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Abstract

Computational models whose organization is inspired by
the cortex are increasing in both number and popularity.
Current instances of such models include convolutional net-
works, HMAX, Hierarchical Temporal Memory, and deep
belief networks. These models present two practical chal-
lenges. First, they are computationally intensive. Second,
while the operations performed by individual cells, or units,
are typically simple, the code needed to keep track of net-
work connectivity can quickly become complicated, leading
to programs that are difficult to write and to modify. Mas-
sively parallel commodity computing hardware has recently
become available in the form of general-purpose GPUs.
This helps address the first problem but exacerbates the sec-
ond. GPU programming adds an extra layer of difficulty,
further discouraging exploration.

To address these concerns, we have created a program-
ming framework called CNS (’Cortical Network Simula-
tor’). CNS models are automatically compiled and run on a
GPU, typically 80-100x faster than on a single CPU, with-
out the user having to learn any GPU programming. A
novel scheme for the parametric specification of network
connectivity allows the user to focus on writing just the code
executed by a single cell. We hope that the ability to rapidly
define and run cortically-inspired models will facilitate re-
search in the cortical modeling community. CNS is avail-
able1 under the GNU General Public License.

1. Introduction

1.1. Definitions

For the purpose of this paper, we define a ’cortical’ model
to be a network model which consists of some number of
∗Author to whom correspondence should be addressed.
1Software and a full programming manual are available at

http://cbcl.mit.edu/jmutch/cns.

N-dimensional ’layers’ of cells, where each layer encodes
some N-D feature space. It is common for at least some
of the dimensions to be topographically mapped, meaning
that physical proximity in the layer corresponds to proxim-
ity in the feature space. N, and the feature space, can be the
same or different from layer to layer. All the cells in a layer
must be of the same type, i.e., each maintains its own val-
ues of the same set of variables, using the same algorithm.
Connectivity between cells may be completely arbitrary, but
often consists of a repeating pattern.

This class of models includes, but is by no means limited
to:

• Convolutional networks [5, 4].
• HMAX [ 9, 8].
• Hierarchical Temporal Memory [1].
• Deep belief networks [2].
• Detailed spiking models of cortex.

Some of these are ’static’ models, requiring only a single
pass through the network for a given input. Others have
dynamics that require iteration over many time steps.

1.2. Motivation

Cortical models commonly contain a large number of units
and are therefore computationally expensive. However,
they are highly amenable to parallelization. The layered
structure of cortical models maps very well to the architec-
ture of modern GPUs, which are optimized to perform the
same operation at every point in an array of data. GPUs
have evolved from graphics accelerator cards, where the ar-
ray elements are pixels. Over the last few years the APIs
for these cards have opened up to encourage the accelera-
tion of non-graphical algorithms that can benefit from the
same architecture. Current GPUs have hundreds of paral-
lel processors and can typically run suitable algorithms 80-
100x faster than a single CPU. However, these performance



gains are not free. A GPU’s processors all still share a com-
mon memory, which becomes the bottleneck of the system.
To achieve optimal performance, GPU programmers must
code their algorithms so that the processors access memory
in coordinated patterns. This adds another layer of diffi-
culty to models that can already be somewhat challenging
to program.

Individual cells in cortical models typically perform
fairly simple functions. Difficulties in programming these
models usually arise in keeping track of the connectivity
between cells. There are two common approaches:

• Enumerate every synapse.With this approach, one
can represent any network architecture, but for net-
works having regular patterns of connectivity, it is ex-
tremely wasteful. Memory usage increases drastically,
and because memory access is the bottleneck in multi-
processing systems, so does processing time.

• Matrix operations. This is a common abstraction that
works for some simple hierarchical models. Layern is
generated from layern− 1 via some matrix operation
such as N-D convolution. This is very space-efficient
and easy to implement in a language such as MAT-
LAB. It is also fairly straightforward to implement on
a GPU, and to program arbitrary response functions
in place of the dot product implied by convolution.
However, in more complex situations this abstraction
becomes limiting. Actual cortical areas typically re-
ceive convergent input from multiple pathways that
have been processed differently. Operations may have
been carried out at different resolutions, or the number
of processing steps may have been different. Thus, the
indices of cells in two different input layers no longer
have the same meaning, and it is difficult to define a
matrix operation that combines them. Most work in
cortical modeling has simply focused on the subset of
models for which these difficulties do not arise.

Of the two barriers to exploration of the cortical model
space – programming time and run time – GPU program-
ming alone can only address the latter, and at the expense
of the former. A framework is needed that can address both
issues.

1.3. Overview of CNS

CNS is a rapid development environment for cortical mod-
els. Models are compiled and run automatically on NVIDIA
GPUs, often running 80-100x faster than on a single CPU,
without the user having to learn any GPU programming.

Most aspects of a model are defined via MATLAB
scripts, including:

• The number of layers.

• The dimension, size, and cell type of each layer.
• The variables associated with each cell type, and their

initial values.
• The connectivity between cells.

The process of running models, loading input data, and
pulling back results is also controlled via MATLAB. Vari-
ables are referred to by name – the user does not need to be
concerned with where they are stored in GPU memory.

There are two options for specifying connectivity. As in
many other simulators, synapses may be explicitly enumer-
ated: a given cell can list any number of presynaptic cells,
which can be in any layer. For models having regular pat-
terns of connectivity, CNS uses a scheme in which each cell
explicitly retains its grid position (the center of its recep-
tive field) in a real-valued feature space which is meaningful
across layers. For example, in a vision model, the dimen-
sions of this common feature space would probably include
retinal position, and even cells several steps removed from
the input would still know their center coordinates in reti-
nal space. Under this scheme, cells can infer their inputs
based on proximity in the common feature space. By appro-
priate relative arrangement of the coordinate grids for each
layer, any of the standard connectivity patterns (e.g., valid
and full convolution, sub- and super-sampling, etc.) can be
achieved, as well as many others. Once defined in this way,
connectivity is handled by the framework. An individual
cell can make requests of the framework, for example, it
can request the indices of itsn nearest neighbors in layerz.
This division of labor allows programmers to focus mainly
on the code being executed by a single cell.

A ’kernel’ is the code each cell executes during an itera-
tion of the network. Cells of the same type share the same
kernel. Kernels run on the GPU and are the only parts of
a CNS model that must be written in C/C++. Even when
writing a kernel, however, the programmer remains isolated
from the complexities of the GPU. A kernel is written from
the point of view of a single cell, so the programmer is not
responsible for any thread scheduling. Nor is the program-
mer required to know where variables are stored in GPU
memory. CNS provides named macros that the kernel can
call to, among other things:

• Read and write the current cell’s variables.
• Find input cells via proximity in the feature space, as

described above.
• Read the values of other cells’ variables.

During model development, CNS can be thought of as a
compiler, in that programmers do not need to read or mod-
ify any of CNS’s code. By way of comparison, the 3-D
convolutional network package with backpropagation de-
scribed in section2.3, written using CNS, comprises about



300 lines, while CNS itself is about 10,000 lines as of this
writing.

CNS is licensed under the GNU General Public License.
The software and programmer’s manual are available at
http://cbcl.mit.edu/jmutch/cns.

1.4. Structure of this paper

The remaining sections of this paper are as follows:

• Section2 introduces three example packages written
in CNS.

• Section3 discusses some CNS concepts in more detail,
using the example packages for illustration.

• Section4 describes the process of developing and run-
ning a CNS model.

• Section5 provides some internal details on how CNS
maps models to the GPU architecture.

• Section6 lists some limitations of CNS.
• Section7 outlines future work on CNS.

This paper is intended as a high-level introduction to CNS.
Exact syntax is not covered beyond a few examples. For a
complete description of all CNS syntax and options, see the
programmer’s manual [6].

2. Example packages

In CNS, a ’package’ is a collection of cell types that is used
to construct models. For example, the ’HH’ package de-
scribed below implements several types of Hodgkin-Huxley
cells. Once you have a package, you can then build net-
works consisting of those types of cells. The same package
can be used to define many specific models, having different
numbers of layers, of different sizes, with different connec-
tivity, etc.

In this section we briefly describe three packages that we
have developed with CNS. Subsequent sections will refer
back to these examples to illustrate various CNS concepts.

2.1. ’HH’ package: Hodgkin-Huxley spiking mod-
els

The Hodgkin-Huxley (HH) package is used to build models
made up of 2-D layers of spiking neurons, similar to the
cortical laminae. Figure1 shows part of three layers of such
a model:

• IN: the input layer. Each cell has its own list of prepro-
grammed spike times.

• F1: a layer of fast-spiking inhibitory cells, each receiv-
ing input from a local region of IN.

• P1: a layer of pyramidal cells, each receiving input
from a local region of IN and F1 (latter connections
not shown).

IN

(input)

F1

(wb)

P1

(ga)

Y x X Y x X Y x X
Dimension

Names:

Layer Name:

(type)

Figure 1. Schematic of part of a model made up of Hodgkin-
Huxley spiking neurons (see section2.1), implementing monosy-
naptic excitation with disynaptic inhibition. IN: input layer. F1:
fast-spiking inhibitory cells (Wang-Buzsaki model). P1: pyrami-
dal cells (Golomb-Amitai model). IN-P1 connections, and other
layers, are not shown. The full model contained 10,000 cells.
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Figure 2. Voltage trace output for one cell in a Hodgkin-Huxley
model (see section2.1).

In these models, cells in a layer are assigned to grid posi-
tions in a 2-D feature space, but with some gaussian noise
added. Connectivity is also noisy; for example, each F1 cell
receives input from a local region of IN cells, but with the
probability of a connection decreasing with distance from
the center of the region. Thus, connectivity in these models
is defined using the explicit synapses method: each cell in a
model lists its presynaptic cells.

Models built with this package are dynamic. Each cell
maintains its own set of Hodgkin-Huxley state variables.
Each iteration of the network represents a small time step,
during which each cell polls its presynaptic cells to see
which ones are spiking and updates its state variables ac-
cording to a set of differential equations. CNS can track the
values of selected state variables as they change; figure2
shows a voltage trace for one cell.
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Names

SI  (scaled-im)

RI  (raw-im)

Figure 3. An example of an HMAX model (see section2.2). Each
step is performed at multiple scales, only three of which areshown
here.

For a model with 10,000 neurons and 330,000 synapses,
CNS was able to process 5,000 time steps per second on a
GTX 285 GPU.

2.2. ’FH’ package: HMAX-like feature hierarchies

The FH package allows you to build models of the HMAX
[9, 8] class. HMAX models the initial feedforward stage of
object recognition in the ventral visual pathway. It extend
the idea of simple and complex cells [3] to form a hierar-
chy in which alternating template matching and max pool-
ing operations progressively build up both feature selectiv-
ity and invariance to position and scale. Figure3 illustrates
one such model [8] as it is expressed in CNS.

HMAX is scale invariant: each stage of processing is
carried out at multiple scales. Thus, each stage of the model
is actually represented by many CNS layers, one for each
scale. For the model in figure3, the stages are:

• SI: Many different resolutions of the original image,
produced by bicubic interpolation.

• S1: Applies gabor filters of several orientations at ev-
ery position and scale. Each scale is now of size
F1 × Y ×X , whereF1 is the number of orientations.

• C1: Independently for each orientation, computes the
maximum response over a local area of position and
scale. Also subsamples by a factor of 5. Note that
the operation of pooling over multiple scales would
be difficult to define as a matrix operation. Here it
is done using CNS’s common coordinate scheme (see
section3.6).

• S2: Computes the response to many stored templates
at every position and scale. Now in each scale we have
F2×Y ×X units, whereF2 is the number of templates.

• C2: For each template, finds the maximum response
over all positions and scales. This results in a feature
vector which can be fed into a classifier.

These models are computed in a single bottom-up pass for
a given input image. The gabor filters in S1 and the stored
templates in S2 are shared by all the cells in those layers
(and are not shown in figure3).

The FH package replaces an older CPU-based library
called FHLib [7] which was used for the experiments in [8].
For one large model, CNS outperformed FHLib by a factor
of 97x on a GTX 285 GPU.

2.3. ’CN’ package: convolutional networks for 3-D
image segmentation

The ’CN’ package is a CNS reimplementation of the code
used in [4]. It is used to train and run convolutional net-
works that perform segmentation in 3-D electron micro-
scope images of brain tissue. These networks are similar
to those of Lecun [5] except that the filters have three spa-
tial dimensions and there is no subsampling. The model
architecture is illustrated in figure4.

EachXi layer is four-dimensional, containing the value
of Fi different features at each position in a 3-D cube. (For
the input imageX0 there is only one feature: the pixel
value.) The features are different in each stage. EachWi

can be viewed asFi four-dimensional filters which, via con-
volution overXi−1 (and then adding the appropriate bias
from Bi), produce layerXi. Note that convolution only
occurs over the three spatial dimensions; for the feature di-
mension,Xi−1 and the filter are the same size.

The goal of the training phase is to learn all theWi and
Bi layers. This is done via the backpropagation algorithm
in three passes (mathematics in [4]):

• Forward pass: starting with the input inX0, compute
the outputs of eachXi layer from bottom to top.

• Backward pass: starting with the desired output inXn,
compute the error term (’sensitivity’) for eachXi from
top to bottom.

• Weight update: update eachWi andBi layer.

Note that unlike the filters and features in FH models (sec-
tion 2.2), here the weights and biases need to change during
a network iteration. Thus, we treat them as layers, and they
have their own kernels which perform the update at the ap-
propriate time.

Once the network has been trained, only the forward pass
is needed to perform segmentation.
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backward pass

weight update

dimension not shown

...

Figure 4. The first three stages of a convolutional network for seg-
menting 3-D images (see section2.3).

The CNS implementation of this class of models ran
about 100x faster than the previous code, based on timing
using a single CPU. Ongoing development of these models
continues under CNS.

3. CNS concepts

In this section we run through the key concepts of CNS,
using the packages in section2 as examples.

3.1. Layers and groups of layers

The basic architectural unit of a CNS model is thelayer,
which is an N-dimensional array of cells that are all of the
sametype(see section3.3). Practically speaking, a model
can have up to several hundred layers. Note that layers do
not have to be arranged in any kind of hierarchy or directed
acyclic graph (DAG).

Multiple layers of the same type can be designated as a
group. The main purpose of this is to allow them to share
some common data. For example, in the FH package, all
the S1 layers (of different scales) are designated as a group
so they can share the same set of precomputed gabor filters.

3.2. Execution order

By default, a single network iteration consists of computing
all cells in all layers exactly once, in parallel. HH models
work like this. Internally, of course, everything isn’t com-
puted exactly at once. A double-buffering system is em-
ployed to guarantee that during iterationt, all the values a
kernel reads from other cells come from iterationt− 1.

For some models, it wouldn’t make sense to compute all
the layers at the same time. For example, cells in FH mod-
els do not have states that evolve over time. There is no
point in computing layern until layern− 1 has been com-
puted. In this case, a network iteration is broken into steps,
with layers assigned different step numbers. In figure3, for
example, all the SI layers are assigned step 1, the S1 layers
step 2, the C1 layers step 3, etc.

CN models are similar to FH, except that a single iter-
ation consists of a forward pass, a backward pass, and a
weight update. TheXi layers get computed at two different
points in one iteration, i.e., they each have two different step
numbers, and perform a different computation in each.

Note that there is no unit of execution smaller than a sin-
gle layer.

3.3. Cell types

A cell type defines:

• The dimensionality (N) a layer of cells of that type
must have. For example, all the layers in HH mod-
els are 2-D, but in CN models theXi layers are 4-D,
theWi layers are 5-D, and theBi layers are 1-D.

• The constants and variables(fields) associated with
each cell. (Fields can also have layer scope, synapse
scope, etc.; see section3.4.)

• The kernel used to update a cell during a network iter-
ation (see section3.5).

Just like a class in object-oriented programming, a cell type
can be a subtype of a parent type. All the cell types in a
package form a type hierarchy (not to be confused with a
model having hierarchical structure). Every package must
have a ’base’ type which is the root of the type hierarchy.
A cell type inherits the following properties from its parent
type:

• The dimensionality of a layer. Note that this cannot be
overridden.

• All fields.
• The kernel. This can be overridden.

Cell types can beabstract, which means they exist only to
declare a common set of properties that are then inherited



Type
Fields

Kernel Dimensions
Layer or group Cell Synapse

HH package

base* V m t last no Y x X
input (spike times) yes
passive* C m g L E L g r template
dendrite parts
active* E Na E K no
ga g NaBar gKABar ... h n b z parts
wb g NaBar gKBar ... h n parts

FH package

base* val no F x Y x X
raw-im no
scaled-im yes
s-fixed* (filters) template
ndp parts

c* (rf size) template
max parts
avg parts

s-learned* (features) template
grbf sigma parts
grbfnorm sigma parts

CN package

base* no undefined
layer* val no F x Y x X x D
input no
computed* sens template
hidden parts
output correct parts

weight eta val yes Fin x Y x X x D x Fout

bias eta val yes Fout

Table 1. Cell types for the example packages. Indentation inthe ’type’ column denotes inheritance, and * denotes an abstract type. Italicized
fields are read-write, i.e., variable. Note that a cell type inherits all its parent type’s fields.

by subtypes. In many packages, the ’base’ type will be ab-
stract. You cannot create layers of cells of an abstract type;
you must use a non-abstract subtype.

Table1 shows the type hierarchy for all three example
packages.

3.4. Fields and scope

In CNS, a named numeric quantity associated with a cell is
called afield. For example, in HH models, membrane volt-
age (Vm) is a field, and each cell maintains its own value
of the membrane voltage. For cells, fields are analogous to
the data members of a class or structure in object-oriented
programming. Each cell type inherits its parent type’s fields
and may also define its own fields. The definition of a field
includes:

• Field name. Used to identify the field, both in the
MATLAB interface and inside kernels.

• Data type: either single-precision floating point or 32-
bit signed integer.

• Scalar or vector.

• Read-only or read-write. Read-only fields (constants)
cannot change their values during a model iteration on
the GPU, but they can be changed between iterations
from within MATLAB. Read-write fields (variables)
may be changed during a model iteration, but only for
the current cell, i.e., each cell is responsible for updat-
ing its own variables.

• Default value: the value a field will have when a model



is initialized. May be overridden at model initialization
time. If no default value is defined, then one must be
given at model initialization time.

• Scope: see below.

One key way in which CNS fields arenot like data members
in object-oriented programming is that you can also define
theirscope. A field can have:

• Cell scope. Each cell maintains its own value of the
field. (If the field is a vector, each cell maintains its
own vector value. This applies to all the scopes listed
here.)

• Synapse scope. Available when using explicit-
synapses connectivity (section3.6). A separate value
of the field is maintained for each synapse. This can
obviously take a lot of memory.

• Layer scope. Each layer will have one value of the field
that applies to the whole layer. Such fields are always
read-only.

• Group scope. One (read-only) value of the field is
maintained for an entire group of layers (see sec-
tion 3.1).

• Model scope. One (read-only) value of the field is
maintained for an entire network model.

Table1 shows many of the fields defined by the example
packages.

One more kind of field is also available. In some models
it is desirable for many cells to have access to the same large
multidimensional array of static data. One way of doing this
would be to use the same approach the CN package uses
to shareWi andBi values, which is to make such arrays
into layers of their own. In CN models,Wi andBi arenot
static, so this is the only option. In the FH model shown
in figure3, however, the S1 stage’s gabor filters and the S2
stage’s stored features are static during a network iteration,
so it would be nice to not have to complicate the network
structure by making them separate layers. CNS allows static
arrays like this to be defined as fields having layer, group,
or model scope.

3.5. Kernels

A kernelis a function that updates a cell’s variables during a
network iteration. As with methods in object-oriented pro-
gramming, a kernel is written from the point of view of a
single cell. Unlike object-oriented programming, however,
each cell type has exactly one kernel.

Kernels are written using a limited subset of C++ (mostly
just C), supplemented by macros generated by CNS. You
may provide an arbitrary block of C/C++ code, subject to
these conditions:

• Only statements that are permissible in function scope
(inside a function body) are allowed.

• The only standard library functions available are those
in the ’math’ library.

• No dynamic memory allocation is permitted.

Access to fields and other properties you have defined for
the various cell types is done via macros that CNS provides.
This spares you from having to worry about how data is laid
out in GPU memory, etc. Figure5 shows part of a kernel
from the CN package; all the red symbols are macros gen-
erated by CNS, based on the definitions for cell types in that
package.

When you are writing a kernel, you can ask CNS to list
all the macros available to you. CNS provides macros to:

• Read and write fields. (For example, theREAD *
macros,WRITE VAL, ZP, ZW, andZB in figure5.)

• Retrieve current cell coordinates. (For example,
THIS F in figure5.)

• Find receptive fields. (For example, the* RF NEAR
macros in figure5.)

• Retrieve layer dimension sizes. (For example, the
* SIZE macros in figure5.)

• Loop through explicit synapses, if any.

• Retrieve the current iteration number and other miscel-
lanea.

Closely related kernels are often very similar. For example,
one might want to define a cell type having a kernel like the
one in figure5, but with the dot product operation, or per-
haps the sigmoid nonlinearity, replaced by something else.
To avoid having many kernels that are slightly-modified
copies of one another, CNS allows you to write atemplate
kernel for an abstract parent type. The template kernel will
contain most of the logic, leaving ’blanks’ for the specific
operations. Then the various subtype kernels provide differ-
ent code snippets(parts) that ’fill in’ those blanks for each
subtype. This feature is used in all three example packages;
see the ’kernel’ column in table1.

3.6. Connectivity

As discussed in sections1.2and1.3, CNS has two ways to
specify cell-to-cell connectivity:

• HH models use the explicit synapses method: each cell
lists each of its presynaptic cells. This is necessary
because cells in HH models do not occupy regular grid
positions in a common feature space.



// Retrieve the size of our 4-D filter.
int fSize = WEIGHT F SIZE(ZW);
int ySize = WEIGHT Y SIZE(ZW);
int xSize = WEIGHT X SIZE(ZW);
int dSize = WEIGHT D SIZE(ZW);

// Find our corresponding RF in the previous layer.
int y1, x1, d1, dummy;
GET LAYER Y RF NEAR(ZP, ySize, y1, dummy);
GET LAYER X RF NEAR(ZP, xSize, x1, dummy);
GET LAYER D RF NEAR(ZP, dSize, d1, dummy);

// Compute response to the 4-D filter.
float v = 0.0f;
for (int f = 0; f < fSize; f++) {

for (int k = dSize - 1, d = d1; k >= 0; k--, d++) {
for (int j = xSize - 1, x = x1; j >= 0; j--, x++) {
for (int i = ySize - 1, y = y1; i >= 0; i--, y++) {

float p = READ LAYER VAL(ZP, f, y, x, d);
float w = READ WEIGHT VAL(ZW, f, i, j, k, THIS F);
v += p * w;

}
}
}

}
v += READ BIAS VAL(ZB, THIS F);

// Apply sigmoid nonlinearity.
v = 1.0f / (1.0f + expf(-v));

// Store result.
WRITE VAL(v);

Figure 5. Part of a kernel from the CN package. This code performs the forward pass. It computes the value of a single cell inanXi layer
by overlaying the appropriate 4-D weight array fromWi onto the cell’s 4-D receptive field inXi−1, computing the dot product, adding the
appropriate bias fromBi, and applying a sigmoid nonlinearity. Symbols inREDare macros generated by CNS; everything else is standard
C/C++. See section3.5for details.

• FH and CN models use the common coordinates
method. Here we expand a bit on that topic.

In FH models, the dimensions Y and X correspond to reti-
nal position and are meaningful across all layers. In CN,
the same holds in theXi layers for spatial dimensions Y, X,
and D (depth). Thus, cells in both packages are assigned
to real-valued grid positions in these common dimensions.
Figure6 illustrates how these coordinates are used to per-
form an operation (pooling over scales that are not an inte-
ger multiple of one another in an FH model) that is difficult
to define without them.

Note that this is just one instance of a general problem
which can arise in several ways, and which CNS’s common
coordinate system was designed to solve: how does one de-
fine ’local’ operations like convolution over multiple layers

having different sizes, resolutions, etc.? Networks having
multiple pathways that converge will almost always have
this issue, since the different pathways probably involve dif-
ferent amounts of convolution (with edge loss) and/or sub-
sampling. And of course, convergence occurs throughout
cortex.

Part of defining a network model in CNS is setting up
these grid positions for the different layers. There is a
function (cns mapdim) that handles all the standard cases:
valid, same, and invalid convolutions, subsampling, super-
sampling, etc. Once grid positions have been assigned, con-
nectivity is handled by CNS - in kernel code, you simply
call a macro requesting, for example, the nearestn neigh-
bors in some layerz, or every cell within radiusr.

Not all dimensions in a model need to have a common
coordinate system. For example, the non-spatial dimen-
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Figure 6. Common coordinate positions for several layers ofan
FH model. The C1 cell shown is a corner cell of a layer that has
been arranged to perform a 10x10 valid convolution over the layer
representing the first S1 scale. The second S1 scale’s cells do not
line up with either of the other two layers shown; however, itis
still possible to define a pooling operation over both S1 layers –
the C1 cell just takes a max over any cell in its receptive field.

sions in FH and CN models do not have the notion of lo-
cality, so for them this scheme is not used.

4. Working with CNS

In this section we provide a quick overview of the process
of developing and running CNS models.

Before you can build a network model, you must define
your cell types. This is done by creating apackage, which
is a collection of related cell types, or by acquiring and pos-
sibly modifying an existing package. For example, if you
wanted to build a network of Hodgkin-Huxley spiking cells,
you would probably want to start with the existing HH pack-
age. The properties of cell types and their associated fields
and kernels are described in sections3.3, 3.4, and3.5. Most
of these definitions are made in MATLAB ’.m’ files, with
kernels in C/C++ ’.h’ files. All such files for a single pack-
age are stored together in a package directory. Before you
can use a package, it must be compiled into an executable
using thecns build command. This actually produces
two executables, one that runs models on a GPU and an-
other that runs models on a CPU. The latter option can be
useful for development and debugging.

Once you have a compiled package, you can use it to
build and run any number of different network models, hav-

ing different numbers and sizes of layers, with different con-
nectivity, etc. The process of building and running a net-
work model is as follows. All steps are carried out from
within MATLAB using a few CNS commands.

1. Define the structure of your network: the number of
layers, their sizes and types, cell-to-cell connectivity,
and the initial values of fields. This is all defined in a
MATLAB struct which you create. The helper func-
tion cns mapdim can assist you in setting up a com-
mon coordinate system (section3.6).

2. Initialize the model on the GPU (or CPU). This can
take a few seconds.

3. Run the model for any number of iterations.

• For dynamic models (e.g. HH models) this may
involve loading some input data and then letting
the model iterate for awhile. Variables can be
tracked as they change, or if you just want their
final values, you can pull them out when all iter-
ations are complete.

• Other models (e.g. FH models) process their in-
put in a single iteration. For these models you
simply load your input data, perform a single it-
eration, and pull out any output data. For batch
operations (e.g., processing many images with an
FH model) you would perform those three oper-
ations inside a loop.

4. Deallocate the model, freeing resources.

5. GPU details

While there are some circumstances in which model choices
have performance consequences – these are documented in
the programmer’s manual [6] – users in general do not need
to understand GPU programming in order to use CNS.

Here we provide a few details on how CNS works
behind the scenes. This section is intended for those
familiar with GPU programming concepts; an exposition
of GPU programming and architecture is beyond the scope
of this paper.

Dimension mapping. The user sees layers as N-
dimensional arrays, and this abstraction is consistent
throughout CNS: both MATLAB functions and kernel
macros view layers as N-D. However, internally layers are
stored as 2-D. This is done because some fields need to be
stored in GPU textures (see below). Textures can be 2-D
or 3-D, but for 3-D textures the size limits are prohibitively
small as of this writing. It is also more difficult to do texture
packing in 3-D. Thus, CNS uses only 2-D textures.



All translation between N-D and 2-D is handled by
CNS. The user’s only involvement in this process occurs
when defining a cell type. The user must choose the internal
dimension (Y or X) to which each external dimension is
mapped. Current GPU limits on texture size will influence
these decisions. When two or more external dimensions
are mapped to the same internal dimension, the user must
also specify the nesting order. This choice has perfor-
mance consequences. Storage will only be contiguous
for the innermost dimension, so kernels involving nested
loops should iterate over the innermost dimension in the
innermost loop. (This is done in figure5.) CNS automati-
cally pads the innermost Y dimension to the warp size so
that warps will perform coalesced reads as often as possible.

Types of GPU memory. CNS automatically maps each
field to the appropriate kind of GPU memory based on the
field’s definition:

• Small, shared constants having layer, group, or model
scope are stored in the constant cache. The constant
cache is also used to store internal metadata such as
layer sizes.

• Fields that have cell scope and that will be read by
other cells are stored in textures. One texture is used
for all the layers having that field; texture packing is
done automatically.

• Everything else goes into global memory.

• Shared memory is not used.

Blocks and threads. All layers having the same cell type
are evaluated in a single kernel call (unless the user has as-
signed them to different step numbers; see section3.2). The
decomposition into blocks and threads is done automati-
cally. Each cell gets its own thread. Each layer becomes
one or more thread blocks; an individual thread block will
contain threads from a single layer only. Blocks are 2-D and
aligned in the same way as memory (see above) to maxi-
mize the number of coalesced reads and the benefits of tex-
ture caching.

6. Limitations

6.1. Inherent Limitations

The following limitations are inherent in CNS’s role as a
rapid development framework for expressing arbitrary mod-
els having a cortical organization:

• CNS implements a generic, automatic process for
mapping cortical models to the GPU architecture. For
any given specific model, it will always be possible
for a sufficiently skilled programmer to write custom

GPU code that runs faster by taking advantage of opti-
mization techniques peculiar to that model. However,
custom GPU code is much harder to write and mod-
ify. The speedups we are seeing under CNS relative
to a single CPU (80-100x) are on the order of what is
typically reported in the literature for direct GPU im-
plementations of various algorithms. Our testing so far
suggests that, at worst, a CNS model will be no more
than 2x slower than a carefully-written custom GPU
implementation of that specific model.

• Models must run inside a single GPU. Host-GPU com-
munication is relatively slow, and CNS makes no as-
sumptions about the sparsity of long-range vs. local
connectivity, nor about the frequency of cell-to-cell
communication. A less general framework in which
such assumptions could be made might be able to au-
tomatically decompose models into pieces that could
run on separate GPUs without incurring prohibitive
data transfer delays. CNS cannot do this, so any
such decomposition must be done by the user, outside
CNS. Barring a dramatic improvement in the speed of
host-GPU communication, this limitation cannot be re-
moved, although it might be possible to implement au-
tomatic solutions for a subset of cortical models.

The largest GPU memory is currently 4GB. NVIDIA’s
upcoming Fermi architecture will have a 1TB address
space, but it is not known how much memory the cards
will actually have.

6.2. Current Limitations

These limitations could potentially be removed, some more
easily than others:

• Only NVIDIA cards are supported. This could be over-
come by converting CNS to use the new OpenCL API
instead of CUDA.

• You cannot define fields that store 64-bit quantities,
such as double-precision floating point numbers. Al-
lowing fields of different sizes would somewhat com-
plicate the current CNS code. Note that temporary
variables used inside kernelscanbe 64-bit now.

• CNS is MATLAB-dependent. Since most of CNS is
written in MATLAB, porting it would be a big job.

• Limitations on the size of the 2-D textures (currently
64K x 32K) used to store some fields can sometimes
complicate model definition. This is beyond our con-
trol; however, given the current industry push to open
up GPUs for general-purpose computing, it does not
seem unreasonable that this limit might be removed in
future cards.



7. Future work

With CNS stable, our main focus is now on specific pack-
age and model development. Likely future improvements
to CNS itself include:

• Taking advantage of NVIDIA’s new Fermi architec-
ture. The two changes most relevant to CNS are the
ability to run more than one kernel concurrently and
the option to enable 48K of L1 cache.

• Investigating the feasibility of moving to OpenCL.
This would allow us to use non-NVIDIA cards.
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