]

We can also obtain the following relationship between the ε in the margin and the weight decay
parameter λ

Lemma 7 For binary classification trained under the square loss, convergence of SGD with LN+WD to points
satisfying assumption 1 (that is σ = 0) results in a margin of 1− ε with ε = λ

µ2+λ .

Proof We consider a fixed network such that ρµ = 1 when λ = 0, that is the network interpolates
the data. We now consider the smaller ρλ, associated with λ = 0 given by Equation 7, and compute
ε = 1− ρλµ = 1− µ2

µ2+λ = λ
µ2+λ .

13

6.2 Multiclass Classification
In the rest of this section we consider the phenomenon of Neural Collapse under the square loss
with Weight Decay for the multiclass case. Because of the multiclass framework we cannot use our
previous analysis of the dynamics of SGD and we have to make a specific assumption on the margins
of quasi-interpolation for the different classes.
We consider a classification problem with C classes with a balanced training dataset S = ∪Cc=1Sc =
∪Cc=1{(xcn, c)}Nn=1 = {(xn, yn)} that has N training examples Sc = {(xcn, c)}Nn=1 per-class c ∈ [C].
The labels are represented by the unit vectors {ec}Cc=1 in RC . We consider a deep ReLU network
fW : Rd → RC , which takes the form fW (x) = WLσ(WL−1 . . .W2σ(W1x) . . .). However, we stick to
the normalized reparameterization of the deep ReLU network as f(x) = ρVLσ(VL−1 . . . V2σ(V1x) . . .).
We train this normalized network with Stochastic Gradient Descent on the square loss with Lagrange
Multipliers andWeight Decay. This architecture differs from the one considered in section 4 in that it has
C outputs instead of a scalar output. Let the output of the network be ρfV (x) = [ρf

(1)
V (x) . . . ρf

(C)
V (x)]>,

and the one-hot target vectors be yn = [y
(1)
n . . . y

(C)
n]>. We will also follow the notation of [11] and use

h : Rd → Rp to denote the last layer features of the deep network. This means that f (c)
V (x) = 〈V cL, h(x)〉.

Formally, the loss function with Lagrange Multipliers and Weight Decay takes the form:

LS(ρ, {Vk}Lk=1) =
1

NC

C∑
c=1

N∑
n=1

||ycn − ρfV (xcn)||2 +

L∑
k=1

νk
(
||Vk||2 − 1

)
+ λρ2 (21)

At each time point t the optimization process selects a random class-balanced batch S ′ = ∪Cc=1 ∪bn=1 S ′c
including B samples per-class from S ′c ⊂ Sc and updates the scale and weights of the network is the
following manner V ← V − η ∂LS′ (ρ,V)

∂V , ρ← ρ− η ∂LS′ (ρ,V)
∂ρ where η > 0 is a predefined learning rate

and b is a divisor ofN . A convergence point of the optimization process is a point (ρ, V) that will never
be updated by any possible sequence of steps taken by the optimization algorithm. Specifically, the
convergence points of the proposedmethod are all points ρ, V forwhich ∂LS′ (ρ,V)

∂V = 0 and ∂LS′ (ρ,V)
∂ρ = 0

for all class-balanced batches S ′ ⊂ S.
We make now the key assumption for the multiclass case8. The assumption is that the solution obtained
by Stochastic Gradient Descent satisfies the follwing condition:
Assumption 2 (Symmetric Quasi-interpolation (Multiclass Classification)) Consider a C-class clas-
sification problem with inputs in a feature space X and labels space RC . A classifier f : X → RC symmetrically
quasi-interpolates a training dataset S = ∪Cc=1Sc = ∪Cc=1{(xcn, ycn)}Nn=1 if for all training examples xcn in
class c, f (c)(xcn) = 1− ε, and f (c′)(xcn) = ε

C−1 , where ε is the interpolation gap.

The main result of this section is

Theorem 5 Let S = ∪Cc=1{(xcn, c)}Nn=1 be a dataset and B be a divisor ofN . Let (ρ, V) be the parameters of a
ReLU network fW such that VL has converged when training using SGD with balanced batches of size B = bC

on the square loss with LN+WD. Let µc = 1
N

∑N
n=1 h(xcn), µG = 1

C

∑C
c=1 µc andM = [. . . µc − µG . . .] ∈

Rp×C . Assume that fW satisfies Assumption 2. Then, it also satisfies the conditions of Neural Collapse as
described below.

• NC1: µc = h(xcn) for all n ∈ [N];

• NC2: the vectors {µc − µG}Cc=1 form an ETF;

• NC3: V >L = M
‖M‖F ;

• NC4: arg maxc∈[C] f
c
W (x) = arg minc∈[C] ‖µc − h(x)‖.

Proof Our training objective is the loss function described in (21). The network is trained using SGD
along with Lagrange normalization and weight decay. We use SGD with balanced batches to train the
network. Each step taken by SGD takes the form −η ∂LS′∂V , where S ′ ⊂ S is a balanced batch containing
exactly b samples per class. We consider limit points of the learning procedure, meaning that ∂LS′∂V = 0

8We conjecture it should follow from a multiclass analysis of the dynamics.

14

for all balanced batches S ′. Let S ′ = ∪Cc=1∪bn=1 {(x̂cn, ŷcn)} be such a balanced batch. We use Stochastic
Gradient Descent, where at each time t the batch S ′ is drawn at random from S, to study the time
evolution of the normalized parameters VL in the limit η → 0.

V
(t+1)
L = V

(t)
L − η ∂LS

′

∂V
(t)
L

=⇒ V
(t+1)
L = V

(t)
L − η ×

(
1

B

C∑
c′=1

b∑
n=1

2ρ(ρfV (xc′n)− yc′n)h(xc′n)> + 2ν
(t)
L V

(t)
L

) (22)

We can apply the unit norm constraints ||V (t+1)
L ||2F = tr(V (t+1)>

L V
(t+1)
L) = 1 and ||V (t)

L ||2F = tr(V (t)>
L V

(t)
L) =

1 and ignore all terms that are O (η2
) to compute ν(t)

L as:

2ν
(t)
L = − 1

B

C∑
c′=1

b∑
n=1

2ρtr
(
V

(t)>
L (ρfV (xc′n)− yc′n)h(xc′n)>

)
=⇒ ν

(t)
L = − 1

B

C∑
c′=1

b∑
n=1

ρtr
(

(V
(t)
L h(xc′n))>(ρfV (xc′n)− yc′n)

)
= − 1

B

C∑
c′=1

b∑
n=1

ρfV (xc′n)>(ρfV (xc′n)− yc′n)

(23)

This means that the (stochastic) gradient of the loss with respect to the last layer VL, and each classifier
vector V cL with Lagrange Normalization can be written as (we drop the time index t for clarity):

∂LS′
∂VL

=
−2ρ

B

C∑
c′=1

b∑
n=1

fV (xc′n)>(ρfV (xc′n)− yc′n)VL − (ρfV (xc′n)− yc′n)h(xc′n)>

∂LS′
∂V cL

=
−2ρ

B

C∑
c′=1

b∑
n=1

fV (xc′n)>(ρfV (xc′n)− yc′n)V cL − (ρf
(c)
V (xc′n)− y(c)

c′n)h(xc′n)

(24)

Let us analyze the equilibrium parameters at the last layer, considering each classifier vector V cL of VL,
separately:

0 =
∂LS′
∂V cL

=
2ρ

B

C∑
c′=1

b∑
n=1

fV (xc′n)>(ρfV (xc′n)− yc′n)V cL − (ρf
(c)
V (xc′n)− y(c)

c′n)h(xc′n)

=
2ρ

B

b∑
n=1

fV (xcn)>(ρfV (xcn)− ycn)V cL − (ρf
(c)
V (xcn)− 1)h(xcn)

+
2ρ

B

∑
c′∈[C]\{c}

b∑
n=1

fV (xc′n)>(ρfV (xc′n)− yc′n)V cL − ρf
(c)
V (xc′n)h(xc′n)

(25)

Let us consider solutions that achieve symmetric quasi-interpolation, with ρf
(c)
V (xcn) = 1 − ε, and

ρf
(c)
V (xc′n) = ε

C−1 . Hence, we have

2ρ

B

b∑
n=1

εh(xcn)− 2ρ

B

∑
c′∈[C]\{c}

b∑
n=1

ε

C − 1
h(xc′n)− 2

(
ε(1− ε)− ε2

C − 1

)
V cL = 0. (26)

In addition, consider a second batch S ′′ that differs from S ′ by only one sample x′cn instead of xcn from
class c. By applying the previous Eq. (26) for S ′ and for S ′′ , we can obtain h(xcn) = h(x′cn), which
proves NC1.

15

Let S = ∪ki=1Si be a partition of S into k = N/b (an integer) disjoint batches. Since our data is balanced,
we obtain that

0 =
1

k

k∑
i=1

∂LSi(ρ, V)

∂V cL

=
∂LS(ρ, V)

∂V cL

=
2ρ

NC

C∑
c′=1

N∑
n=1

fV (xc′n)>(ρfV (xc′n)− yc′n)V cL − (ρf
(c)
V (xc′n)− y(c)

c′n)h(xc′n)

=
2ρ

NC

N∑
n=1

εh(xcn)− 2ρ

NC

∑
c′∈[C]\{c}

N∑
n=1

ε

C − 1
h(xc′n)− 2

(
ε(1− ε)− ε2

C − 1

)
V cL

(27)

Under the conditions of NC1 we can simply write µc = h(xcn) for all n ∈ [N] and c ∈ [C]. Let us denote
the global feature mean by µG = 1

C

∑C
c=1 µc. This means we have:

∂LS(ρ, V)

∂V cL
= 0 =⇒ V cL =

ρ

((C − 1)(1− ε)− ε)
· (µc − µG). (28)

This implies that the last layer parameters VL are a scaled version of the centered class-wise feature
matrixM = [. . . µc − µG . . .]. Thus at equilibrium, with quasi interpolation of the training labels, we
obtain V >L

‖VL‖F = M
‖M |F .

From the SGD equations, we can also see that at equilibrium, with quasi interpolation, all classifier
vectors in the last layer (V cL , and hence µc − µG) have the same norm:

‖V cL‖22 =
1
NC

∑C
c′=1

∑N
n=1(ρf

(c)
V (xc′n)− y(c)

c′n)ρf
(c)
V (xc′n)

1
NC

∑C
c′=1

∑N
n=1〈ρfV (xc′n)− yc′n, ρfV (xc′n)〉

=

ε
C (1− ε)− ε2

C(C−1)

ε(1− ε)− ε2

C−1

=
1

C

(29)

From the quasi-interpolation of the correct class label we have that 〈V cL, µc〉 = 1−ε
ρ which means

〈V cL, µG〉+ 〈V cL, µc − µG〉 = 1−ε
ρ . Now using Equation (28)

〈V cL, µG〉 =
1− ε
ρ
−

(
1− C

C−1ε
)

(C − 1)

ρ
‖V cL‖22

=
1− ε
ρ
−

C−1
C − ε
ρ

=
1

ρC
.

(30)

From the quasi-interpolation of the incorrect class labels, we have that 〈V cL, µc′〉 = ε
ρ(C−1) , which means

〈V cL, µc′ − µG〉+ 〈V cL, µG〉 = ε
ρ(C−1) . Plugging in the previous result and using (29) yields

(C − 1)
(

1− C
C−1ε

)
ρ

× 〈V cL, V c
′

L 〉 =
ε

ρ(C − 1)
− 1

ρC

=⇒ 〈Ṽ cL, Ṽ c
′

L 〉 =
1

‖V cL‖22
× −1

C(C − 1)
= − 1

C − 1

(31)

Here Ṽ cL =
V cL
‖V cL‖2

, and we use the fact that all the norms ‖V cL‖2 are equal. This completes the proof
that the normalized classifier parameters form an ETF. Moreover since V cL ∝ µc − µG and all the
proportionality constants are independent of c, we obtain∑c V

c
L = 0. This completes the proof of the

NC2 condition. NC4 follows then from NC1-NC2, as shown by theorems in [11].

16

Remarks

• In a homogeneous neural network, the absence of interpolation is a necessary condition for
Neural Collapse. We can see this by plugging in the Neural Collapse solution into the square
loss function and observing that the loss is non-zero, which means the Neural Collapse solution
is not a global minimum. This means that weight decay regularization is necessary to observe
Neural Collapse for homogeneous neural networks.

• The analysis of the loss landscape and of the qualitative dynamics under the square loss in section
4.3 and in section 4.2 implies that all quasi-interpolating solutions with ρ ≥ ρ0 and λ > 0 and
satisfying assumption 2 yield neural collapse and have its four properties.

• SGD is a necessary requirement in our proof of NC1.
• From our analysis, the relationship between Neural Collapse and generalization is not evident.

We believe that NC1 to NC4 should take place for any quasi-interpolating solutions (in the square
loss case), including solutions that do not have a large margin (they have small ρ). In particular
the analysis above predicts Neural Collapse for datasets with significant amounts of label noise,
or even random labels, .

7 Generalization, Rademacher complexity and norms

8 Generalization, Rademacher complexity and norms
We begin with basic generalization bounds that hold with probability at least (1− δ), ∀g ∈ G of the
form [45]:

|L(g)− L̂(g)| ≤ 2RN (G) +

√
ln(1

δ)

2N
(32)

where L(g) = E[`γ(g(x), y)] is the expected loss, L̂(g) is the empirical loss, RN (G) is the empirical
Rademacher average of the class of functions G measuring its complexity. In our case L is the square
loss.
Assume that the square loss on the training set is exactly zero (which usually almost is) and themargins
f̄n are all the same and very close to 1 (these assumptions can be weakened). Then we can measure the
loss of the functions obtained via square loss minimization using the ramp loss9. Under our assumption
of gn(xn)yn = 1 ∀nwe can replace the square loss with `γ(g(x), y) with gamma very close to 1: the
ramp loss will effectively measure the classification error for the training set. Notice that it is possible
to associate to g an indicator function 1−yig(xi

2 (see [46]) and that then

err(g)− êrr(g) ≤ RN (G) +

√
ln(1

δ)

2N
(33)

We now use the observation that, because of homogeneity of the ReLU networks, the empirical
Rademacher complexity satisfies the property,

RN (G) = ρRN (F), (34)

where G is the space of functions of our unnormalized networks and F denotes the corresponding
normalized networks. This yields [47]

9The ramp loss is defined as

`γ(y, y′) =

1, if yy′ ≤ 0,

1− yy′

γ
, if 0 ≤ yy′ ≤ γ,

0, if yy′ ≥ γ.
`γ=0(y, y′) is the standard 0− 1 classification error and observe that `γ=0(y, y′) < `γ>0(y, y′).

17

|err(g)− êrr(g)| ≤ ρRN (F) +

√
ln(1

δ)

2N
, (35)

implying the following bound for interpolating minimizers

err(g) ≤ ρR(F) +

√
ln(1

δ)

2N
. (36)

Furthermore we can bound R(F) (see Equation 5 in [48]) as

RN (F) ≤
√
L√
N
. (37)

Thus the bound on RN (F) depends on the architecture of the network but not on the training set. It
could be improved further if the spectral norm of the weight matrices is close to their Frobenius norm
(see Equation 6 in [48]), which happens with small rank of the weight matrices. The overall bound is
then (assuming zero training error)

err(g) ≤ ρ√
N

√
L+

√
ln(1

δ)

2N
. (38)

Relative Generalization We now consider two solutions with zero empirical loss of the square loss
regression problem obtained with the same ReLU deep network and corresponding to two different
minima with two different ρ. Let us call them ga(x) = ρaf

a(x) and gb(x) = ρbf
b(x). Using the notation

of this paper, the functions fa and fb correspond to networks with normalized weight matrices at each
layer.
Let us assume that ρa < ρb.
We now use use Equation 35 and the fact that the empirical L̂γ for both functions is the same to write
L0(fa) = L0(F a) ≤ c1ρaRN (F̃)+c2

√
ln(1

δ)

2N andL0(f b) = L0(F b) ≤ c1ρbRN (F̃)+c2

√
ln(1

δ)

2N . The bounds
have the form

L0(fa) ≤ Aρa + ε (39)
and

L0(f b) ≤ Aρb + ε (40)
Thus the upper bound for the expected error L0(fa) is better than the bound for L0(f b). Of course this
is just an upper bound. As a consequence this result does not guarantee that a solution with smaller ρ
will always have a smaller expected error than a solution with larger ρ.
Notice that the this generalization claim is just a relative claim about different solutions obtained with
the same network trained on the same training set.
Figure 8 shows clearly that increasing the percentage of random labels increases ρ needed to maintain
interpolation – decreasing the margin – and that at the same time the test error increases as expected
from Equation 35. This monotonic relation between margin and accuracy at test seems to break down
for small differences in margin as shown in Figure 9, though the significance of the effect is unclear. Of
course this kind of behavior is not inconsistent with an upper bound.

The bound ρ is surprisingly small As we mentioned earlier, we bound the Rademacher complexity
of the convolutional layers not by the norm of the associated Toeplitz matrices but by the norm of the
filters. The reason is that the covering numbers associated with convolution are much smaller because
of shift invariance (see section 3.3 in [37] and theorems in [38]). The ρk calculated in this way for the
convolutional layers of our network reduces the generalization bounds by several orders of magnitude,
despite still being vacuous (see Figure 10). It is thus many orders of magnitude better than VC bounds
which depend on the number of weights and are therefore always vacuous in overparametrized
situations. With norm-based bounds it is possible to have overparametrization and interpolation
simultaneously with non-vacuous generalization bounds. In fact a slightly different 5-layers network
with a single last non-convolutional layer achieves a non-vacuous norm-based bound at around 20, 000
training data which is much less than the total number of parameters (246, 886).

18

We remark that it is impossible to compare directly experiments with ρ obtained with λ = 0 and with ρ
obtained with λ > 0. The reason is that in the case of λ = 0 we can expect to find solutions to ρfn = 1,
for most values of ρ, given sufficient overparametrization. Without regularization (and especially
if normalization is used) the solution will be found close to the ρ associated with initialization. In
this situation, similar to linear regression of random features, it seems likely that optimization mainly
acts on the weights of the last layer. Alternatively, this is a case in which the bound should be better
estimated in terms of the norm ||Wk −Ak|| where the Ak are appropriate reference matrices [49]: here
the Ak could be chosen to be the weight matrices at initialization instead of zero matrices10.
Different bounds [49] focused on the spectral norm of the weight matrices could be used

RN (F) ≤
ΠL
j=1||Vj ||sL

3
2

√
N

, (41)

where ||Vj ||s are the spectral norms of the matrices Vj that have Frobenius norm 1. In a future paper,
we plan to compare these different bounds in experiments using BN and LN with the goal of checking
which bounds may not be vacuous and why BN is usually better than LN.

9 Summary and Discussion
In this paper we have considered a specific model of the dynamics of, first, gradient flow (GF), and
then SGD, in overparametrized ReLU neural networks trained for square loss minimization. Under
the assumption of convergence to zero loss minima, we have shown that solutions have a bias toward
small ρ, defined as the product of the Frobenius norms of each layer’s (unnormalized) weight matrix.
We assume that during training there is normalization using a Lagrange multiplier (LN) of each layer
weight matrix but the last one, together with Weight Decay (WD) with the regularization parameter
λ. Without weight decay, the solution would be the interpolating solution with minimum ρ. In the
absence of LN and WD, good solutions for classification may still be achieved because of the implicit
bias towards small norm solutions in the GD dynamics introduced by carefully chosen close-to-zero
initial conditions on the norms of the weights. However, for λ = 0 we often observe solutions with
large ρ that are suboptimal and probably similar to the NTK regime.
A puzzle that remains open is why BN leads to better solutions than LN and WN, despite the many
similarities between them. WN is easier to formalize mathematically as LN, which is the main reason
for the role it plays in this paper.
With SGD andweight decay we uncover a bias of convergence towards not only small ρ but also towards
small rank solutions. At the same time, we show that SGD with regularization yields an unavoidable
noise, which makes exact convergence impossible, even asymptotically. However, margins do converge
to each other within a small ε, implying that the first condition for neural collapse [11] is satisfied in
this approximate sense. We show that the other conditions are also satisfied.
A natural question is whether Neural Collapse is related to solutions with good generalization. Our
analysis suggests that this is not the case, at least not directly: Neural Collapse is a property of the
dynamics, independently of the size of the margin which provides an upper bound on the expected
error11. In fact, our prediction of Neural Collapse for randomly labeled CIFAR10, was confirmed
originally in preliminary experiments by our collaborators (Papyan et al.) and more recently in other
papers (see for instance, [27]).
Independently of Neural Collapse, can our analysis of the square loss dynamics and its connection with
margin and low rank provide insights on generalization of the solutions of gradient descent techniques?
Large margin is usually associated with good generalization [45]; in the meantime, however, it is also
broadly recognized that margin alone does not fully account for generalization in deep nets [50, 51, 52].
Margin in fact provides an upper bound on generalization error, as shown in section 8. Larger margin
gives a better upper bound on the generalization error for the same network trained on the same data.
We have verified empirically this property by varying the margin using different degrees of random
labels in a binary classification task. While training gives perfect classification and zero square loss, the
margin on the training set together with the test error decreases with the increase in the percentage
of random labels. The upper bound given in section 8, however, does not explain by itself details of

10In our experiments with λ > 0, see Figure ??, ||Wk −Ak|| ≈ ||Wk||
11Even if margin is likely to be just one of the factors determining out-of-sample performance.

19

the generalization behavior that we observe for different initializations (see Figure 9), where small
differences in margin are actually anticorrelated with small differences in test error. We conjecture that
margin together with rank may be sufficient to explain generalization, as discussed briefly in section 8.
The bias towards small ρ solutions induced by regularization for λ > 0 can be replaced by an implicit
bias induced by small initialization and parameters values that allow convergence to the first quasi-
interpolating solution for increasing ρ. The main effect of λ > 0 is to eliminate degeneracy of the
dynamics at the zero-loss critical points.
For λ > 0 a main property of the minimizers that upper bounds their expected error is ρ, which is the
inverse of the margin: we prove that among all the quasi-interpolating solutions the ones associated
with smaller ρ have better bounds on the expected classification error. Our norm-based bounds under
LN training are vacuous in our experiments but within a couple of orders of magnitude of the expected
error. They are thus better than previous bounds, such as VC bounds, and better than argued in [53],
mainly because the covering numbers associated with the convolutional layers are estimated by taking
into account the associated invariance properties. This is encouraging since in our experiments there is
large overparametrization but still relatively low complexity.
The situation here is somewhat similar to the linear case: for overparametrized networks the best
solution in terms of generalization is the minimum norm solution towards which GD is biased. As-
sociated with the minimum ρ solutions are upper bounds on the generalization error and properties
such as Neural Collapse. Interestingly, these results do not say why deep networks should be better
than other classifiers such as kernel machines. Our analysis supports the idea that the advantage
of deep networks relative to other standard classifiers is greater for the problems to which specific
deep architectures such as CNNs can be applied. The deep reason is that CNNs reflect the function
graph of certain locally compositional target function – which have small intrinsic dimensionality – and
thus can be approximated well by sparse networks without incurring in the curse of dimensionality.
Despite overparametrization the sparse networks can show good generalization (because of the "small"
covering numbers).
In summary, we describe how gradient descent on the square loss in the presence of regularization can
converge to minimum ρ solutions, corresponding to max margin solutions, and show that they are
biased towards small rank of the weight matrices. Associated with these solutions are properties such
as Neural Collapse and bounds on the generalization error. Our analysis of the square loss suggests a
bias of SGD in the presence of weight decay towards minimum ρ and low rank solutions.
Acknowledgments This material is based upon work supported by the Center for Minds, Brains and Machines
(CBMM), funded by NSF STC award CCF-1231216. This research was also sponsored by grants from the National
Science Foundation (NSF-0640097, NSF-0827427), and AFSOR-THRL (FA8650-05-C-7262).

References
[1] Kaifeng Lyu and Jian Li. Gradient descentmaximizes themargin of homogeneous neural networks.

CoRR, abs/1906.05890, 2019.
[2] Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks. PNAS,

2020.
[3] Mor Shpigel Nacson, Suriya Gunasekar, Jason D. Lee, Nathan Srebro, and Daniel Soudry. Lexico-

graphic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models.
arXiv e-prints, page arXiv:1905.07325, May 2019.

[4] A. Banburski, Q. Liao, B. Miranda, T. Poggio, L. Rosasco, B. Liang, and J. Hidary. Theory of deep
learning III: Dynamics and generalization in deep networks. CBMMMemo No. 090, 2019.

[5] Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs
cross-entropy in classification tasks. arXiv preprint arXiv:2006.07322, 2020.

[6] Ryan M. Rifkin. Everything Old Is New Again: A Fresh Look at Historical Approaches to Machine
Learning. PhD thesis, Massachusetts Institute of Technology, 2002.

[7] T. Poggio and Q. Liao. Generalization in deep network classifiers trained with the square loss.
CBMMMemo No. 112, 2019.

20

[8] T. Poggio and Y. Cooper. Loss landscape: Sgd has a better view. CBMMMemo 107, 2020.
[9] Yaim Cooper. Global minima of overparameterized neural networks. SIAM Journal on Mathematics

of Data Science, 3(2):676–691, 2021.
[10] Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization in

relu networks. CoRR, abs/2201.12760, 2022.
[11] Vardan Papyan, X. Y. Han, andDavid L. Donoho. Prevalence of neural collapse during the terminal

phase of deep learning training. Proceedings of theNational Academy of Sciences, 117(40):24652–24663,
2020.

[12] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

[13] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338. PMLR,
2020.

[14] Tengyu Xu, Yi Zhou, Kaiyi Ji, and Yingbin Liang. When will gradient methods converge to
max-margin classifier under relu models? Stat, 10(1):e354, 2021.

[15] Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Hsu, and
Anant Sahai. Classification vs regression in overparameterized regimes: Does the loss function
matter? arXiv e-prints, page arXiv:2005.08054, May 2020.

[16] Tengyuan Liang and Alexander Rakhlin. Just Interpolate: Kernel ”Ridgeless” Regression Can
Generalize. arXiv e-prints, page arXiv:1808.00387, Aug 2018.

[17] Tengyuan Liang and Benjamin Recht. Interpolating classifiers make few mistakes. arXiv preprint
arXiv:2101.11815, 2021.

[18] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In International conference on machine learning, pages 4140–
4149. PMLR, 2017.

[19] Mahdi Soltanolkotabi, Adel Javanmard, and JasonDLee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information Theory,
65(2):742–769, 2018.

[20] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations, 2019.

[21] Lenaic Chizat, EdouardOyallon, and Francis Bach. On lazy training in differentiable programming.
arXiv preprint arXiv:1812.07956, 2018.

[22] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

[23] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

[24] Zhengdao Chen, Grant M Rotskoff, Joan Bruna, and Eric Vanden-Eijnden. A dynamical central
limit theorem for shallow neural networks. arXiv preprint arXiv:2008.09623, 2020.

[25] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[26] Dustin G. Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
CoRR, abs/2011.11619, 2020.

21

[27] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. Advances in Neural Information
Processing Systems, 34:29820–29834, 2021.

[28] Jianfeng Lu and Stefan Steinerberger. Neural collapse with cross-entropy loss. CoRR,
abs/2012.08465, 2020.

[29] Cong Fang, Hangfeng He, Qi Long, and Weijie J. Su. Layer-peeled model: Toward understanding
well-trained deep neural networks. CoRR, abs/2101.12699, 2021.

[30] StephanWojtowytsch et al. On the emergence of tetrahedral symmetry in the final and penultimate
layers of neural network classifiers. arXiv preprint arXiv:2012.05420, 2020.

[31] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex duality.
arXiv preprint arXiv:2002.09773, 2020.

[32] T. Poggio and Q. Liao. Generalization in deep network classifiers trained with the square loss.
Center for Brains, Minds and Machines (CBMM) Memo No. 112, 2021.

[33] XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path. arXiv preprint arXiv:2106.02073, 2021.

[34] Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization
landscape of neural collapse under mse loss: Global optimality with unconstrained features. arXiv
preprint arXiv:2203.01238, 2022.

[35] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. CoRR, abs/1812.03981, 2018.

[36] Sourav Chatterjee. Convergence of gradient descent for deep neural networks, 2022.
[37] Fabio Anselmi, Lorenzo Rosasco, and Tomaso A. Poggio. On invariance and selectivity in repre-

sentation learning. CoRR, abs/1503.05938, 2015.
[38] Antoine Ledent, Yunwen Lei, andMarius Kloft. Improved generalisation bounds for deep learning

through l∞ covering numbers. CoRR, abs/1905.12430, 2019.
[39] A Krizhevsky. Learning multiple layers of features from tiny images. Technical Report, 2009.
[40] Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geom-

etry, and complexity of neural networks. CoRR, abs/1711.01530, 2017.
[41] T. Poggio and Y. Cooper. Loss landscape: Sgd can have a better view than gd. CBMM memo 107,

2020.
[42] Quynh Nguyen. On connected sublevel sets in deep learning. In Kamalika Chaudhuri and

Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 4790–4799. PMLR, 09–15 Jun 2019.

[43] T. Galanti and T. Poggio. Sgd noise and implicit low-rank bias in deep neural networks. Center for
Brains, Minds and Machines (CBMM) Memo No. 134, 2022.

[44] J. C. Evard and F. Jafari. The set of all rectangular real matrices is connected by analytic regular
arcs. Proceedings of the American Mathematical Society, 120(2):413–419, February 1994.

[45] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning
theory. In Summer school on machine learning, pages 169–207. Springer, 2003.

[46] Rob Shapire. Cos 511: Theoretical machine learning, lecture 10. 2018.
[47] Maria-Florina Balcan. 10-806 foundations of machine learning and data science, lecture 8: October

5, 2015. 2015.

22

[48] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. CoRR, abs/1712.06541, 2017.

[49] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. CoRR, abs/1706.08498, 2017.

[50] P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural
networks. ArXiv e-prints, June 2017.

[51] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization
gap in deep networks with margin distributions. arXiv preprint arXiv:1810.00113, 2018.

[52] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

[53] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. CoRR, abs/1802.05296, 2018.

[54] David G. T. Barrett and Benoit Dherin. Implicit gradient regularization, 2021.
[55] Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel L. K. Yamins, and Hidenori Tanaka.

Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics, 2021.
clearpage

23

A Critical points of SGD
Consider the case of λ = 0,

min
W

L(f(W)) = min
W

N∑
i=1

`2i (42)

with `i = yi − f(W ;xi).
We minimize L(f(W)) by running the following dynamical system (e.g., gradient flow)

Ẇ = ∇WL(f(W)) =

N∑
i

∇W f(W ;xi)(yi − f(W ;xi)). (43)

SGD can be formulated as follows. First define
Definition 6 A random vector v ∈ Rd drawn from a distribution D is a sampling vector if ED[vi] = 1,∀i

Then, the stochastic version of Equation (42) is

min
W
ED[L(f(W))] = min

W
ED

n∑
i

vi`i (44)

Usually the distribution overD is assumed to be random v with independent components vi, satisfying
condition 6. The literature gives the impression that in expectation SGD is equal to GD, which is true if
`2i are quadratic functions.
Finding the interpolating global minimizers of L =

∑
`2i is equivalent to finding the set of network

weightsW ∗ that solve the system of equations `i(W ∗) = 0,∀i = 1, · · · , N . Thus instead of finding all
the critical points of the gradient of L, we would like to find the joint minimizers – that is theW – that
minimize `2i ,∀i = 1, · · · , n.
We define critical points of SGD the solutions of `i∇`i = 0,∀i. For a discussion see [41].
A critical point of SGD with minibatch of size 1 is defined as ż = g(xn) = 0,∀n = 1, · · · , N . This
compares with a critical point of GD defined as ż =

∑N
n=1 g(xn) = 0. GD of course is SGD with

minibatch size N . What about SGD with intermediate minibatch sizes? The answer is12

Lemma 8 If ż =
∑M
n=1 g(xn) = 0 for enough random SGD draws of sizeM < N , then ż = g(xn) = 0,∀n =

1, · · · , N .

B Dynamics of ρ
Lemma 9
Assume ρ

∑
fn < 1 and a normalized network, that is ‖Vk‖ = 1, k = 1, · · · , L. Then the loss can be written

as LS = 1− ρ(1
2 ρ̇+ µ).

Proof
Consider the loss LS = 1−2ρµ+ρ2M+λρ2 and ρ̇ = 2µ−2ρM−2λρ, which gives 2ρM = 2µ−2λρ− ρ̇.
Thus we obtain the result

LS = 1− 1

2
ρρ̇− ρµ. (45)

C Observation on ρ dynamics
• Immediately after initialization with ρ(0) < ρ0, if there is convergence (depending on parameters

values and network architecture, convergence is not guaranteed) ρ grows non-monotonically
until ρ(t) is within a neighborhood of ρeq (within λρ0 +

∑
f2
n).

12A caution here is necessary: the number of random draws of sizeM from a data set of sizeN is enormous since it is equal
to (N

M

) and thus, though all of them provide an over-constrained set of equations, only a very small subset of meaningful
constraints may be available in practice.

24

• There may be oscillations in ρ(t), that is time intervals in which ρ̇ < 0: these intervals are limited.

• ρ̇ = 0 between positive and negative values may be a critical point of the system if the V̇k = 0 for
the associated ρ give compatible f values; these critical points may be local minima or saddle
points; if local minima and saddles can be avoided (by SGD or by restarting optimization since
LS > 0) the dynamics will eventually converge to an interpolation or quasi-interpolation solution
with LS = 0 if λ = 0 and otherwise close to zero.

• Weight decay performs the traditional role of promoting solutions with small norm. In the case
of large initialization, we can see from (7) that ρeq is determined by λ.

• Norm regularization is however not the only contribution of weight decay. The critical points
V̇k = 0 may not be normalized properly – and thus may not impose a rank one constraint, see
later – if the solution interpolates. In particular, an unnormalized interpolating solution can
satisfy the equilibrium equations for V̇k. This is expected from the constrained dynamics which
by itself constrains the norm of the Vk to not change during the iterations13. By preventing exact
interpolation, weight decay ensures that the critical points of the Vk dynamics lie on a fixed
Frobenius norm ball. As we will discuss later, by preventing exact interpolation, gradient flow
with weight decay under the square loss shows the phenomenon of SGD noise and of Neural
Collapse.

• In all these observations we have assumed gradient flow. The dynamics for gradient descent
implies by itself the presence of damped oscillations in ρ. In addition, the randomness of SGD
also contributes to transient decreases in the norm ρ.

D Margins for SGD
Consider first a global minimum with λ = 0 and LS = 0. Such a global minimum corresponds to
interpolation of all data points and to ρ̇ = 0. Thus ρ0fn = yn = ±1 and the margins for all n are the
same. We assume that this is the minimum ρ at convergence with λ = 0 and thus with no restrictions
on rank. The associated ρ is ρ0. This also implies that there is no other solution for λ = 0 with fn that
are all equally larger than 1

ρ .
Let us now assume that λ > 0. Consider two extreme situations.

• The size of the minibatch B is B = N . There is effectively no rank constraint wrt the N data
points of a minibatch. Assume the margins all equal to each other as f̄n = µ = 1

ρ0
, ∀n, σ = 0

and thusM = µ2 = 1
ρ20
. At equilibrium of SGD then ρ̇ = 0 = 2Nµ− 2NρM − 2λρwhich yields

ρλ =
ρ0

1 + ρ2
0
λ
N

. (46)

• The size of the minibatch B is B << N . In this case

ρλ =
ρ0

1 + ρ2
0
λ
B

, (47)

but this only holds for the B points of the minibatch.

E Unnormalized vs Normalized dynamics
As shown in E.1, the equilibria with and without normalization are the same for ρ and Vk but the
dynamics is different. Consider Figure 1. Assume that the network on Figure 1a is un-normalized, that
is optimized via GD without Lagrange multipliers and the network in Figure 1b is normalized, that is
optimized via GD with the Lagrange multiplier term. For 1a, consider, for simplicity, the case in which
all the norms ρk of the weight matrices 1, · · · , L− 1 are initialized with the same value. Then because

13Numerical simulations show that even for linear degenerate networks convergence is independent of initial conditions only
if λ > 0. In particular, normalization is then effective at ρ0, unlike the λ = 0 case.

25

of Lemma 10 all the ρk, ∀k = 1, · · · , L − 1 of Figure 1a will change together and remain equal to
each other. Let us call ρk = ρ1. It is then possible to consider ρ for the network of Figure 1b as ρ = ρL1
(because of the homogeneity of the ReLUs) and look at its dynamics. Consider the case of λ = 0.
The equations for the un-normalized case are then

ρ̇ = 2Lρ
2L−2
L

[∑
n

f̄n −
∑
n

ρ(f̄n)2

]
(48)

and
V̇k = −2ρ

L−2
L

∑
n

(
1− ρf̄n

)
·
(
∂f̄n
∂Vk

− Vkf̄n
)
. (49)

The equations for the normalized case (Figure 1b), in which we have a single ρ parameter, are

ρ̇ = 2[
∑
n

f̄n −
∑
n

ρ(f̄n)2] (50)

and
V̇k = 2ρ

∑
n

[
(1− ρf̄n)(Vkf̄n −

∂f̄n
∂Vk

)

]
. (51)

Recall that for λ = 0, ρ0 corresponds to the inverse of the margin: thus 1
ρ0

= fn, since fn is the same
for all n. Thus V̇k is proportional to ρ (ρ is the inverse of the margin) in the normalized case and to
ρ
L−2
L in the un-normalized case. The proportionality factor combines with the learning rate when

Gradient Descent replaces gradient flow. Intuitively, the strategy to decrease the learning rate when
the margin is large seems a good strategy, since large margin corresponds to “good” minima in terms
of generalization (for classification).

E.1 Unnormalized dynamics
We consider the dynamical system induced by GD on a deep net with ReLUs (see Figure 1a). We
change variables by using 14 Wk = ρkVk, ‖Vk‖ = 1. Following the calculations in [4], the following
identities hold: ∂ρk

∂Wk
= V Tk and ∂gn

∂Wk
= ρ

ρk

∂fn
∂Vk

.
Thus gradient descent on L = LS =

∑
n(ρfn − yn)2 with the definitions of Vk and ρk yields the

dynamical system (with Ẇk = − ∂L
∂Wk

)

ρ̇k =
∂ρk
∂Wk

Ẇk = V Tk Ẇk = −2
∑
n

(ρLk fn − yn)fnρ
L−1
k = −2ρL−1

k [
∑
n

ρLk (fn)2 −
∑
n

fnyn] (52)

and, with Sk = I − VkV Tk ,

V̇k =
∂Vk
∂Wk

Ẇk =
Sk
ρk
Ẇk = −2

ρ

ρ2
k

∑
n

(ρfn − yn)(
∂fn
∂Vk

− Vkfn). (53)

E.2 Equal growth
If we assume that all the ρk are the same at initialization, we can use the following lemma to show that
all ρk are the same at all times :

Lemma 10 [4] ∂ρ2k
∂t is independent of k for λ = 0 and no normalization.

Proof
Start from LS = 1

N

∑
n(1− ρf̄n)2 + λ

∑
k ‖Wk‖2 with λ = 0. Then

Ẇk = − 2

N

∑
n

(1− ρf̄n)ρ
∂f̄n
∂Wk

(54)

14Changing coordinates fromWk to Vk , we can convert the previous dynamical system to one in ρ, Vk . Using some basic
vector calculus to get ∂ρk

∂t
= 1

ρk

〈
Wk,

∂Wk
∂t

〉
and ∂Vk

∂t
= 1

ρk

(
I − VkV >k

) ∂Wk
∂t

.

26

and, since ˙‖Wk‖2 = WkẆk, we write

˙‖Wk‖2 = − 2

N

∑
n

(1− ρf̄n)ρf̄n (55)

which is independent of k.
Notice that if λ > 0, then for weight decay applied to all layers (that is with a regularization term of
the form λ

∑
k ρ

2
k)

˙‖Wk‖2 = − 2

N

∑
n

(1− ρf̄n)ρf̄n − λWk (56)

Thus the equal growth lemma 10 does not hold in the case of weight decay. Furthermore it does not
hold in the case that the regularization term is λρ2 with ρ = Πkρk.

E.3 Equal weight norms at all layers
Assume the setup of the previous section. Then ρ = ρLk , where L is the number of layers.
We use Equation (52) to derive the dynamics of ρ = ρLk in terms of ρ̇ =

∑
k
∂ρ
∂ρk

ρ̇k. Thus,

ρ̇ = 2Lρ
2L−2
L [
∑
n

fnyn −
∑
n

ρ(fn)2] (57)

which is an equation of the type known as “differential logistic equation” used for instance to model
sigmoidal population growth. It has an interesting dynamics as shown in the simplified simulations of
Figure 12. The equilibrium value for ρ̇k = 0 is

ρ0 =

∑
n f̄n∑
n f

2
n

. (58)

Similarly, for Vk:

V̇k = −2ρ
L−2
L

∑
n

(ρfn − yn)(
∂fn
∂Vk

− Vkfn). (59)

At equilibrium for Vk – that is when V̇k = 0 – the equation gives (with `n = ρfn − yn and assuming∑
fn`n 6= 0) ∑

n

(ρfn − yn)
∂fn
∂Vk

=
∑
n

(ρfn − yn)(V 0
k fn). (60)

F Extending the Analysis to GD
Recently, [54] showed that a natural approximation to gradient descent within a continuous gradient
flow formulation is equivalent to adding to the loss functional LS a term proportional to η

4 , consisting
of the norm square of the gradient of LS . This is equivalent (see [55]) to replacing in the gradient flow
equation terms like ẋwith terms that are η

2 ẍ+ ẋ. The informal explanation is that the gradient descent
term x(t+ η)− x(t) = −ηF can be approximated by expanding x(t+ η) in a Taylor series for small η to
a quadratic approximation, that is x(t+ η) ≈ x(t) + ηẋ(t) + η2

2 ẍ(t). Thus the gradient descent equation
becomes ẋ(t) + η

2 ẍ(t) = −F .
With this approximation Equations (2) become (taking into account that LS =

∑
n(1 − ρf̄n)2 +

ν
∑L−1
k=1 ‖Vk‖2 + λρ2)

η

2
ρ̈+ ρ̇ = 2[

∑
n

(1− ρf̄n)f̄n]− 2λρ (61)

η

2
V̈k + V̇k = 2ρ

∑
n

[(1− ρf̄n)(Vkf̄n −
∂f̄n
∂Vk

)] ∀k ≤ L. (62)

27

We observe immediately that the equation in ρ – since it has the form ηρ̈ + ρ̇ + 4λρ − 4C = 0 may
show oscillations(the frequency of the “undamped oscillations” is

√
4(1
N

∑
f̄2
n+2λ)

η . Whenever 1 >√
2
N

∑
n f̄

2
n + 2λ, the linearized dynamics is the dynamics of a damped oscillator. However, we didn’t

find empirical evidence for such oscillations examining the power spectrum.
By usingWL = ρVL (see figure 1), we replace this system of equations with the following system

∀ k < L :
η

2
V̈k + V̇k = 2ρ

∑
n

[(1− ρf̄n)(Vkf̄n −
∂f̄n
∂Vk

)]. (63)

η

2
ẄL + ẆL = 2

∑
n

[(1− gn)
∂gn
∂WL

)]− 2λWL. (64)

As a sanity check we see thatWT Ẇ = ρρ̇ sinceWL = ρLVL, ‖VL‖ = 1, gn = ρfn.
We multiply the last equation on the left byWT obtaining

η

2
WT ẄL +WT ẆL = 2

∑
n

(1− gn)gn − 2λW 2
L (65)

We change variables in the last equation:
η

2
WT ẄL +WT ẆL = 2ρ

∑
n

[(1− ρf̄n)f̄n)− 2λρ2 (66)

Since ẆL = ρV̇L + ρ̇VL and ẄL = 2ρ̇V̇L + ρV̈L + ρ̈VL, the last equation becomes for ρ̇ = 0

ρV T
η

2
ρV̈L + ρV T ρV̇L = 2ρ

∑
n

[(1− ρf̄n)f̄n)− 2λρ2 (67)

Now notice the following simple relation between accelerations and velocities: ∂(V TV)
∂t = 2V T V̇ and

∂2(V TV)
∂t2 = 2(˙V T V̇ + V T V̈) = 2(‖V̇ ‖2 + V T V̈). If the norm ‖VL‖ is constant, then ∂2(V TV)

∂t2 = 0. It
follows V T V̈ = −‖V̇ ‖2.
Thus

ρ2V T
η

2
V̈L = 2ρ

∑
n

((1− ρf̄n)f̄n − 2λρ2 (68)

− η

2
ρ‖V̇L‖2 = 2

∑
n

(1− ρf̄n)f̄n − 2λρ (69)

Equation (61) implies that when ρ̇ = 0 then ‖V̇L‖2 = 0.

G BN, GD, LN: remarks
G.1 Remarks on BN
Without BN and without WD ∂gn(W)

∂Wk
= ρ

ρk

∂fn(V)
∂Vk

; with BN but without weight decay this becomes
∂gn(W)
∂Wk

= ρ∂fn(V)
∂Vk

, ∀k < L and ∂gn(W)
∂WL

= ∂fn(V)
∂Vk

.
This dynamics can also be written as ρ̇k = V Tk Ẇk and V̇k = ρSẆk with S = I − VkV Tk . This shows that
ifWk = ρkVk then V̇k = 1

ρk
Ẇk as mentioned in [35].

G.2 Lagrange multiplier vs Batch Normalization
The constrained Lagrange dynamics will not change the initial norm of the L− 1 layers: to ensure that
‖Vk‖ = 1 the initial value of the L− 1 weight matrices must be ‖Vk‖ = 1, k = 1, · · · , L− 1.
In our toy model the dynamics above with Lagrange multipliers captures what is commonly believed
to be the key normalization property of batch normalization. This property can be summarized by
the fact that the output of unit i given by (Wh)i, where h is the vector of activities of the units in
the previous layer, does not change after normalization ifW is replaced by scaled version cW . It is

28

important to emphasize, however, that the Lagrange dynamics does not reflect several aspects of Batch
Normalization. In particular, in our model the weight matrices at each layer are normalized whereas in
Batch Normalization each unit activity in each layer is normalized across the batch. Thus the dynamics
of the weights in our model is different from the dynamics under Batch Normalization (see discussions
in [4] and also [35]).
Notice also that in the model of Figure 1b, we regularize a single ρ at the top of the network, whereas
in the standard usage of BN each layer norm ρk, ∀k = 1, · · · , L is subject to weight decay. All layers
k = 1, · · · , L− 1, but the last one, are also subject to BN.
In summary, the Lagrange multiplier normalization is equivalent[4] to Weight Normalization but
is different in several aspects wrt Batch Normalization. We believe however that both capture a key
property of normalization techniques – the invariance with respect to scaling the weight matrices.

G.3 Normalization at each layer
In our model, we considered the situation of Figure 1b, where only the top layer weight matrix is not
normalized and has ρ at the top, subject to weight decay, while the previous layers are all normalized
but are not subject to weight decay. This model neatly separates layers that are normalized from layers
that have weight decay; in this model no layer has weight decay and normalization.
However, in normal practice of training a deep network, the weight matricesWk in all layers up to layer
L− 1 are subject to weight decay and normalization via batch norm; only the last layer weightsWL are
not normalized but still subject to weight decay. In this section, we consider this case, using Lagrange
multipliers in place of batch norm.
The usual training of a deep net as in Figure 1a corresponds to minimizing the functional

LS =
∑
n

(1− ρf̄n)2 +

L−1∑
k=1

νkρ
2
k(‖Vk‖2 − 1) + µ(‖VL‖2 − 1) + λ

L∑
k=1

ρ2
k (70)

with ρ2
k‖Vk‖2 = 1 for k = 1, · · · , L with the definition ρ = Πkρk. Notice that Equation (70) is different

from Equation (1) for the toy model.

G.3.1 Gradient flow

Gradient flow in the model of Figure 1 is

ρ̇k = − ∂L
∂ρk

= 2
ρ

ρk

∑
n

(1− ρf̄n)f̄n − 2νkρk‖Vk‖2 − 2λρk ∀k = 1, · · · , L− 1 (71)

ρ̇L = −∂LS
∂ρL

= 2
ρ

ρL

∑
n

(1− ρf̄n)f̄n − 2λρL (72)

and for k < L

V̇k = − ∂L

∂Vk
= 2ρ

∑
n

(1− ρf̄n)
∂f̄n
∂Vk

− 2νρ2
kVk (73)

and
V̇L = − ∂L

∂VL
= 2ρ

∑
n

(1− ρf̄n)
∂f̄n
∂VL

− 2µVL (74)

To find µwe multiply by V TL to get 0 = 2ρ
∑
n(1− ρf̄n)f̄n − 2µ‖VL‖2 which gives

µ =
ρ

‖VL‖2
∑
n

(1− ρf̄n)f̄n. (75)

To find νk we multiply by V Tk and obtain 0 = ρ
∑
n(1− ρf̄n)f̄n − νk‖Vk‖2ρ2

k which gives

νk =
ρ

‖Vk‖2ρ2
k

∑
n

(1− ρf̄n)f̄n. (76)

Thus the gradient flow is the following dynamical system for k < L

ρ̇k = −2λρk ∀k = 1, · · · , L− 1 (77)

29

V̇k = 2ρ
∑
n

(1− ρf̄n)(
∂f̄n
∂Vk

− Vkf̄n) ∀k = 1, · · · , L− 1 (78)

ρ̇L = 2
ρ

ρL

∑
n

(1− ρf̄n)f̄n − 2λρL (79)

V̇L = 2ρ
∑
n

(1− ρf̄n)(
∂f̄n
∂VL

− VLfn) (80)

The solution of Equation (77) is ρ(t) = 1− (1− ρt=0)e−2λt because ρ2 = 1 for t→∞.
An equivalent alternative and simpler formulation is to start from

LS =
∑
n

(1− gn)2 +

L−1∑
k=1

νk‖Wk‖2 + λ

L∑
k=1

‖Wk‖2 (81)

under the constraint ‖Wk‖2 = 1.
Gradient flow in this model is

Ẇk = 2
∑
n

(1− gn)
∂gn
∂Wk

− 2νkWk − 2λWk ∀k = 1, · · · , L− 1 (82)

and
ẆL = 2

∑
n

(1− gn)
∂gn
∂WL

− 2λWL (83)

To find νk we multiply byWT
k and obtain 0 =

∑
n(1− ρgn)gn − νk − λwhich gives

νk =
∑
n

(1− ρgn)gn − λ. (84)

Thus the gradient flow inWk is the following dynamical system for k < L

Ẇk = 2
∑
n

(1− gn)(
∂gn
∂Wk

−Wkgn) (85)

and
ẆL = 2

∑
n

(1− gn)
∂gn
∂WL

− 2λWL (86)

This dynamics corresponds to the dynamics in ρ and Vk of section 4.

G.3.2 Gradient Descent

Here we take into account the effect of discretization for Figure 1a as we did in a previous section with
η terms added to the left-hand side of the previous set of equations obtaining

η

2
Ẅk + Ẇk = 2

∑
n

(1− gn)(
∂gn
∂Wk

−Wkgn) (87)

and
η

2
ẄL + ẆL = 2

∑
n

(1− gn)
∂gn
∂WL

− 2λWL (88)

30

H Experiments on dynamics and generalization
Wefirst look at a typical sequence of events during trainingwith LN. The legend of Figure 13 summarizes
it.
Next, we consider again the effect of label noise on ρ and on expected error. As discussed in the
main text, while training gives perfect classification and almost zero square loss, the margin on the
training set decreases and the test error also increases with the percentage of random labels. This also
happens with Batch Normalization as shown in Figure 14. These results are fully consistent with the
generalization bounds Equations 39 and 40.
However, the margin does not explain the behavior shown in Figure 15 where small differences in
margin are actually anti-correlated with small differences in test error. Tighter bounds (see [50]) may
explain these small effects. Alternatively, if there exist several almost-interpolating solutions with
the same norm ρ0, they may have similar norm and similar margin but different ranks of the weight
matrices.

I Remarks on rank constraints in SGD
• Convolutional layers. Notice that the operation computed by a convolutional layer is equivalent

to a linear transformation with a Toeplitz matrix. Since non-zero Toeplitz matrices cannot have
rank one, the low rank argument, as we described it above, does not immediately apply to
convolutional layers. However, a similar result applies to convolutional layers, when considering
the matrix obtained by turning the filters into a matrix (Galanti and Siegel, in preparation).

• Intuition. A common intuition for why there should be a bias towards low rank of any layer
added to an interpolating network is that the network is biased to reach the maximum ynfn for
each training example n with the minimum ρ because of regularization. This leads to an implicit
minimization of the “stable rank”, defined as the ratio of the square of the Frobenius norm of each
additional weight matrix and the square of its spectral norm ||V ||2F

||V ||2 =
∑
j σ

2
j

maxi σ2
i
, as described in

[10]. This argument, however, is a separate mechanism wrt the low rank bias of SGD described
earlier. The relation between the two mechanisms is so far unclear.

• LM normalization. The previous results were derived assuming normalization by Lagrange
multipliers. It turns out [43] that for the square loss normalization is not needed (as it is easy to
verify) to yield SGD noise. However, for an exponential type loss, LM normalization can replace
regularization wrt to SGD noise and rank constraint. The theoretical prediction is confirmed by
experiments (compare Figure 5 and Figure 16).

J Low Rank Constraint for Exponential-Type Loss Functions
Assume that a deep multilayer neural network f(x) = WLσ(WL−1 . . . σ(W 1x)) is trained on a binary
classification task with weight normalization with respect to an exponential loss function without
weight decay. The stationary points of the SGD flow of the normalized weight matrices Vk are given
(see [7, 2]) for any finite ρ =

∏L
k=1 ρk, where ρk = ‖Wk‖2 by

B∑
n

e−ρynf̂nyn

(
∂f̂n
∂Vk

− Vkf̂n

)
= 0, (89)

where f̂n is the scalar output of the ReLU network with normalized weight matrices when the input is
xn, yn is the corresponding binary label and B is the size of the minibatches. For any large but finite
value of ρ, the equation shows a similar rank constraint (in fact rank zero, see [43]) on the Vk weight
matrices, even with λ = 0. Figure 16 shows that indeed, unlike the square loss case, there is noise in the
margin, independently of the presence or absence of regularization, as predicted by our analysis.

31

List of Figures
1 An illustration of two parametrizations of fW (x). In (a) we decompose each layer’s weight

matrix Wi into its norm ρi and its normalized version Vi. In (b) we normalize each layer
except for the top layer’s matrix WL that is decomposed into a global ρ and the last layer VL.
Normalizing the weight matrices, as weight normalization (equivalent to LN) does, is different
from Batch Normalization, though both normalization techniques capture the relevant property
of normalization – to make the dot product invariant to scale. 34

2 A speculative view of the landscape of the loss with global degenerate valleys for ρ ≥ ρ0 with V1

and V2 weights of unit norm. Think of the loss as the mountain emerging from the water with
zero-loss being the level of the water. ρ is the radial distance from the center of the mountain
as shown in the inset. The coastline of the loss marks the boundary of the zero loss degenerate
minimum where L = 0 in the high-dimensional space of ρ and Vk ∀k = 1, · · · , L. The
degenerate global minimum is shown here as a connected valley outside the coastline. The red
arrow marks the minimum loss with minimum ρ. Notice that, depending on the shape of the
multidimensional valley, regularization may not guarantee convergence to the minimum norm
solution, unlike in the linear network case . 35

3 Training dynamics of ρk during model (b) training with the Lagrange Multiplier normalization
over 1000 epochs. The model contains four convolutional layers, two fully connected layers and the
top ρ (a learnable scalar parameter that can be initialized with different values). ρk(k ∈ [L− 1])
are effectively stable during training because of weight normalization. The number of channels
for the four convolutional layers (Conv1∼Conv4) are 32, 64, 128 and 128, the filter size is 3×3,
the hidden sizes of the last two fully connected layers (FC1 and FC2) are 1024 and 2, respectively.
As mentioned in the text the norms of the convolutional layers is just the norm of the filters. . . . 36

4 Training dynamics of last layer norm ρ, training loss and test error over 1000 epochs with different
initialization (0.9) in the first column and (1.3) in the second column. The first row is with
Weight Decay λ = 0.001, and the second row is with Weight Decay λ = 0. The network was
trained with Cosine Annealing learning rate scheduler (with initial learning rate η = 0.03,
ending with η = 0.0299). 37

5 Training margins computed over 10 runs for binary classification on CIFAR10 trained with
square loss, Lagrange Multiplier normalization, and Weight Decay (λ) = 0.001 (left) and
without Weight Decay (right, λ = 0) for different initializations (init. = 0.8, 0.9, 1, 1.2, 1.3
and 1.5) with SGD and minibatch size of 128. The margin distribution is Gaussian-like with
standard deviation≈ 10−4 over the training set (N = 104). The margins without Weight Decay
result in a range of smaller margin values, each with essentially zero variance. As mentioned in
the text the norms of the convolutional layers is just the norm of the filters. 38

6 Histogram of ynfn across 1000 training epochs for binary classification on the CIFAR10 dataset
with Lagrange Multiplier and weight decay (λ) = 0.001, initial learning rate 0.03, initialization
0.9. The histogram narrows as training progresses. The final histogram (in red) is concentrated,
as expected for the emergence of NC1. The right side of the plot shows the time course of the top ρ
over the same 1000 epochs. 39

7 Neural Collapse occurs during training for binary classification. The key conditions for Neural
Collapse are: (i) NC1 - Variability collapse, which is measured by Tr(ΣWΣ−1

B), where ΣW ,ΣB
are the within and between class covariances, (ii) NC2 - equinorm and equiangularity of the
mean features {µc} and classifiers {Wc}. We measure the equinorm condition by the standard
deviation of the norms of the means (in red) and classifiers (in blue) across classes, divided by
the average of the norms, and the equiangularity condition by the standard deviation of the inner
products of the normalized means (in red) and the normalized classifiers (in blue), divided by
the average inner product, and (iii) NC3 - Self-duality or the distance between the normalized
classifiers and mean features. This network was trained on two classes of CIFAR10 with Weight
Normalization and Weight Decay = 5e-4, learning rate 0.067, for 750 epochs with a stepped
learning rate decay schedule. 40

8 Mean 1/ρ and test error results over 10 runs for binary classification on CIFAR10 trained
with Lagrange Multiplier and different percentages of random labels (r = 20%, 40%, 60% and
80%), initialization scale 1 and weight decay 0.001. As mentioned in the text the norm of the
convolutional layers is just the norm of the filters.(Note that this network fails to get convergence
with 100% random labels.) . 41

32

9 Scatter plots for 1/ρ andmean test accuracy based on 10 runs for binary classification on CIFAR10
using Lagrange Multiplier normalization (LN), square loss andWeight Decay (left) and without
Weight Decay (right). In the left figure, the network was trained with different initialization
scales (init. = [0.9, 1, 1.2, 1.3]) and with weight decay (λ = 1e− 3), while in the right figure,
the network was trained with init. = [0.8, 0.9, 1, 1.3, 1.5] and no weight decay (λ = 0). The
horizontal and vertical error bars correspond to the standard deviations of 1/ρ and mean test
accuracy computed over 10 runs for different initializations, while the square dots correspond
to the mean values. When λ > 0, the coefficient (R2), p-value and slope for linear regression
between 1/ρ and mean test accuracy are: R2 = 0.94, p-value = 0.031, slope = -18.968; When
λ = 0, the coefficient R2 = 0.004, p-value = 0.92 and the slope = -2.915. 42

10 Product norm (ρ) and test error with respect to different training data sizes (N) for
the six-layer model trained with LM and square loss. The initialization scale is 0.1,
weight decay λ = 10−3, no biases, the initial learning rate is 0.03 with cosine annealing
scheduler; we used a SGD optimizer (momentum = 0.9), test data size = 2000 in a
binary classification task on CIFAR10 dataset. (a) The table shows the product norm ρ,
mean test errors (average over the last 100 epochs), and generalization upper bound for
different N (see Equation ??). (b) A bar plot for the mean test errors by different N . (c)
Generalization error upper bound defined as (

√
Lρ√
N
, where L = 6) for different N . The

bounds are vacuous but “only” by an order of magnitude, while other bounds based on
the number of parameters (here 3519335) are typically much looser. 43

11 Average training margin distribution (left) and the corresponding margin variance - σ2 (right)
over 10K training samples by 10 runs for binary classification on the CIFAR10 with four different
random label ratios (r = 20%, 40%, 60% and 80%). The networks were trained with Lagrange
Multiplier, weight decay (λ = 1e− 3) and initialization scale 1. The higher the random label
ratio is, the smaller the mean margins (vertical dashed lines in the left figure) and the greater
the variance (right) of the training margins. Specifically, the mean margin (µ) decreases from
2.001e-3 (with 20% random labels) to 1.524e-3 (with 80% random labels); the variance (σ2)
grows from 2.04e-9 (with 20% random labels) to 2.58 e-8 (with 80% random labels). 44

12 Simulation of ρ from the logistic equation related to Equation (57), in which the terms
∑
ynfn

and
∑
f2
n are positive constants. 45

13 Product ρ, training accuracy and test accuracy during model training with LN, initialization 1,
weight decay and square loss. It shows three obvious stages during LN model training. Stage I:
the red ρ =

∏
k ρk curve decreased a bit (between epoch 0-57) when the training accuracy and

test accuracy are 50% during this period); stage II: Total ρ starts to increase to some peak value
at epoch 156 when the training accuracy will increase from 50% to 100%; Stage III: ρ start to
decrease to some value with fast speed in the very beginning from epoch 100 to epoch 550, then
slow down after epoch 550. Moreover, there is no significant changes in both train and test errors
at stage III. 46

14 Mean 1/ρ and test error results over 10 runs for binary classification on CIFAR10 trained with
batch normalization and different percentages of random labels (r = 20%, 40%, 60%, 80% and
100%), initialization scale 0.1 and weight decay 0.01. 47

15 Scatter plot for 1/ρ and mean test accuracy based on single run for binary classification on
CIFAR10 using Lagrange Multiplier normalization, cross-entropy loss and Weight Decay (left)
and without Weight Decay (right). In the left figure, the network was trained with different
initialization scales (init. = [0.9, 1, 1.2, 1.3]) and with weight decay (λ = 1e− 3); In the right
figure, the network was trained with init. = [0.8, 0.9, 1, 1.3, 1.5] and no weight decay (λ = 0).
When λ > 0, the coefficient (R2), p-value and slope for linear regression between 1/ρ and mean
test accuracy are: R2 = 0.953, p-value = 0.024, slope = -66.481; When λ = 0, the coefficient R2

= 0.072, p-value = 0.663 and the slope = -58.836. 47
16 Training margins for binary classification on the CIFAR10 dataset trained with cross-entropy

loss, Lagrange Multiplier normalization and Weight Decay (λ) = 0.001 (left) and without
Weight Decay (right, λ = 0) for different initializations (init. = 0.8, 0.9, 1, 1.2, 1.3 and 1.5).
We applied a cosine learning rate scheduler with initial learning rate 0.01 during training. In the
absence of weight decay (λ = 0) there is clear evidence of SGD noise unlike in the square loss case. 48

33

x · · ·
ρ1

V1

−−−−
ρ2

V2

−−−−
ρL

VL
−−−−σ σ σ

fW (x)

(a)

x · · ·V1 V2

ρ

VL
−−−−σ σ σ

fW (x)

(b)

Figure 1: An illustration of two parametrizations of fW (x). In (a) we decompose each layer’s weight matrixWi

into its norm ρi and its normalized version Vi. In (b) we normalize each layer except for the top layer’s matrixWL

that is decomposed into a global ρ and the last layer VL. Normalizing the weight matrices, as weight normalization
(equivalent to LN) does, is different from Batch Normalization, though both normalization techniques capture the
relevant property of normalization – to make the dot product invariant to scale.

34

Figure 2: A speculative view of the landscape of the loss with global degenerate valleys for ρ ≥ ρ0 with V1 and
V2 weights of unit norm. Think of the loss as the mountain emerging from the water with zero-loss being the
level of the water. ρ is the radial distance from the center of the mountain as shown in the inset. The coastline of
the loss marks the boundary of the zero loss degenerate minimum where L = 0 in the high-dimensional space
of ρ and Vk ∀k = 1, · · · , L. The degenerate global minimum is shown here as a connected valley outside the
coastline. The red arrow marks the minimum loss with minimum ρ. Notice that, depending on the shape of the
multidimensional valley, regularization may not guarantee convergence to the minimum norm solution, unlike
in the linear network case

35

Figure 3: Training dynamics of ρk during model (b) training with the Lagrange Multiplier normalization
over 1000 epochs. The model contains four convolutional layers, two fully connected layers and the top ρ (a
learnable scalar parameter that can be initialized with different values). ρk(k ∈ [L− 1]) are effectively stable
during training because of weight normalization. The number of channels for the four convolutional layers
(Conv1∼Conv4) are 32, 64, 128 and 128, the filter size is 3×3, the hidden sizes of the last two fully connected
layers (FC1 and FC2) are 1024 and 2, respectively. As mentioned in the text the norms of the convolutional
layers is just the norm of the filters.

36

Figure 4: Training dynamics of last layer norm ρ, training loss and test error over 1000 epochs with different
initialization (0.9) in the first column and (1.3) in the second column. The first row is with Weight Decay λ
= 0.001, and the second row is with Weight Decay λ = 0. The network was trained with Cosine Annealing
learning rate scheduler (with initial learning rate η = 0.03, ending with η = 0.0299).

37

Figure 5: Training margins computed over 10 runs for binary classification on CIFAR10 trained with square loss,
Lagrange Multiplier normalization, and Weight Decay (λ) = 0.001 (left) and without Weight Decay (right,
λ = 0) for different initializations (init. = 0.8, 0.9, 1, 1.2, 1.3 and 1.5) with SGD and minibatch size of 128.
The margin distribution is Gaussian-like with standard deviation ≈ 10−4 over the training set (N = 104). The
margins without Weight Decay result in a range of smaller margin values, each with essentially zero variance.
As mentioned in the text the norms of the convolutional layers is just the norm of the filters.

38

Figure 6: Histogram of ynfn across 1000 training epochs for binary classification on the CIFAR10 dataset with
Lagrange Multiplier and weight decay (λ) = 0.001, initial learning rate 0.03, initialization 0.9. The histogram
narrows as training progresses. The final histogram (in red) is concentrated, as expected for the emergence of
NC1. The right side of the plot shows the time course of the top ρ over the same 1000 epochs.

39

0 500
Epoch

10 1

100

Tr
(

W
1 B
)

NC1

0 500
Epoch

0.00

0.05

0.10

0.15

St
d/

Av
g

NC2 - Equinorm
|| c||
||Wc||

0 500
Epoch

0.0

0.5

1.0
St

d/
Av

g

NC2 - Equiangularity
1+cos(c, j)
1+cos(Wc, Wj)

0 500
Epoch

10 1

100

||W
M

|| F

NC3

Figure 7: Neural Collapse occurs during training for binary classification. The key conditions for Neural Collapse
are: (i) NC1 - Variability collapse, which is measured by Tr(ΣWΣ−1

B), where ΣW ,ΣB are the within and between
class covariances, (ii) NC2 - equinorm and equiangularity of the mean features {µc} and classifiers {Wc}. We
measure the equinorm condition by the standard deviation of the norms of the means (in red) and classifiers
(in blue) across classes, divided by the average of the norms, and the equiangularity condition by the standard
deviation of the inner products of the normalized means (in red) and the normalized classifiers (in blue), divided
by the average inner product, and (iii) NC3 - Self-duality or the distance between the normalized classifiers and
mean features. This network was trained on two classes of CIFAR10 with Weight Normalization and Weight
Decay = 5e-4, learning rate 0.067, for 750 epochs with a stepped learning rate decay schedule.

40

Figure 8: Mean 1/ρ and test error results over 10 runs for binary classification on CIFAR10 trained with
Lagrange Multiplier and different percentages of random labels (r = 20%, 40%, 60% and 80%), initialization
scale 1 and weight decay 0.001. As mentioned in the text the norm of the convolutional layers is just the norm of
the filters.(Note that this network fails to get convergence with 100% random labels.)

41

Figure 9: Scatter plots for 1/ρ and mean test accuracy based on 10 runs for binary classification on CIFAR10
using Lagrange Multiplier normalization (LN), square loss and Weight Decay (left) and without Weight Decay
(right). In the left figure, the network was trained with different initialization scales (init. = [0.9, 1, 1.2, 1.3])
and with weight decay (λ = 1e− 3), while in the right figure, the network was trained with init. = [0.8, 0.9,
1, 1.3, 1.5] and no weight decay (λ = 0). The horizontal and vertical error bars correspond to the standard
deviations of 1/ρ and mean test accuracy computed over 10 runs for different initializations, while the square dots
correspond to the mean values. When λ > 0, the coefficient (R2), p-value and slope for linear regression between
1/ρ and mean test accuracy are: R2 = 0.94, p-value = 0.031, slope = -18.968; When λ = 0, the coefficient R2 =
0.004, p-value = 0.92 and the slope = -2.915.

42

Figure 10: Product norm (ρ) and test error with respect to different training data sizes (N) for the
six-layer model trained with LM and square loss. The initialization scale is 0.1, weight decay λ = 10−3,
no biases, the initial learning rate is 0.03 with cosine annealing scheduler; we used a SGD optimizer
(momentum = 0.9), test data size = 2000 in a binary classification task on CIFAR10 dataset. (a) The
table shows the product norm ρ, mean test errors (average over the last 100 epochs), and generalization
upper bound for different N (see Equation ??). (b) A bar plot for the mean test errors by different N .
(c) Generalization error upper bound defined as (

√
Lρ√
N
, where L = 6) for different N . The bounds are

vacuous but “only” by an order of magnitude, while other bounds based on the number of parameters
(here 3519335) are typically much looser.

43

Figure 11: Average training margin distribution (left) and the corresponding margin variance - σ2 (right)
over 10K training samples by 10 runs for binary classification on the CIFAR10 with four different random label
ratios (r = 20%, 40%, 60% and 80%). The networks were trained with Lagrange Multiplier, weight decay
(λ = 1e − 3) and initialization scale 1. The higher the random label ratio is, the smaller the mean margins
(vertical dashed lines in the left figure) and the greater the variance (right) of the training margins. Specifically,
the mean margin (µ) decreases from 2.001e-3 (with 20% random labels) to 1.524e-3 (with 80% random labels);
the variance (σ2) grows from 2.04e-9 (with 20% random labels) to 2.58 e-8 (with 80% random labels).

44

1000 3000 5000

t

0

2

4

6

8

10
L=1

Init
k
 0.1

Init
k
 1

0 200 400 600 800 1000

t

0

2

4

6

8

10
L=2

Init
k
 0.1

Init
k
 1

0 20 40 60 80 100

t

0

2

4

6

8

10
L=5

Init
k
 0.1

Init
k
 1

0 100 200 300 400 500

t

0

2

4

6

8

10

Init
k
 0.1

L=1

L=2

L=5

0 100 200 300 400 500

t

0

2

4

6

8

10

Init
k
 0.5

L=1

L=2

L=5

0 100 200 300 400 500

t

0

2

4

6

8

10

Init
k
 1

L=1

L=2

L=5

Figure 12: Simulation of ρ from the logistic equation related to Equation (57), in which the terms
∑
ynfn and∑

f2
n are positive constants.

45

Figure 13: Product ρ, training accuracy and test accuracy during model training with LN, initialization 1,
weight decay and square loss. It shows three obvious stages during LN model training. Stage I: the red ρ =

∏
k ρk

curve decreased a bit (between epoch 0-57) when the training accuracy and test accuracy are 50% during this
period); stage II: Total ρ starts to increase to some peak value at epoch 156 when the training accuracy will
increase from 50% to 100%; Stage III: ρ start to decrease to some value with fast speed in the very beginning
from epoch 100 to epoch 550, then slow down after epoch 550. Moreover, there is no significant changes in both
train and test errors at stage III.

46

Figure 14: Mean 1/ρ and test error results over 10 runs for binary classification on CIFAR10 trained with batch
normalization and different percentages of random labels (r = 20%, 40%, 60%, 80% and 100%), initialization
scale 0.1 and weight decay 0.01.

Figure 15: Scatter plot for 1/ρ and mean test accuracy based on single run for binary classification on CIFAR10
using Lagrange Multiplier normalization, cross-entropy loss and Weight Decay (left) and without Weight Decay
(right). In the left figure, the network was trained with different initialization scales (init. = [0.9, 1, 1.2, 1.3])
and with weight decay (λ = 1e− 3); In the right figure, the network was trained with init. = [0.8, 0.9, 1, 1.3,
1.5] and no weight decay (λ = 0). When λ > 0, the coefficient (R2), p-value and slope for linear regression
between 1/ρ and mean test accuracy are: R2 = 0.953, p-value = 0.024, slope = -66.481; When λ = 0, the
coefficient R2 = 0.072, p-value = 0.663 and the slope = -58.836.

47

Figure 16: Training margins for binary classification on the CIFAR10 dataset trained with cross-entropy loss,
Lagrange Multiplier normalization and Weight Decay (λ) = 0.001 (left) and without Weight Decay (right,
λ = 0) for different initializations (init. = 0.8, 0.9, 1, 1.2, 1.3 and 1.5). We applied a cosine learning rate
scheduler with initial learning rate 0.01 during training. In the absence of weight decay (λ = 0) there is clear
evidence of SGD noise unlike in the square loss case.

48

	Introduction
	Related Work
	Problem Setup
	Assumptions
	Classification with Square Loss Minimization

	Training Dynamics
	Gradient Flow Equations
	Landscape of the empirical risk
	Qualitative Dynamics

	The origin of SGD noise and a bias towards low-rank weight matrices
	Origin of SGD noise
	Margins variance

	Neural Collapse
	Binary Classification
	Multiclass Classification

	Generalization, Rademacher complexity and norms
	Generalization, Rademacher complexity and norms
	Summary and Discussion
	Critical points of SGD
	Dynamics of
	Observation on dynamics
	Margins for SGD
	Unnormalized vs Normalized dynamics
	Unnormalized dynamics
	Equal growth
	Equal weight norms at all layers

	Extending the Analysis to GD
	BN, GD, LN: remarks
	Remarks on BN
	Lagrange multiplier vs Batch Normalization
	Normalization at each layer
	Gradient flow
	Gradient Descent

	Experiments on dynamics and generalization
	Remarks on rank constraints in SGD
	Low Rank Constraint for Exponential-Type Loss Functions

