Thinking fast or slow? A reinforcement learning approach Wouter Kool^a, Samuel J. Gershman^{a,b}, & Fiery A. Cushman^a

Dual process theory and reinforcement learning

Theories of judgement and decision making posit existence of two systems:

System 2	VS	. System		
Habitual		Goal-direc		
Automatic		Deliberati		
Computationally cheap		Computationally		
Recent advances in computer science and reinforceme				
Model-free	VS	• Model-ba		
Often assumed that system but direct evidenc	s eng e for	gage in a cost-benefit this has been sparse		

Accuracy-efficiency tradeoff between System 1 and System 2?

Daw et al. (2011) 2-step task

a) Department of Psychology, Harvard University b) Center for Brain Science, Harvard University

Kahneman (2003)

ted

expensive

ent learning: Daw et al. (2011) sed

t trade-off,

Win: 🎡 Loss: 🔿 Bounds = [0.25 0.75] Drift rate (σ) = 0.025 cates model-basedness (degree of system 2) Prev. transition Common Rare

> Win Lose Previous outcome *w* = 1 model-based

Stakes manipulation

Prediction: If model-based planning is costly, participants should plan more when stakes are high

 $W_{5x} > W_{1x}$

No accuracy-demand tradeoff in Daw 2-step task

Does w predict reward?

Novel paradigm

Task

chance of winning pieces of space treasure:

Range = [**O** , Drift rate = 2

Experiment 4. New paradigm with stakes *n* = 94

Experiment	Parameter	r	р
Exp 1.	W _{1x}	.54	
	W _{5x}	.32	
Exp. 2	W _{1x}	01	
	W _{5x}	02	

wkool@fas.harvard.edu

Accuracy-demand tradeoff in novel 2-step task

Does w predict reward?

Conclusion

- Cost-benefit arbitration between multiple RL systems
 - Flexible adapation based on reward-advantage
 - In progress: w's relationship with outgroup bias and psychiatric symptoms

Contact and details