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Abstract
In this paper, we bring together research on active learning
and intuitive physics to explore how people learn about “mi-
croworlds” with continuous spatiotemporal dynamics. Partici-
pants interacted with objects in simple two-dimensional worlds
governed by a physics simulator, with the goal of identifying
latent physical properties such as mass and forces of attraction
or repulsion. We find an advantage for active learners over
passive and yoked controls. Active participants spontaneously
performed several kinds of “natural experiments” which reveal
the objects’ properties with varying success. While yoked par-
ticipants’ judgments were affected by the quality of the ac-
tive participant they observed, they did not share the learning
advantage, performing no better than passive controls overall.
We discuss possible explanations for the divergence between
active and yoked learners, and outline further steps to catego-
rize and explore active learning in the wild.

Keywords: active learning; intuitive physics; causality; prob-
abilistic inference; mental simulation.

The great majority of research on human and machine
learning has focused on passive situations, where evidence is
fixed or preselected. Participants are typically invited to make
judgments based on carefully pre-chosen evidence; and ma-
chine learning algorithms compete for predictive accuracy on
pre-existing datasets. In contrast, Nature’s successful learners
are necessarily embedded in the world they must learn about
and exploit. Thus, it is the norm for human learners to exert
some degree of active control over the evidence they see. To
understand human learning then, one must also understand
the myriad decisions about where to attend, and what action
to take, that control and manage the flow of incoming evi-
dence. An effective active learner will be able to bootstrap
their learning, dramatically improving the utility of the infor-
mation they receive by tailoring it to resolving their uncer-
tainty about their surroundings. On this view, we can think of
the little actions in everyday life as small experiments, rang-
ing from the automatic (e.g. cocking one’s head to better lo-
cate the origin of a sound), to the deliberate (lifting a suitcase
to judge its weight; shaking a present to try and guess its con-
tents; holding a pool cue to one eye, or spinning it, to gauge
its straightness). A common element in these examples is that
they create situations that exaggerate, or “bring into sharper
relief” physical properties of interest.

In the current paper we explore this naturalistic type of
learning by looking at how people learn about physical laws
and properties, such as magnetism and object mass. The
structure of the paper is as follows. We first survey the lit-
eratures on active learning and intuitive physics; then de-
scribe experiments that contrast passive learners with active
and yoked learners. Finally, we look closely at the types of
actions that active participants performed to reveal the mi-
croworlds’ hidden physical properties.

Active learning

Human active learning has largely been studied in sim-
ple, abstract situations where the space of possible actions
is limited and the hypothesis space is easily defined. Ex-
amples include category rule learning (Gureckis & Markant,
2009) and games like “Guess Who” (Nelson, Divjak, Gud-
mundsdottir, Martignon, & Meder, 2014) and “Battleships”
(Markant & Gureckis, 2010). A related line of research
has explored active causal learning, where the available ac-
tions are more overtly physical, involving interventions on
real causal systems (Bramley, Lagnado, & Speekenbrink,
2015; Coenen, Rehder, & Gureckis, 2015; Lagnado & Slo-
man, 2004). Since many causal structures cannot be distin-
guished by co-variational data alone (Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003), the concept of intervention
captures a key aspect of real world active learning that goes
beyond simply asking the right questions. The learner’s ac-
tions can effectively create idealized situations that would
rarely happen under normal circumstances, and thus uncover
the true causal relationships. However, the “causal systems”
explored in these studies are invariably causal Bayesian net-
works (Pearl, 2000) where time and space are abstracted
away, and actions are limited to idealized interventions.

In general, these studies found that people select actions
that are more informative than random selection, but that also
tend to be more stereotyped and repetitive than those pre-
scribed by models of optimal active selection. This has led
to proposals that active learners’ choices are better under-
stood as boundedly rational (Bramley et al., 2015), meaning
they tailor their actions to their own limited learning capac-
ities, testing only a subset of the possible hypotheses at any
given time. If learners’ actions are heavily tailored to their id-
iosyncratic learning trajectories, we expect the evidence they
generate to be less useful for other learners, with different id-
iosyncrasies, observing their choices (Markant & Gureckis,
2014). This view is broadly (Lagnado & Sloman, 2004; So-
bel & Kushnir, 2006), but not always (McCormack, Bramley,
Frosch, Patrick, & Lagnado, 2016), supported by experiments
that have included yoked conditions, where one participant
observes the tests performed by another. Intuitively, the di-
vergence between information that is in principle available,
and what participants can actually learn will be much larger in
more complex and naturalistic situations, where only a frac-
tion of the total evidence can plausibly be attended to.

While emerging research has begun to explain how people
can learn intuitive physical theories, to the best of our knowl-
edge no one has yet explored how active learning shapes this
process.



Intuitive physics
In recent years, research into people’s intuitive understand-

ing of physics has experienced a revival. This is partly due to
the ease with which we can design physically realistic dis-
plays thanks to available software packages with physics en-
gines. While early research into intuitive physics had focused
on documenting how people’s understanding of some aspects
of physics, such as ballistic and curvilinear motion, is some-
times systematically biased (e.g. McCloskey, Caramazza, &
Green, 1980), more recent research has demonstrated how
some of these biases may be explained if we assume that
1) our physical understanding is approximately Newtonian,
and 2) we are often fundamentally uncertain about some im-
portant aspects of the physical scene (e.g., the masses of the
objects involved in a collision, Sanborn, Mansinghka, & Grif-
fiths, 2013).

Battaglia, Hamrick, and Tenenbaum (2013) have argued
that people’s understanding of physics is best understood in
analogy to a physics engine used to produce physically re-
alistic scenes. Accordingly, people have a physics simula-
tor in their mind that they can use to approximately predict
what will happen in the future (Smith & Vul, 2013), reason
about what happened in the past (Smith & Vul, 2014), or sim-
ulate what would have happened if some aspect of the situa-
tion had been different (Gerstenberg, Goodman, Lagnado, &
Tenenbaum, 2015). The results of these experiments are con-
sistent with the view that people have a rich intuitive theory
of physics that supports approximately accurate mental sim-
ulations of key aspects of physical scenes. However, these
experiments do not address the question of how we get there
– how do people acquire their intuitive physical theories?

Intuitive theories can be expressed as probabilistic pro-
grams (Gerstenberg & Tenenbaum, to appear). Program in-
duction is a thorny problem, but one where human-like per-
formance has been demonstrated (Lake, Salakhutdinov, &
Tenenbaum, 2015) by sophisticated Bayesian machinery em-
bodying principles of causality and compositionality. Ull-
man, Stuhlmüller, Goodman, and Tenenbaum (2014) ex-
plored human intuitive physics learning, by studying how
people learn about different latent physical properties of 2D
“microworlds” similar to the ones shown in Figure 1. The
worlds were bounded by solid walls and contained a number
of colored pucks with differing weights, surfaces with dif-
fering levels of friction, as well as local (magnet-like) forces
between pucks and a global (gravity-like) force pulling all
the pucks in a particular direction. In each clip, the pucks
bounced around, attracting and repelling each other, being
slowed down by the friction, and being pulled by the global
force. Participants answered a series of questions about each
world’s properties. Participants were able to detect different
levels of mass and friction on average but individual judg-
ments were noisy. They identified the correct global force
around 70% of the time and were much better at detect-
ing local attraction (82%) than repulsion (53%). Ullman et
al. found that divergence was matched by an asymmetry in
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Figure 1: Schematic displays of two “microworlds”.

the evidence: pucks that repelled one another would rarely
spend long enough close together to exhibit strong repulsion,
while attracting pucks would rapidly approach one another
and stick together offering stronger evidence of the latent
force.

Ullman et al. modeled participants’ judgments by assum-
ing a mixture of an Ideal Observer model (IOM) and a Simu-
lation Based Approximation model (SBAM). The IOM com-
pares the observed objects’ trajectories to simulations of ex-
pected trajectories under the different possible worlds. The
model assumes that people have uncertainty about the pucks’
exact locations and velocities. The SBAM compared statis-
tics about each clip such as the pucks’ average positions, ve-
locities and pairwise distances, to the summary statistics of
repeated simulations under the different possible worlds. For
instance, objects in worlds with a global force towards south
tend to be closer to the southern wall of the world. A mixture
model that combined both IOM and SBAM had a .81 corre-
lation with participants’ judgments. Individually, the SBAM
did a better job than the IOM on predicting all but global force
judgments.

In the current work we build on these results, exploring
how people interact with physical microworlds and how this
impacts on their learning of the different physical properties.

Pilot study: From Passive to Active
For our pilot study we adapted the setup from Ullman et

al.. However, rather than showing participants prechosen re-
plays, we generated the simulations on the fly to allow for ac-
tive conditions in which participants could exert control over
the scene and alter how it played out. There are many ways
in which participants could be allowed to interact with the
worlds. We chose two setups that differed in the extent to
which participants had fine-grained control over the scene.
In the “active punch” condition, participants controlled a fist
that allowed them to roughly trap and knock the other objects
around, mimicking the clumsy actions of a baby yet to de-
velop fine motor skills. In the “active grab” condition, we
allowed learners to use the mouse to grab the pucks with the
mouse and drag them around, staging more precisely orches-
trated interactions.

We were interested in whether active participants would be
able to use these forms of control to better identify the forces
than the passive participants; or conversely if the costs of con-
trolling while learning would lead to worse performance.



Methods
Participants Sixty participants were recruited through Ama-
zon Mechanical Turk (34 male, age 33.5± 9.7). They were
paid at a rate of $6 per hour.
Materials The experiment was programmed in javascript us-
ing a port of the Box2D physics game engine. The mi-
croworlds were displayed in a 600 by 400 pixel frame, with
1 m in the world corresponding to 100 pixels on the screen.
Each world was bounded by solid walls with high elasticity
(90% of energy retained per collision) – and contained four
pucks (2 yellow, 2 red, all with radius .25 meters, mass 1 kg
and elasticity 75%). Each world either had a global force
of 1 m/s2 in one of the four compass directions, or no global
force. Each world also had up to three distinct local forces,
one between the yellow pucks, one between the red pucks,
and one between pucks of differing colors. Each of these
could either be attractive (3 m/s2), repulsive (−3 m/s2), or no
force.1 The pucks’ initial positions were random but non-
overlapping, with initial velocities in the x and y direction
drawn from Unif(−10,10)m/s. Whenever all pucks’ veloci-
ties fell below .15 m/s, the simulation froze and the window
went black for 500 ms before the positions and velocities of
the pucks were redrawn. Each world was simulated for 30
seconds at 60 frames per second.
Conditions Participants were randomly assigned to one of
three learning conditions, 21 passive, 20 active punch, 19 ac-
tive grab (see Figure 1):

1. Passive Participants observed the microworlds unfold
without being able to interact.

2. “Active punch” In addition to the four pucks, this condi-
tion featured a “fist” (see Figure 1a). The fist was the same
size as the pucks but was heavier (10 kg) and less elastic
(50%). The fist was initially located in the middle of the
screen but strongly attracted to the location of the partici-
pant’s mouse.

3. “Active grab” In this condition, participants could left-
click on any of the pucks and hold the mouse clicked to
drag them around. Grabbed pucks retained their properties
(i.e. mass and local forces) but were now strongly attracted
to the position of the mouse.

Worlds Each participant either passively observed or ac-
tively interacted with 18 microworlds. These were made
up of all combinations of the six possible within-color lo-
cal force patterns [None-None, Attract-Attract, Repel-Repel,
None-Attract, None-Repel, Attract-Repel] and the three pos-
sible between-color local forces [None, Attract, Repel]. Half
of the microworlds also had a global force in one of the four
compass directions. Object colors and direction of the global
force were counterbalanced.
Procedure Participants were instructed about the setup of the
microworlds, what judgments they had to make, and – if they

1Local forces scaled with the inverse squared distance between
the objects in line with Newton’s universal law of gravitation. Thus
the current local force L exerted on object o1 by object o2 (and the
reverse) was given by 3

d2 .
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(a) Boxplots of accuracy by condition.
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Figure 2: Pilot study performance plots.

were in an active condition – how they could interact with the
pucks. Participants first saw two practice trials, and then the
18 test trials in randomized order.

On each trial, participants answered 4 questions: One ques-
tion about the direction of the global force (response options:
“North”, “East”,“South”,“West”,“None” and “Don’t know”),
and one question each about the local forces between pucks
of the same color (red and yellow), and pucks of differ-
ent color (response options: “Attract”, “None”,“Repel” and
“Don’t know”). Participants took on average 22.4±9.3 min-
utes to complete the experiment.2

Results
Participants in the passive, active punch, and active grab

condition answered on average 64%, 62% and 61% of the
questions correctly. Chance performance was approximately
30%.3 Thus, judgments were well above chance in all three
conditions. However, there was no main effect of condition
on performance F(2,57) = .38, p = .67. As Figure 2a shows,
both the highest and the lowest performing participants were
in the active punch condition, suggesting that an active learn-
ing advantage for this scenario was at least possible although
not generally achieved.

On the global force question people were less good at iden-
tifying when there was no force, with accuracy of only 42%
when the right answer was “none” compared to an average
of 85% when the right answer was one of the compass di-
rections. There was an interaction between global force type
and condition LR = 22.5, p = 0.013, with only 40% in the ac-
tive punch and 30% in active grab condition identifying when
there was no global force compared to 57% in the passive
condition. For the local force questions, accuracy differed
considerably depending on the ground truth. Participants in
the active grab condition were better than passive and active
punch participants at identifying repel forces with an overall
accuracy of 77% compared to 68% and 70%.

Due to the simulation restarting whenever all the pucks fell
below a certain velocity (2.0± .8 times per trial on average),
participants in the passive condition actually experienced sig-
nificantly more puck motion than the active participants. We

2A complete specification settings of the Box2D physics
simulator and demos of both experiments are available at
ucl.ac.uk/lagnado-lab/el/apl.

3Any “don’t know” responses were treated as judgments spread
evenly across the remaining 3 or 5 options. Random responding
would be correct with probability ≈ 1

4 ×
1
5 +

3
4 ×

1
3 = .3



can see this in terms of the total distance traveled by the four
colored pucks over the trials of 168± 47, 98± 55, 85± 73
meters for passive, active punch and active grab conditions.

For the participants in the active grab condition, more time
spent manipulating the pucks was positively related to perfor-
mance F(1,17) = 7.2, p = .015.
Interim Discussion

While participants’ overall accuracy was not affected by
learning condition, participants’ performance in the active
grab condition was more variable and depended on the ex-
tent to which learners used their ability to grab and move
the pucks around. The lower performance of active partic-
ipants on the global force question might indicate that at-
tending to a controlled object and its immediate surroundings
led participants to neglect global properties of the scene (i.e.
that the pucks would all tend to congregate on one side of
the world). The trend toward better performance in identi-
fying repel forces by the active participants might reflect the
fact that active participants were able to force the repellent
pucks closer together and thus gain more experience of these
forces in action. In contrast, passive participants would tend
to predominantly experience evidence of attraction through
seeing attracting pucks frequently converging and “sticking
together”.

There are several possible explanations for the lack of a
difference in accuracy between conditions in the pilot. One
is that the restarts of the simulation in the passive condi-
tion meant that passive participants would naturally experi-
ence more balanced clips with more time during which pucks
move and interact at reasonable velocities. While active par-
ticipants had to put in work to create these experiences (ev-
idenced by the higher variance but lower average puck mo-
tion), they were seen “for free” in the passive condition. An-
other possibility is that the setup of the pilot was not well
suited for active exploration. 30 seconds may have been too
little time to allow for sequential, controlled testing, espe-
cially of four distinct physical properties. Furthermore, the
probed properties may have been ones that were just as easy
to observe passively as via active testing. A third possibility
is that the learning aspect of the task was actually too easy.
End-of-task feedback suggested that errors were often more
due to failure to attend to all the required properties within
the 30 second window; failure to hold the answers in working
memory until the end of each trial; or failure to segment the
different worlds in memory by mixing up properties experi-
enced in the current versus previously experienced worlds.

Main Experiment
For our main task we used the same setup as in the pilot

but made a number of changes to address the issues identified
above. Firstly, we improved the match between passive and
active conditions by tweaking the settings of the microworlds
so that objects rarely came to rest within the the length of a
trial. We increased the elasticity of the pucks from 75% to
98%, leading to restarts occurring only in exceptional situa-
tions. Additionally, we replaced the active punch condition

Table 1: Experiment design. Note: A = attract, N = none, R = repel;
masses are in kg.

World 1 2 3 4 5 6 7 8 9
Target force A A A N N N R R R

Target 1 mass 1 2 1 1 2 1 1 2 1
Target 2 mass 1 1 2 1 1 2 1 1 2

with a yoked condition (cf. Lagnado & Sloman, 2004), in
which participants were matched with one of the active grab
participants and observed their mouse movements and con-
trolling actions. To increase the scope for active hypothesis
testing, we increased the length of the trials and asked more
difficult test questions (see below).

Because active testing is particularly valuable when com-
peting causal explanations cannot be resolved by observa-
tional evidence only, we generated confounded evidence by
including two distractor pucks along with two target pucks
and drew local forces randomly out of attract/none/repel for
all pairs of target and distractor objects. This means that it
was more important to isolate the target pucks from the dis-
tractor pucks to get clear information about the target pair-
wise force. Instead of including a global force, which was
easily identified by passive learners, we varied the relative
mass of the two target objects, a property which is more dif-
ficult to infer without experiencing curated comparisons and
interactions between them. To reduce memory load we asked
two rather than four questions per trial. To ensure that partic-
ipants were motivated to answer the questions as well as they
could, we paid a bonus for each correct response. Finally, to
get a more fine-grained measure of participants’ judgments,
we added confidence sliders for each test question and re-
moved the “don’t know” option.

We hypothesized that in these worlds active participants
would outperform passive participants, and that yoked partic-
ipants would inherit some, but not all of this advantage.

Methods
Participants Sixty-four participants were recruited from
Amazon Mechanical Turk (39 male, age 33.6± 10.2). Par-
ticipants were paid at a rate of $6 per hour, plus performance-
related bonuses ($0.61± .17) .
Design The first 44 participants were randomly assigned to
either the passive (24) or the active (20) learning condition,
and the final 20 were yoked 1-to-1 with the 20 active par-
ticipants. Each participant watched or interacted with 9 mi-
croworlds, consisting of all combinations of target force in
attract, repel and none and target masses in [1,1]kg, [1,2]kg
and [2,1]kg (see Table 1). The five other pairwise forces were
drawn uniformly from the three possibilities for each partici-
pant on each trial. There were no global forces.
Materials and Procedure We used the same basic set up
as in the pilot, but ran the simulations for 45 rather than 30
seconds and increased the elasticity of the pucks from .75 to
.98. Rather than two yellow and two red pucks, we drew
four random colors for each new world. The two target pucks
were labeled with new letters on each trial (e.g. “A” and “B”
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Figure 3: Examples of different interventions participants performed in the active grab condition.

on trial one, “C” and “D” on trial two, cf. Figure 1b). The
distractor pucks were all 1 kg as before but now one of the
target pucks could weigh 2 kg. For yoked participants, the
cursor of the participant to whom they were yoked (hereafter
the yoker) was shown with a large “+” symbol whenever it
was within the world, and any objects grabbed by the yoker
were indicated as in the active condition with a thick black
border.

Participants first completed instructions relevant to their
condition, answered comprehension check questions, and
then faced two practice trials followed by the nine test tri-
als. Practice trials were always worlds 1 and 5. The ran-
domly drawn distractor forces, puck colors and labels differed
between the practice and test instances. The two test ques-
tions appeared below the world when the time was up. Ques-
tion order was counterbalanced between participants. At the
end of the experiment, participants received feedback about
how many of the test questions they got right, and were paid
a 5c bonus for each correct answer. The experiment took
19.0±7.3 minutes on average.
Results
Overall accuracy Participants answered 53%, 66% and 54%
of questions correctly in the passive, active and yoked condi-
tions respectively (see Figure 4). Average performance dif-
fered significantly by condition F(2,61) = 3.8,η2 = .12, p =
.03. Post-hoc tests revealed that active participants answered
significantly more questions correctly than passive partic-
ipants t(42) = 2.5, p = 0.02, and their yoked counterparts
t(19) = 2.9, p = 0.02, with negligible difference between
passive and yoked participants t(42) = .2, p = 0.83. Only
4 yoked participants outperformed their active counterparts,
with a further 3 answering the same number of questions cor-
rectly. Yoked participants’ performance was correlated with
their active counterparts’ r = .49, p = .03.
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Figure 4: Performance by condition in the main task. Note: Large
dots indicate condition means. Small dots indicating individual par-
ticipants in are jittered for visibility. Dotted lines connect active
participants with matched yoked participants.

Masses vs. relationships Across conditions, participants
were worse at inferring masses than forces t(63) =−4.8, p <
.0001 and reported lower confidence in mass judgments
66± 25% compared to force judgments 74± 25% t(575) =
6.4, p < .001. Again, participants were less accurate in cor-
rectly identifying that there was no force between the tar-
get pucks (56%) than repulsion (70%) or attraction (78%).
This did interact with condition LR = 22, p < .0001. Dummy
contrasts with no force and passive as controls revealed ac-
tive t(634) = 4.2, p < .0001 and yoked participants t(506) =
2.4, p < .0001 were significantly better at identifying repel
than passive participants. There was no significant relation-
ship between accuracy on the local force question and the
number of distractor forces.

Confidence judgments differed by condition LR = 10, p =
.008, with active participants significantly more confident on
average than passive t(61) = 2.7p = .008 or yoked partici-
pants t(61) = 2.9, p = .005. Confidence was positively corre-
lated with accuracy β = .008,LR = 30, p < .0001 but did not
interact with condition LR = 4, p = .39.
Natural experiments Active participants experienced
slightly fewer between-puck collisions than passive partici-
pants, 59± 14 compared to 65± 9, t(42) = 2.0, p = 0.056.
However they experienced significantly more collisions
between the two target pucks 15.0 ± 8.1, compared to
9.8± 4.4, t(42) = 2.7, p = 0.01. 13.2± 7.8 of collisions in
the active condition took place while one of the two target
objects was being controlled by the participant.

Time spent controlling objects was positively related to fi-
nal performance for active and yoked participants F(1,38) =
4.8,η2 = 11, p = 0.04. Therefore, a key question is what
kinds of experiments active participants used to find answers
to the test questions. Space constraints prohibit a full anal-
ysis in the present paper, but we want to share some of
the strategies that participants discovered (see Figure 3 and
ucl.ac.uk/lagnado-lab/aplc):

(a) Deconfounding Even though participants mainly manip-
ulated the target pucks, they also sometimes manipulated the
distractor pucks. Many of these manipulations involved mov-
ing the distractor pucks out of the way and leaving them at
rest in a far corner.
(b) Encroaching Participants grabbed one target puck and
brought it toward the other target puck. This simple strat-
egy allowed participants to infer whether and how the two
pucks affected one another. In some cases, participants towed
one attracting puck with the other, or pushed a repulsive
puck around with the other providing a strong and extended
demonstration of the force between the pucks.



(c) Launching Participants grabbed one of the target pucks
and flicked it against the other target puck. This intervention
helps to figure out whether one of the targets is heavier than
the other.
(d) Knocking Similar to launching, participants grabbed
one of the target pucks and knocked it against the other (with-
out letting it go). This intervention also reveals information
about the mass of each object.
(e) Throwing Participants grabbed a target puck and then
threw it, explicitly avoiding collision with any of the other
pucks. By exerting an identical force when throwing each
target ball, the results of the intervention help to figure out
the mass of each object.
(f) Shaking Some participants discovered an effective strat-
egy for comparing the mass of the two target objects. By
rapidly shaking each in turn (moving the mouse from side
to side) it was possible to see that the heavier object reacted
more slugglishly. Its greater momentum takes longer to be
counteracted by its attraction to the mouse location.

In line with encroaching (Figure 3b), we see evidence that
participants in the active condition identified the local forces
by bringing the two target pucks close to each other. The
lower the average distance between two target objects for an
active participant, the better they did on the force question
β =−.3,F(1,18) = 8.0,η2 = .3, p = .001 but this had no re-
lationship with accuracy on the mass question p = .87. Con-
versely, in line with the shaking strategy (Figure 3f), partici-
pants who moved the controlled object around faster did bet-
ter on the mass question β = 25,F(1,18) = 15,η2 = .45, p <
0.001, but controlled object speed had no relationship with
accuracy on the force question p = .67. Yoked participants
did not inherit these differences, with no significant relation-
ships between performance on either question and average
distance between targets or controlled-object speed.

Discussion
We found a clear benefit for active over passive learning

in this experiment. In particular, active participants gathered
more evidence about repulsive forces by bringing target ob-
jects closer together. The quality of the control exerted by the
active participants was an important determinant of the qual-
ity of the final evidence available to the yoked participants.
However, the substantial drop-off from active to yoked accu-
racy was consistent with the idea that first-hand knowledge of
what was being tested (e.g. relationship or mass), when and
how, was likely to be crucial for learning successfully. Since
there are too many objects and properties in play to track at
once, it helps to align the evidence with the hypotheses cur-
rently considered. Another factor might have been that active
participants were able to look ahead at the crucial locations in
the scenes where diagnostic interactions were expected to oc-
cur. Yoked participants lacked the ability to foresee what will
happen. Finally, active participants have an additional advan-
tage over yoked participants by receiving direct motor feed-
back about their interventions. They experience how quickly
they moved the mouse or their finger on the trackpad and thus

have an immediate sense for how much force they exerted.
Encroaching and shaking permitted simple indirect mea-

sures, and accordingly, we found shakers doing better
on mass questions and encroachers doing better on rela-
tionship questions. The other experiments’ timeline sig-
natures were more subtle, so will be further explored
in future work. Interestingly, certain other “experi-
ments” were less effective. For example in this clip
(ucl.ac.uk/lagnado-lab/el/apdc1), the participant puts
one target in a corner and approaches with another, in do-
ing so they fail to reveal that the objects repel one another.
In this clip (ucl.ac.uk/lagnado-lab/el/apdc2) the par-
ticipant reveals a mistaken assumption of a downward global
force (i.e. gravity) by repeatedly trying to drop objects from
the top of the frame, presumably to reveal their mass.

While the current study provides a valuable first step, there
is much more to explore here. In future work we plan to
explore the possibility that learners have a generative gram-
mar for constructing these natural experiments, and unpack-
ing yoking differences by looking at yoked participants’ abil-
ity to infer the learning intentions and action plans of active
learners.
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