
CBMM Memo No. 140 February 14, 2023

SGD and Weight Decay Provably Induce a
Low-Rank Bias in Deep Neural Networks

Tomer Galanti1, Zachary Siegel2, Aparna Gupte1 and Tomaso Poggio1

1: Center for Brains, Minds, and Machines, MIT, Cambridge, MA, USA
2: Department of Computer Science, Princeton University

Abstract

In this paper, we study the bias of Stochastic Gradient Descent (SGD) to learn low-rank weight
matrices when training deep ReLU neural networks. Our results show that training neural networks
with mini-batch SGD and weight decay causes a bias towards rank minimization over the weight matri-
ces. Specifically, we show, both theoretically and empirically, that this bias is more pronounced when
using smaller batch sizes, higher learning rates, or increased weight decay. Additionally, we predict
and observe empirically that weight decay is necessary to achieve this bias. Finally, we empirically
investigate the connection between this bias and generalization, finding that it has a marginal effect on
generalization. Our analysis is based on a minimal set of assumptions and applies to neural networks
of any width or depth, including those with residual connections and convolutional layers.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

SGD and Weight Decay Provably Induce
a Low-Rank Bias in Deep Neural Networks

Tomer Galanti 1 Zachary S. Siegel 2 Aparna Gupte 1 Tomaso Poggio 1

Abstract
In this paper, we study the bias of Stochastic Gra-
dient Descent (SGD) to learn low-rank weight ma-
trices when training deep ReLU neural networks.
Our results show that training neural networks
with mini-batch SGD and weight decay causes a
bias towards rank minimization over the weight
matrices. Specifically, we show, both theoretically
and empirically, that this bias is more pronounced
when using smaller batch sizes, higher learning
rates, or increased weight decay. Additionally, we
predict and observe empirically that weight de-
cay is necessary to achieve this bias. Finally, we
empirically investigate the connection between
this bias and generalization, finding that it has
a marginal effect on generalization. Our anal-
ysis is based on a minimal set of assumptions
and applies to neural networks of any width or
depth, including those with residual connections
and convolutional layers.

1. Introduction
Stochastic gradient descent (SGD) is a widely used opti-
mization technique for training deep learning models (Bot-
tou, 1991). While it was initially developed to address the
computational challenges of gradient descent, recent studies
suggest that SGD also provides regularization that prevents
overparameterized models from converging to minima that
do not generalize well (Zhang et al., 2016; Jastrzebski et al.,
2017; Keskar et al., 2017; Zhu et al., 2019). For instance,
empirical studies have shown that SGD outperforms gradi-
ent descent (Zhu et al., 2019) and that smaller batch sizes
result in better generalization (Hoffer et al., 2017; Keskar
et al., 2017). However, the full range of regularization ef-
fects induced by SGD is not yet fully understood.

One area of recent research focuses on characterizing the

*Equal contribution 1Massachusetts Institute of Technol-
ogy 2Princeton University. Correspondence to: Tomer Galanti
<galanti@mit.edu>.

Preprint

implicit regularization of gradient-based optimization and
its relationship to generalization in deep learning. Several
papers have examined the potential bias of gradient descent
or stochastic gradient descent toward rank minimization.
Empirically, it was shown (Denton et al., 2014; Alvarez &
Salzmann, 2017; Tukan et al., 2021; Yu et al., 2017; Arora
et al., 2018) that replacing weight matrices with low-rank
approximations results in only a small drop in accuracy,
suggesting that the weight matrices at convergence may be
close to low-rank matrices. Following this line of work,
various attempts were made to understand the origins of this
low-rank bias and its potential relation with generalization.

Initially, it was believed that the implicit regularization in
matrix factorization could be characterized in terms of the
nuclear norm of the corresponding linear predictor (Gu-
nasekar et al., 2017). This conjecture was later refuted (Li
et al., 2020). Subsequent conjecture posits that rank mini-
mization may play a key role in explaining generalization
in deep learning. For instance, (Razin & Cohen, 2020)
conjectured that the implicit regularization in matrix fac-
torization can be explained by rank minimization, and also
hypothesized that some notion of rank minimization may
be key to explaining generalization in deep learning. Ad-
ditionally, (Li et al., 2020) established evidence that the
implicit regularization in matrix factorization is a heuristic
for rank minimization. Beyond factorization problems, (Ji
& Telgarsky, 2020) showed that gradient flow (GF) training
of univariate linear networks with respect to exponentially-
tailed classification losses learns weight matrices of rank
1. Intuitively, such networks generalize well due to their
effectively limited capacities.

With nonlinear neural networks, the origin of this bias and
its connection with generalization is less clear. Several
papers (Ongie & Willett, 2022; Le & Jegelka, 2022) studied
low-rank bias in linear layers at the top of a neural network.
For instance, (Le & Jegelka, 2022) analyzes low-rank bias
in neural networks trained with gradient flow (GF) without
regularization. While this paper makes significant strides in
extending the analysis in (Ji & Telgarsky, 2020), it makes
several limiting assumptions. As a result, their analysis is
only applicable under very specific conditions, such as when
the data is linearly separable, and their low-rank analysis

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

is limited to a set of linear layers aggregated at the top of
the trained network. Later, (Timor et al., 2022) showed that
for ReLU networks, GF generally does not minimize rank.
They also argued that sufficiently deep ReLU networks
exhibits low-rank solutions under L2 norm minimization.
This interesting result, however, applies only to the global
minima and only to layers added to a pre-existing network
that is capable of solving the problem.

Despite the recent progress in understanding the low-rank
bias in deep networks, a complete understanding of its ori-
gins and its relationship with different hyperparameters is
largely missing.

Contributions. In this paper, we show that using mini-
batch stochastic gradient descent (SGD) and weight decay
effectively regularize the rank of the learned weight matrices
during the training of neural networks. Our theoretical anal-
ysis predicts that smaller batch sizes, higher learning rates,
or increased weight decay results in a decrease in the rank of
the learned matrices, and that regularization is necessary to
achieve this bias. The scope of the analysis is fairly general,
covering deep ReLU networks trained with mini-batch SGD
for minimizing a differentiable loss function with L2 reg-
ularization (i.e., weight decay). The neural networks may
include fully-connected layers, residual connections, and
convolutional layers.

In addition to our theoretical analysis, we provide a compre-
hensive empirical study in which we examine the effects of
different hyperparameters on the rank of weight matrices
for various network architectures. Additionally, we carried
out several experiments to examine the connection between
low-rank bias and generalization. The results indicate that
while low-rank bias is not a requirement for good gener-
alization, it is correlated with a marginal improvement in
performance.

2. Problem Setup
In this paper, we study the influence of using mini-batch
stochastic gradient descent (SGD) in conjunction with
weight decay on the inductive biases of neural networks
in standard supervised learning settings. The task at hand is
defined by a distribution P over samples (x; y) 2 X � Y ,
where X � Rc1�h1�w1 is the space of instances (e.g., im-
ages), and Y � Rk is the label space.

We consider a parametric model F � ff 0 : X ! Rkg,
where each function fW 2 F is specified by a vector of
parameters W 2 RN . The function fW 2 F assigns a
prediction to any input point x 2 X , and its performance is
measured by the Expected Risk,

LP (fW) := E(x;y)�P [‘(fW (x); y)];

where ‘ : Rk � Y ! [0;1) is a non-negative, differen-

tiable, loss function (e.g., MSE or cross-entropy losses). For
simplicity, in the analysis we assume that k = 1.

Since we do not have direct access to the full population
distribution P , the goal is to learn a predictor, fW , from a
training dataset S = f(xi; yi)gmi=1 of independent and iden-
tically distributed (i.i.d.) samples drawn from P . To avoid
overfitting the training data, we typically use weight decay
to control the complexity of the learned model. Specifically,
we aim to minimize the Regularized Empirical Risk,

L�S(fW) :=
1

m

mX
i=1

‘(fW (xi); yi) + �kWk2
2;

where � > 0 is a predefined hyperparameter and k � k2 is the
Frobenius norm. To accomplish this task, we typically use
mini-batch SGD, as outlined in the following paragraph.

Optimization. In this study, we employ stochastic gradient
descent (SGD) to minimize the regularized empirical risk
L�S(fW) over a specified number of iterations T . We begin
by initializing W1 using a standard initialization method,
and then update Wt for T iterations, ultimately returning
WT . At each iteration t, we randomly select a batch ~St � S
of B samples, and update Wt+1 = Wt � �rWL�~St

(fWt),
where � > 0 is the predefined learning rate.

Notation. In this paper, we use the following nota-
tions. For an integer k � 1, we use the notation [k] =
f1; : : : ; kg. The Euclidean norm of a vector z 2 Rn
is denoted by kzk :=

pPn
i=1 z

2
i . For two vectors

x 2 Rn; y 2 Rm we define their concatenation as fol-
lows (xky) := (x1; : : : ; xn; y1; : : : ; ym) 2 Rn+m. For
a given matrix A 2 Rn�m, we denote Ai;: its ith row
and by vec(A) := (A1k : : : kAn) its vectorization. For
a given tensor A 2 Rc�h�w, we denote by vec(A) :=
(vec(A1)k : : : kvec(Ac)) the vectorized form of A. Tensor
slicing is defined as, xa:b := (xa; : : : ; xb).

2.1. Architectures

In this work, the function fW represents a neural network,
consisting of a set of layers of weights interlaced with
ReLU activation units. Our definition of a neural network
is fairly generic, including convolutional layers, pooling
layers, residual connections, and fully-connected layers.

Network architecture. Formally, a neural network fW
can be described as a directed acyclic graph (DAG) G =
(V;E), where V = fv1; : : : ; vLg consists of the various
layers of the network, and each edge eij = (vi; vj) 2 E
represents a connection between two layers. Each layer is
a function vi : Rc1�h1�w1 ! Rci�hi�wi , and each con-
nection (vi; vj) holds a transformation Cij : Rcj�hj�wj !
Rci�hi�wi . The layers are divided into three categories:
the input layer v1, the output layer vL, and intermediate
layers. There are no connections directed towards the

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

input layer or out of the output layer (i.e.,8i 2 [L] :
(vi ; vL); (v0; vi) =2 E). Given an inputx 2 Rci � h i � w i , the
output of a given layervi is evaluated as followsvi (x) :=
� (

P
j 2 pred(i) C ij (vj (x))) , except for the output layervL

that computesf W (x) := vL (x) :=
P

j 2 pred(L) CLj (vj (x)) .
Here,pred(i) := f j 2 [L] j (vi ; vj) 2 Eg, succ(i) :=
f j 2 [L] j (vj ; vi) 2 Eg denote the sets of predecessor
and successor layers of thei th layer and� is the element-
wise ReLU activation function. Each transformationC ij is
either trainable (e.g., a convolutional layer) or a constant
af�ne transformation (e.g., a residual connection). The set
of trainable connections is denoted byET . In this paper, we
consider the following types of layers.

Convolutional layers. A convolutional layer (Lecun et al.,
1998) (see also (Goodfellow et al., 2016)), commonly used
in image processing tasks, is de�ned by a kernel tensor
Z ij 2 Rci � cj � k1 � k2 , wherecj , ci , k1, andk2 represent
the number of input and output channels and the kernel
sizes respectively. The layer applies the kernel tensor to
the input tensor by sliding it across the input tensor with a
speci�ed stride length,s, after zero-padding the input tensor
with p rows in each “side” of the tensor. The output tensor
y 2 Rci � h i � w i is computed by summing up the element-
wise product of the kernel tensor and the corresponding
section of the padded input tensor at each position of the
sliding. Formally, for all indices(c; t; l) 2 [ci] � [hi] � [wi],

yc;t;l =
c jX

c0=1

vec(Zc;c 0; :)>

� vec(Padp (x)c0;ts : (t +1) s+ k 1 ;ls : (l +1) s+ k 2):

Here, Padp takes a tensorx 2 Rcj � h j � w j and returns
a new tensorx0 2 Rcj � (h j +2 p) � (w j +2 p) , where the �rst
and lastp rows and columns of each channelx0

c; : ; : are
zeros and the middle1 � hj � wj tensor is equal to
xc; : ; : . The output dimensionshi andwi are calculated
using the formulashi = (b(hj � kj + 2p)c=s+ 1) and
wi = (b(wj � k2 + 2p)c=s+ 1) .

We can also represent the convolutional layer as a linear op-
eration by de�ning a matrixV ij 2 Rci h i w i � cj h j w j , which
computes the output of the layer for a given input vectorized
as a column vector, and a matrixW ij 2 Rci � cj k1 k2 , which
has the vectorized �lters as its rows,W ij

c := vec(Z ij
c; : ; :).

This allows us to express the convolutional layer as a lin-
ear operator, making it possible to analyze its properties
mathematically.

Fully-connected layers. As a special case of convolutional
layers, the network may also include fully-connected layers.
A fully-connected layerF : Rcj ! Rci , associated with a
matrix W 2 Rci � cj , can be represented as a1 � 1 convo-
lutional layerC : Rcj � 1� 1 ! Rci � 1� 1 with k1 = k2 = 1 ,
p = 0 ands = 1 . The parameters tensorZ 2 Rci � cj � 1� 1

satis�esZa;b;1;1 = Wa;b for all (a; b) 2 [ci] � [cj], and the
layer satis�es vec(C(x)) = W vec(x).

Pooling layers. A pooling layer (Zhou & Chel-
lappa, 1988) (see also (Goodfellow et al., 2016))C
with kernel dimensions(k1; k2) stride s and paddingp
takes an inputx 2 Rcj � h j � w j and computes an out-
put y 2 Rci � h i � w i with ci = cj channels, and di-
mensionshi = (b(hj � k1 + 2p)c=s+ 1) and wi =
(b(wj � k2 + 2p)c=s+ 1) . The output of each pooling
layer is computed as follows:

yc;t;l = op(Padp(x)c;ts : (t +1) s+ k1 ;ls : (l +1) s+ k2);

whereop is either the maximum or average operator and
(c; t; l) 2 [ci] � [hi] � [wi].

Rearrangement layers. To easily switch between con-
volutional and fully-connected layers, we should be able
to represent tensor layers as vectors and vice versa. To
change the shape of a speci�c layer, we use rearrange-
ment layers. A rearrangement layerC ij : Rcj � h j � w j !
Rci � h i � w i takes an input vectorx 2 Rcj � h j � w j and rear-
ranges its coordinates in a different shape and order. For-
mally, it returns a vector(x � (k))k2 [cj]� [h j]� [w j], where
� : [cj] � [hj] � [wj] ! [ci] � [hi] � [wi] is invertible
(in particularci hi wi = cj hj wj).

3. Theoretical Results

In this section, we present our main theoretical result. We
show that when training a ReLU neural network with SGD,
the weight matrices tend to be close to matrices of a bounded
rank. Speci�cally, with a simple observation (proved in Ap-
pendix A) that the number of input patchesN ij of a certain
convolutional layerC ij sets an upper bound on the rank of
the gradient of the network with respect to the parameters
matrixW ij . By recursively unrolling the optimization, we
express the weight matrixW ij

t as a sum of(1 � ��)k W ij
t � k

andkB gradients of the loss function with respect toW ij

for different samples at different iterations. Since each one
of these terms is a matrix of rank� N ij , we conclude that
the distance betweenW ij

t and a matrix of rank� N ij Bk
decays exponentially with increasingk.

Lemma 3.1. Let f W be a neural network and letC ij be a
convolutional layer withinf W with parameters matrixW ij .
Then,rank(r W ij f W (x)) � N ij .

Interestingly, we observe particularly degenerate gradients
for fully-connected layers. As discussed in Sec. 2.1, for
a fully-connected layerC ij : Rcj � 1� 1 ! Rci � 1� 1 we
haveN ij = 1 , and thus,rank(r W ij f W (x)) � 1. To
demonstrate this observation, we provide a simple proof for
the case of fully-connected networks.

Lemma 3.2. Let f W (x) = W L � (W L � 1 � � � � (W1x) � � �)
be a neural network, whereW l 2 Rdl +1 � dl for all l 2
[L] and � is the elementwise ReLU activation. Then,
rank(r W l f W (x)) � 1.

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Proof. We would like to show that the matrix
rank(r W l f W (x)) � 1. We note that for any given
vectorz 2 Rd, we have� (z) = diag(� 0(z)) � z. Therefore,
for any input vectorx 2 Rd1 , the output off W can be
written as follows,

f W (x) = W L � (W L � 1 � � � � (W 1x) � � �)

= W L � D L � 1(x; W)W L � 1 � � � D 1(x; W) � W 1 � x;

whereD l (x; W) = diag[� 0(ul (x; W)))] andul (x; W) =
W l � (W l � 1 � � � � (W 1x) : : :). We denote byul;i (x; W)
the i 'th coordinate of the vectorul (x; W). We note that
ul (x; W) are continuous functions ofW. Therefore, as-
suming that none of the coordinatesul;i (x; W) are zero,
there exists a suf�ciently small ball aroundW for which
ul;i (x; W) does not change its sign. Hence, within this ball,
� 0(ul;i (x; W)) are constant. We de�ne a setWl;i = f W j
ul;i (x; W) = 0 g. We note that as long asx 6= 0 , the set
Wl;i is negligible withinRN . Since there is a �nite set of
indicesl; i , the set

S
l;i Wl;i is also negligible.

Let W be a set of parameters for which all of the co-
ordinatesul;i (x; W) are non-zero. Then, the matrices
f D l (x; W)gL � 1

l =1 are constant in the neighborhood ofW,
and therefore, their derivative with respect toW l are zero.
Let a> = W L � DL � 1(x; W)W L � 1 � � � W l +1 D l (x; W)
andb = D l � 1(x) � W l � 1 � � � W 1x. We can writef W (x) =
a(x; W)> � W l � b(x; W). Since the derivatives ofa(x; W)
andb(x; W) with respect toW l are zero, by applying the
formula @a> Xb

@X = ab> , we haver W l f W (x) = a(x; W) �
b(x; W)> which is a matrix of rank at most1. Therefore,
for any inputx 6= 0 , with measure1 (over the selection of
W), r W l f W (x) is a matrix of rank at most1.

The following theorem provides an upper bound on the
minimal distance between the network's weight matrices
and low-rank matrices.

Theorem 3.3. Let k � k be any matrix norm and̀ any
differentiable loss function. Letf W (x) be a ReLU neural
network andC ij be a convolutional layer withinf W and
let B 2 [m]. Then, for allk < t ,

min
W : rank(W)� N ij Bk

 W ij

t

kW ij
t k

� W

 � (1� 2��)k �

kW ij
t � k k

kW ij
t k

:

Proof. We denote by~St � S the training batch that was
used by SGD at iterationt. We have

W ij
t = W ij

t � 1 � � r W ij L ~St � 1
(f W t � 1) � 2��W ij

t � 1

= (1 � 2��)W ij
t � 1 � � r W ij L ~St � 1

(f W t � 1):

Similarly, we can write

W ij
t � 1 = (1 � 2��)W ij

t � 2 � � r W ij L ~St � 2
(f W t � 2):

This gives us

W ij
t = (1 � 2��)2W ij

t � 2

� � r W ij L ~St � 1
(f W t � 1)

� � (1 � 2��)r W ij L ~St � 2
(f W t � 2):

By recursively applying this processk times, we have

W ij
t = (1 � 2��)k W ij

t � k

� �
kX

l =1

(1 � 2��) l � 1r W ij L ~St � l
(f W t � l)

| {z }
=: U

By the chain rule, we can write the gradient of the loss
function as follows,

r W ij L ~St � l
(f W t � l)

= 1
B

X

(x;y)2 ~St � l

@(̀f W t � l (x) ;y)

@fW t � l (x) � r W ij f W t � l (x):

According to Lem. 3.1, we haverank(r W ij f W t � l (x)) �
N ij . Since f W is a univariate function,

each term
@(̀f W t � l (x) ;y)

@fW t � l (x) is a scalar. There-

fore, rank(r W ij L ~St � l
(f W t � l)) � BN ij since

r W ij L ~St � l
(f W t � l) is an average ofB matrices of

rank at mostN ij . In particular,rank(U) � N ij Bk sinceU
is a sum ofk matrices of rank at mostN ij B . Therefore, we
obtain that

min
W : rank(W)� N ij Bk

 W ij

t � W

�

 W ij

t � U

 = (1 � 2��)k kW ij

t � k k:

Finally, by dividing both sides bykW ij
t k we obtain the

desired inequality.

The theorem above provides an upper bound on the minimal
distance between the parameters matrixW ij

t and a matrix
of rank� N ij Bk . The parameterk controls the looseness
of the bound and is independent of the optimization process.

The bound is proportional to(1 � 2��)k kW ij
t k

kW ij
t � k k

, which

decreases exponentially withk. Assuming the norm of
W ij

t converges ast approaches in�nity andk = o(t), we

see thatlim
t !1

kW ij
t k

kW ij
t � k k

= 1 . Thus, SGD with weight decay

provably induces a low-rank bias in each weight matrix
W ij . By selectingk = d log(�)

log(1 � 2��) e, we can ensure that

(1 � 2��)k � � . In this case, at the end of the training,

the normalized matrix W ij
t

kW ij
t k

can be approximated by a

second matrixW of rank � N ij B log(�)
log(1 � 2��) � N ij B log(1 =�)

2��

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

(the second inequality assumes that�� < 0:5) with an error
of � . While the value ofN

ij B log(1 =�)
2�� may be large in small

or medium-scale learning settings, it still yields meaningful
results for very wide neural networks. For example, since
the bound is independent of the input and output channelscj

andci of C ij , whenci andcj are very large, the dimensions

of W ij are much larger thanN
ij B log(1 =�)

2�� , and thus, our
bound implies that the use of SGD would provably reduce
the rank ofW ij during training.

While Thm. 3.3 provides an upper bound ofN ij B log(1 =�)
2��

on the rank of the learned matrix, it does not give a pre-
cise insight into how various parameters in�uence the rank.
However, based on the bound, we can still make the pre-
diction thattraining with smaller batch sizes, increasing
weight decay or learning rate will lead to lower rank ma-
trices learned by SGD. These predictions are empirically
validated in the next section.

4. Experiments

In this section, we empirically study how batch size, weight
decay, and learning rate affect the rank of matrices in deep
ReLU networks. We conduct separate experiments where
we vary one hyperparameter while keeping the others con-
stant to isolate its effect on the averaged rank1. Additional
experiments are provided in Appendix B.

4.1. Setup

Architectures. We evaluate several network architectures
in our study. (i) The �rst architecture is an MLP, denoted
as MLP-BN-L-H , which comprisesL hidden layers, each
containing a fully-connected layer with widthH , followed
by batch normalization and ReLU activations. This archi-
tecture ends with a fully-connected output layer. The same
architecture without batch normalization is denoted by MLP-
L-H . (ii) The second architecture, referred to as RES-BN-
L-H , consists of a linear layer with widthH , followed
by L residual blocks, and ending with a fully-connected
layer. Each block performs a computation of the form
z + � (n2(W2� (n1(W1z)))) , whereW1; W2 2 RH � H ,
n1; n2 are batch normalization layers, and� is the ReLU
function. (iii) The third architecture is the convolutional
network (VGG-16) proposed by (Simonyan & Zisserman,
2014), with dropout replaced by batch normalization layers,
and a single fully-connected layer at the end. (iv) The fourth
architecture is the residual network (ResNet-18) proposed
in (He et al., 2016). (v) The �fth architecture is a small
visual transformer (ViT) (Dosovitskiy et al., 2020). Our
implementation of ViT splits the input images into patches
of size4 � 4, includes8 self-attention heads, each com-

1The plots are best viewed when zooming into the pictures.

posed of6 self-attention layers. The self-attention layers
are followed by two fully-connected layers with a dropout
probability of 0.1, and a GELU activation in between them.

Training and evaluation. We trained each model for CI-
FAR10 classi�cation using Cross-Entropy loss minimization
between its logits and the one-hot encodings of the labels.
The training was carried out by SGD with batch sizeB ,
initial learning rate� , and weight decay� . The MLP-BN-L-
H , RES-BN-L-H , ResNet-18, and VGG-16 models were
trained with a decreasing learning rate of 0.1 at epochs 60,
100, and 200, and the training was stopped after 500 epochs.
The ViT models were trained using SGD with a learning rate
that was decreased by a factor of 0.2 at epochs 60 and 100
and training was stopped after 200 epochs. During training,
we applied random cropping, random horizontal �ips, and
random rotations (by15k degrees fork uniformly sampled
from [24]) and standardized the data.

To study the in�uence of different hyperparameters on the
rank of the weight matrices, in each experiment, we trained
the models while varying one hyperparameter at a time,
while keeping other hyperparameters constant. After each
epoch, we compute the average rank across the network's
weight matrices and its train and test accuracy rates. For a
convolutional layerC ij , we useW ij as its weight matrix.
To estimate the rank of a given matrixM , we count how
many of the singular values ofMkM k2

are out of the range
[� �; �], where� is a small tolerance value.

4.2. Results

Low-rank bias and the batch size. As shown in Figs.3-6,
decreasing the batch size strengthens the low-rank constraint
on the network's matrices, resulting in matrices of lower
ranks. This aligns with the prediction made in Sec. 3 that
training with smaller batch sizes leads to matrices of lower
ranks. This observation highlights the impact of batch size
on the rank of the weight matrices and how it can be used
to control the complexity of the network.

Low-rank bias, weight decay and learning rate. As
shown in Fig. 2, increasing� imposes stronger rank mini-
mization constraints on the weight matrices. Interestingly,
the effect of batch size on the ranks of the weight matrices
appears to be minimal when� = 0 , which suggests that
weight decay is essential for imposing a noticeable low-
rank bias on the weight matrices. Furthermore, Figs. 1, 3
and 4 show that increasing the learning rate tends to lead
to smaller ranks of weight matrices, which aligns with the
prediction made in Sec. 3.

Low-Rank Bias and Generalization. We investigated the
relationship between low-rank bias and generalization by
training ResNet-18 and VGG-16 models on CIFAR10 with
varying batch sizes, while keeping� and� constant. To

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

B = 4 B = 8 B = 16

Figure 1.Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with varying� . The top row shows the average rank
across layers, while the bottom row shows the train and test accuracy rates for each setting. In this experiment,� = 5e� 4 and� = 1e� 3.

B = 8 B = 16 B = 32

Figure 2.Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with different� values.In this experiment,� = 1 :5
and� = 1e� 3.

provide a fair comparison, we selected� and� to ensure all
models �t the training data equally. Our results, shown in
Figs. 4-6, indicate that models trained with smaller batch
sizes (i.e. lower rank in their weights) tend to generalize
better as the test accuracy rate monotonically increases as
the batch size decreases. Based on these �ndings, we hy-
pothesize that when altering a certain hyperparameter, a
neural network with a lower average rank will have better

performance than a network with the same architecture but
higher rank matrices, assuming both networks perfectly �t
the training data.

5. Conclusions

A mathematical characterization of the biases associated
with SGD-trained neural networks is regarded as a signi�-

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

� = 0 :03 � = 0 :1 � = 0 :3

Figure 3.Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 with various batch sizes.In this experiment,
� = 5e� 4 and� = 1e� 3.

� = 0 :004 � = 0 :008 � = 0 :04

Figure 4.Average ranks and accuracy rates of ViT trained on CIFAR10 with various batch sizes.In this experiment,� = 5e� 4 and
� = 1e� 2.

cant open problem in the theory of deep learning (Neyshabur
et al., 2017). In addition to its independent interest, a low-
rank bias – though probably not necessary for generalization
– may be a key ingredient in an eventual characterization
of the generalization properties of deep networks. In fact,
recent results (Huh et al., 2022) and our preliminary experi-
ments (see Figs. 4-6 in the appendix) suggest that low-rank
bias in neural networks improves generalization.

Our study of deep ReLU neural networks trained with mini-
batch Stochastic Gradient Descent (SGD) and weight decay
shows that the resulting weight matrices tend to be low-
rank when training with small batch sizes, high learning
rates, or high levels of weight decay. Our theoretical and
empirical results provide a better understanding of how these
hyperparameters can be used to control the complexity of
the network and potentially improve generalization.

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

(a) (b) (c)

Figure 5.Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with different batch sizes. (a)was trained with
� = 1e� 3; � = 6e� 3, (b) was trained with� = 5e� 3; � = 6e� 3, and(c) was trained with� = 1e� 2; � = 4e� 4. We used a threshold
of � = 1e� 2.

(a) (b) (c)

Figure 6.Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with different batch sizes. (a)was trained with
� = 1e� 3; � = 6e� 3, (b) was trained with� = 5e� 3; � = 5e� 4, and(c) was trained with� = 1e� 2; � = 4e� 4. We used a threshold
of � = 4e� 2.

While this paper focused on a basic supervised learning
setting using SGD and weight decay, but future studies
could investigate the structure of weights and activations in
neural networks trained with other optimization methods
and regularization techniques. Additionally, it would be
valuable to study these biases in unsupervised and self-

supervised learning settings for deeper insights into network
training. Another interesting direction would be to examine
the effects of different architectures such as recurrent neural
networks or transformer networks on the rank minimization
bias.

