
Norm-based Generalization Bounds for Sparse
Neural Networks

Tomer Galanti
Center for Brains, Mind, and Machines
Massachusetts Institute of Technology

galanti@mit.edu

Mengjia Xu
Department of Data Science

New Jersey Institute of Technology
mx6@njit.edu

Liane Galanti
School of Computer Science

Tel Aviv University
lianegalanti@mail.tau.ac.il

Tomaso Poggio
Center for Brains, Mind, and Machines
Massachusetts Institute of Technology

tp@csail.mit.edu

Abstract

In this paper, we derive norm-based generalization bounds for sparse ReLU neu-
ral networks, including convolutional neural networks. These bounds differ from
previous ones because they consider the sparse structure of the neural network
architecture and the norms of the convolutional filters, rather than the norms of
the (Toeplitz) matrices associated with the convolutional layers. Theoretically, we
demonstrate that these bounds are significantly tighter than standard norm-based
generalization bounds. Empirically, they offer relatively tight estimations of gen-
eralization for various simple classification problems. Collectively, these findings
suggest that the sparsity of the underlying target function and the model’s archi-
tecture plays a crucial role in the success of deep learning.

1 Introduction

Over the last decade, deep learning with large neural networks has significantly advanced the solu-
tion of a myriad of tasks. These include image classification [1, 2, 3], language processing [4, 5, 6],
interactions with open-ended environments [7, 8], and code synthesis [9]. Contrary to traditional
theories such as [10], recent findings [11, 12] indicate that deep neural networks can generalize
effectively even when their size vastly exceeds the number of training samples.

To address this question, recent work has proposed different generalization guarantees for deep
neural networks based on various norms of their weight matrices [13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23]. Many efforts have been made to improve the tightness of these bounds to realistic
scales. Some studies have focused on developing norm-based generalization bounds for complex
network architectures, such as residual networks [24]. Other studies investigated ways to reduce
the dependence of the bounds on the product of spectral norms [21, 25], or to use compression
bounds based on PAC-Bayes theory [26, 27], or on the optimization procedure used to train the
networks [19, 28, 29]. However, most of this research is centered around fully-connected networks,
which generally underperform compared to other architectures like convolutional networks [30],
residual network [1] and transformers [4, 31]. Thus, the ability of these bounds to explain the
success of contemporary architectures is rather limited.

To fully understand the success of deep learning, it is necessary to analyze a wider scope of ar-
chitectures beyond fully-connected networks. An interesting recent direction [32, 33] introduces
generalization bounds for neural networks with shared parameters, such as convolutional neural
networks. For example, [32] showed that by taking into account the structure of the convolutional

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

layers, we can derive generalization bounds with a norm component smaller than the norm of the
associated linear transformation. However, many questions remain unanswered, including (a) Why
certain architectures, such as convolutional networks [30] and MLP-mixers [34], perform better
than fully-connected neural networks? (b) Is weight sharing necessary for the success of convolu-
tional neural networks? (c) Can we establish norm-based generalization bounds for convolutional
neural networks that are reasonably tight in practical settings? In this paper, we contribute to an
understanding of all three questions.

1.1 Related Work

Approximation guarantees for multilayer sparse networks. While fully-connected networks,
including shallow networks, are universal approximators [35, 36] of continuous functions, they are
largely limited in theory and in practice. Classic results [37, 38, 39, 40, 41] show that, in the worst-
case, the number of parameters required to approximate a continuously differentiable target func-
tions (with bounded derivatives) grows exponentially with the input dimension, a property known as
the “curse of dimensionality”.

A recent line of work [42, 43, 44] shows that the curse of dimensionality can be avoided by deep,
sparse networks, when the target function is itself compositionally sparse. Furthermore, it has been
conjectured that efficiently computable functions, that is functions that are computable by a Turing
machine in polynomial time, are compositionally sparse. This suggests, in turns, that, for practical
functions, deep and sparse networks can avoid the curse of dimensionality. These results, however,
lack any implication about generalization; in particular, they do not show that overparametrized
sparse networks have good generalization.

Norm-based generalization bounds. A recent thread in the literature [13, 14, 15, 16, 17, 18, 19,
20, 21, 23] has introduced norm-based generalization bounds for neural networks. In particular,
let S = {(xi, yi)}mi=1 be a training dataset of m independently drawn samples from a probability
measure P defined on the sample space X × Y , where X ⊂ Rd and Y = {±1}. A fully-connected
network is defined as fw(x) = WLσ(WL−1σ(. . . σ(W 2σ(W 1x)) . . .)), where W l ∈ Rdl+1×dl and
σ(x) is the element-wise ReLU activation function max(0, x). A common approach for estimating
the gap between the train and test errors of a neural network is to use the Rademacher complexity
of the network. For example, in [13], an upper bound on the Rademacher complexity is introduced
based on the norms of the weight matrices of the network of order O(2L√

m

∏L
l=1 ∥W l∥F). Later, [14]

showed that the exponential dependence on the depth can be avoided by using the contraction lemma
and obtained a bound that scales with O(

√
L).

While these results provide solid upper bounds on the test error of deep neural networks, they
only take into account very limited information about the architectural choices of the network.
In particular, when applied to convolutional networks, the matrices W l represent the linear oper-
ation performed by a convolutional layer whose filters are wl. However, since W l applies wl to
several patches (dl patches), we have ∥W l∥F =

√
dl∥wl∥F . As a result, the bound scales with

O(
√∏L−1

l=1 dl), that grows exponentially with L. This means that the bound is not suitable for con-
volutional networks with many layers as it would be very loose in practice. In this work, we establish
generalization bounds that are customized for convolutional networks and scale with

∏L
l=1 ∥wl∥F

instead of
∏L

l=1 ∥W l∥F .

In [45] they conducted a large-scale experiment evaluating multiple norm-based generalization
bounds, including those of [17, 14]. They argued that these bounds are extremely loose and nega-
tively correlated with the test error. However, in all of these experiments, they trained the neural net-
works with the cross-entropy loss which implicitly maximizes the network’s weight norms once the
network perfectly fits the training data. This can explain the observed negative correlation between
the bounds and the error. In this work, we empirically show that our bounds provide reasonably tight
estimations of the generalization gap for convolutional networks trained with weight normalization
and weight decay using the MSE loss.

Generalization bounds for convolutional networks. Several recent papers have introduced gen-
eralization bounds for convolutional networks that take into account their unique structure. In [23],
they introduced a generalization bound for neural networks with weight sharing. However, this
bound only holds under the assumption that the weight matrices are orthonormal, which is not real-

2

istic in practice. In [33], they introduced generalization bounds for convolutional networks based on
parameter counting. However, this bound scales roughly as the square root of the ratio between the
number of parameters and the number of samples, which is vacuous when the network is overparam-
eterized. In [32], they extended the generalization bounds of [17] for convolutional networks where
the linear transformations W l at each layer are replaced with the trainable parameters. While this
paper provides generalization bounds in which each convolutional filter contributes only once to the
bound, it does not hold when different filters are used for different patches, even if their norms are
the same. In short, their analysis treats different patches as “datapoints” in an augmented problem
where only one linear function is applied at each layer. If several choices of linear functions (dif-
ferent weights for different patches) are allowed, the capacity of the function class would increase.
Although all of these papers offer generalization guarantees for convolutional networks, they base
their findings either on the number of trainable parameters or on weight sharing. Notably, none of
these studies directly address the question of whether weight sharing is essential for the effective
generalization of convolutional networks. Furthermore, none provide empirical evidence to confirm
that their bounds are reasonably tight in practical settings. In our previous work [46], we derived
generalization bounds using a technique similar to the one employed here. The results in this paper
extend those preliminary results to a more general and more detailed formulation.

1.2 Contributions

In this work, we study the generalization guarantees of a broad class of sparse deep neural net-
works [42], such as convolutional neural networks. Informally, a sparse neural network is a graph of
neurons represented as a Directed Acyclic Graph (DAG), where each neuron is a function of a small
set of other neurons. We show how a simple modification to the classic norm-based generaliza-
tion bound of [14] yields significantly tighter bounds for sparse neural networks (e.g., convolutional
networks). Unlike previous bounds [33, 32, 47], our analysis demonstrates how to obtain general-
ization guarantees for sparse networks, without incorporating weight sharing, while having a weak
dependence on the actual size of the network. These results suggest that it is possible to obtain good
generalization performance with sparse neural networks without relying on weight sharing. Finally,
we conduct multiple experiments to evaluate our bounds for overparameterized convolutional neural
networks trained on simple classification problems. These experiments show that in these settings,
our bound is significantly tighter than many bounds in the literature [14, 33, 32, 47]. As a result, this
research provides a better understanding of the pivotal influence of the structure of the network’s
architecture [30, 34, 2] on its test performance.

2 Problem Setup

We consider the problem of training a model for classification. Formally, the task is defined by
a distribution P over samples (x, y) ∈ X × Y , where X ⊂ Rc0×d0 is the instance space (e.g.,
images), and Y ⊂ RC is a label space containing the C-dimensional one-hot encodings of the
integers 1, . . . , C. When thinking about the samples as images, we view c0 as the number of in-
put channels and d0 as the image size. We consider a hypothesis class F ⊂ {f ′ : X → RC}
(e.g., a neural network architecture), where each function fw ∈ F is specified by a vector of pa-
rameters w ∈ RN (i.e., trainable parameters). A function fw ∈ F assigns a prediction to an
input point x ∈ X , and its performance on the distribution P is measured by the expected error,
errP (fw) := E(x,y)∼P [I[maxj ̸=y(fw(xi)j) ≥ fw(xi)y]], where I : {True,False} → {0, 1} be
the indicator function (i.e., I[True] = 1 and vice versa). Since we do not have direct access to
the full population distribution P , the goal is to learn a predictor, fw, from some training dataset
S = {(xi, yi)}mi=1 of independent and identically distributed (i.i.d.) samples drawn from P along
with regularization to control fw’s complexity.

2.1 Rademacher Complexities

We examine the generalization abilities of overparameterized neural networks by investigating their
Rademacher complexity. This quantity can be used to upper bound the worst-case generalization gap
(i.e., the distance between train and test errors) of functions from a certain class. It is defined as the
expected performance of the class when averaged over all possible labelings of the data, where the

3

labels are chosen independently and uniformly at random from the set {±1}. In other words, it is the
average performance of the function class on random data. For more information, see [48, 49, 50].
Definition 2.1 (Rademacher Complexity). Let F be a set of real-valued functions fw : X → RC

defined over a set X . Given a fixed sample X ∈ Xm, the empirical Rademacher complexity of F is
defined as follows: RX(F) := 1

mEξ:ξir∼U [{±1}]

[
supfw∈F

∣∣∣∑m
i=1

∑C
r=1 ξirfw(xi)r

∣∣∣].
In contrast to the Vapnik–Chervonenkis (VC) dimension, the Rademacher complexity has the added
advantage that it can be upper bounded based on a finite sample. The Rademacher complexity can
be used to upper bound the gap between test and train errors of a certain class of functions [48].
In the following lemma we bound the gap between the test error and the empirical margin error
errγS(fw) =

1
m

∑m
i=1 I[maxj ̸=y(fw(xi)j) + γ ≥ fw(xi)y].

Lemma 2.2. Let P be a distribution over Rc0d0 × [C] and F ⊂ {f ′ : X → RC}. Let
S = {(xi, yi)}mi=1 be a dataset of i.i.d. samples selected from P and X = {xi}mi=1. Then, with
probability at least 1− δ over the selection of S, for any fw ∈ F , we have

errP (fw)− errγS(fw) ≤ 2
√
2

γ
· RX(F) + 3

√
log(2/δ)

2m
. (1)

The above bound is decomposed into two parts; one is the Rademacher complexity and the second
scales as O(1/

√
m) which is small when m is large. In section 3 we derive norm-based bounds

on the Rademacher complexity of sparse networks. This lemma and the rest of the mathematical
statements are proven in the appendix.

2.2 Architectures

A neural network architecture can be formally defined using a Directed Acyclic Graph (DAG) G =
(V,E). The class of neural networks associated with this architecture is denoted as FG. The set of
neurons in the network is given by V =

⋃L
l=0{zl1, . . . , zldl

}, which is organized into L layers. An
edge (zli, z

l−1
j) ∈ E indicates a connection between a neuron in layer l − 1 and a neuron in layer l.

The full set of neurons at the layer lth is denoted by vl := (zlj)
dl
j=1.

A neural network fw : Rc0×d0 → RC takes “flattened” images x as input, where c0 is the number of
input channels and d0 is the image dimension represented as a vector. Each neuron zli : Rc0×d0 →
Rcl computes a vector of size cl (the number of channels in layer l). To avoid confusion, in our
definition, we think of each neuron as a vector of dimension cl. This is analogous to a pixel holding
three coordinates of RGB. The set of predecessor neurons of zli, denoted by pred(l, i), is the set of all
j ∈ [dl−1] such that (zli, z

l−1
j) ∈ E, and vli := (zlj)j∈pred(l,i) denotes the set of predecessor neurons

of zli. The network is recursively defined as follows:

∀r ∈ [C] : fw(x)r :=

dL−1∑
i=1

⟨wL
ri, z

L−1
i (x)⟩,

where wL
ri ∈ RcL−1 , zli(x) := σ(wl

iv
l−1
i (x)), wl

i ∈ Rcl×(cl−1·|pred(l−1,i)|) is a weight matrix,
x = (z0j (x))

d0
j=1, each z0j (x) is a vector of dimension c0 representing the jth “pixel” of x and σ is

the ReLU activation function. For simplicity, we denote wL := WL = (wri)r,i.

The degree of sparsity of a neural network can be measured using the degree of the graph, which
is defined as the maximum number of predecessors for each neuron. Specifically, the degree of
a neural network architecture G is given by: deg(G) := maxl∈[L] deg(G)l, where deg(G)l :=
maxj∈[dl] |pred(l, j)| is the maximal degree of the lth layer.

Convolutional neural networks. A special type of compositionally sparse neural networks is
convolutional neural networks. In such networks, each neuron acts upon a set of nearby neurons
from the previous layer, using a kernel shared across the neurons of the same layer.

To formally analyze convolutional networks, we consider a broader set of neural network architec-
tures that includes sparse networks with shared weights. Specifically, for an architecture G with
|pred(l, j)| = kl for all j ∈ [dl], we define the set of neural networks F sh

G to consist of all neural

4

networks fw ∈ F sh
G that satisfy the weight sharing property wl := wl

j1
= wl

j2
for all j1, j2 ∈ [dl] and

l ∈ [L]. Convolutional neural networks are essentially sparse neural networks with shared weights
and locality (each neuron is a function of a set of nearby neurons of its preceding layer).

Norms of neural networks. As mentioned earlier, previous papers (e.g., [14]) proposed different
generalization bounds based on different types of norms for measuring the complexity of fully-
connected networks. One approach that was suggested by [14] is to use the product of the norms of
the weight matrices given by ρ̃(w) :=

∏L
l=1 ∥W l∥F .

In this work, we derive generalization bounds based on the product of the maximal norms of the
kernel matrices across layers, defined as: ρ(w) := ∥wL∥F ·

∏L−1
l=1 maxj∈[dl] ∥wl

j∥F , where ∥ · ∥F
and is the Frobenius norm. For a convolutional neural network, we have a simplified form of ρ(w) =∏L

l=1 ∥wl∥F , due to the weight sharing property. This quantity is significantly smaller than the

quantity ρ̃(w) = ∥wL∥F ·
∏L−1

l=1

√∑dl

j=1 ∥wl
j∥2F used by [14]. For instance, when weight sharing

is applied, we can see that ρ̃(w) = ρ(w) ·
√∏L−1

l=1 dl which is significantly larger than ρ(w).

Classes of interest. In the next section, we study the Rademacher complexity of classes of
compositionally sparse neural networks that are bounded in norm. We focus on two classes:
FG,ρ := {fw ∈ FG | ρ(w) ≤ ρ} and F sh

G,ρ := {fw ∈ F sh
G | ρ(w) ≤ ρ}, where G is a composition-

ally sparse neural network architecture and ρ is a bound on the norm of the network parameters.

3 Theoretical Results

In this section, we introduce our main theoretical results. The following theorem provides a bound
on the Rademacher complexity of the class FG,ρ of networks of architecture G of norm ≤ ρ.
Proposition 3.1. Let G be a neural network architecture of depth L and let ρ > 0. Let X = {xi}mi=1
be a set of samples. Then,

RX(FG,ρ) ≤ ρ

m
·

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(deg(G)l) + log(C))


·

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)| ·
m∑
i=1

∥z0j0(xi)∥22,

where the maximum is taken over j0, j1, . . . , jL, such that, jl−1 ∈ pred(l, jl) for all l ∈ [L].

The proof for this theorem builds upon the proof of Theorem 1 in [14]. A sketch of the proof is
presented in Section 3.1. As we show next, by combining Lemma 2.2 and Proposition 3.1 we can
obtain an upper bound on the test error of compositionally sparse neural networks.

Theorem 3.2. Let P be a distribution over Rc0d0 × {±1}. Let S = {(xi, yi)}mi=1 be a dataset of
i.i.d. samples selected from P . Then, with probability at least 1− δ over the selection of S, for any
fw ∈ FG,

errP (fw)− errγS(fw) ≤ 2
√
2(ρ(w) + 1)

γm
·

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(deg(G)l) + log(C))


·

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)| ·
m∑
i=1

∥z0j0(xi)∥22 + 3

√
log(2(ρ(w) + 2)2/δ)

2m
,

where the maximum is taken over j0, . . . , jL, such that, jl−1 ∈ pred(l, jl) for all l ∈ [L].

The theorem above provides a generalization bound for neural networks of a given architecture
G. To understand this bound, we first analyze the term ∆ := maxj0,...,jL

∏L−1
l=1 |pred(l, jl)| ·∑m

i=1 ∥z0j0(xi)∥22. We consider a setting where d0 = 2L, cl = 1 and each neuron takes two neu-
rons as input, kl := |pred(l, j)| = 2 for all l ∈ [L] and j ∈ [dl]. In particular,

∏L−1
l=1 kl = 2L−1

and z0j (xi) is the jth pixel of xi. Therefore, we have ∆ = d0

2 · maxj0
∑m

i=1 ∥z0j0(xi)∥22. We

5

note that in the worst-case, when all of the norm ∥xi∥ is concentrated in the first pixel z01(xi),
we have ∆ = d0

2 ·
∑m

i=1 ∥xi∥2. But in practice, the norms of the pixels z0j (xi) are typically
more evenly distributed. For instance, we can assume that the pixels are β-balanced. Meaning,
∀i ∈ [m] : maxj∈[d0] ∥z0j (xi)∥2 ≤ βAvgj∈[d0][∥z

0
j (xi)∥2] = β

d0
∥xi∥2 (for some constant β > 0).

Note that the rate β is a property exclusively dependent on the data as it is independent of the ar-
chitecture and the training process. In particular, we obtain that ∆ ≤ β

2

∑m
i=1 ∥xi∥2. In addition,

we note that the second term in the bound is typically smaller than the first term as it scales with√
log(ρ(w)) instead of ρ(w) and has no dependence on the size of the network. Therefore, in this

case, our bound can be simplified to O(ρ(w)√
m

√
LβAvgmi=1[∥xi∥2]).

Bounds for convolutional networks. As previously stated in section 2, convolutional neural
networks utilize weight sharing across neurons in each layer, with each neuron in the lth layer
having kl input neurons (each of dimension cl−1). The norm of the network is calculated as
ρ(w) =

∏L
l=1 ∥wl∥F , and the degree at each layer is simply the kernel size deg(G)l = kl. This

results in a simplified version of the theorem.
Corollary 3.3 (Rademacher complexity of convolutional networks). Let G be a neural network
architecture of depth L and let ρ > 0. Let X = {xi}mi=1 be a set of samples. Then,

RX(F sh
G,ρ) ≤ ρ

m
·

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(kl) + log(C))

 ·

√√√√L−1∏
l=1

kl · max
j∈[d0]

m∑
i=1

∥z0j (xi)∥2,

where kl denotes the kernel size in the l’th layer.

Comparison with the bound of [14]. The result in Corollary 3.3 is a refined version of the analysis
in [14] for the specific case of convolutional networks. Theorem 1 in [14] can of course be applied
to convolutional networks by treating their convolutional layers as fully-connected layers. However,
this approach yields a substantially worse bound compared to the one proposed in Corollary 3.3.

Consider a convolutional neural network G. The lth convolutional layer takes the concatenation of
(σ(zl1), . . . , σ(z

l
dl
)) as input and returns (zl+1

1 , . . . , zl+1
dl+1

) as its output. Each zl+1
j is computed as

follows zl+1
j = wl+1σ(vlj(x)). Therefore, the matrix W l+1 associated with the convolutional layer

contains dl+1 copies of wl+1 and its Frobenius norm is therefore
√

dl+1 · ∥wl+1∥F . In particular,

by applying Theorem 1 in [14], we obtain a bound that scales as O
(

ρ
m

√
L
∏L−1

l=1 dl ·
∑m

i=1 ∥xi∥2
)

.

On the other hand, we have
∏L−1

l=1 kl ≤
∏L−1

l=1 dl and ∥z0j (xi)∥ ≤ ∥xi∥. Therefore, our bound is al-

ways smaller than O
(

ρ
m

√
L
∏L−1

l=1 dl ·
∑m

i=1 ∥xi∥2
)

, which is the bound we obtained with [14].

In particular, if each convolutional layer has kl = 2 with no overlaps and d0 = 2L, then,
dl = 2L−l and the bound of [14] would scale as O

(
ρ√
m

√
L20.5L(L−1) ·Avgmi=1[∥xi∥2]

)
. On the

other hand, in our bound we have the term
∏L−1

l=1 kl = 2L−1, and therefore, our bound scales as
O
(

ρ√
m

√
L2L Avgmi=1[∥xi∥2]

)
which is significantly smaller. Finally, as we discussed earlier, if the

norms of the pixels of each sample x are β-balanced (for some constant β > 0), our bound scales as
O
(

ρ√
m

√
LAvgmi=1[∥xi∥2]

)
which is smaller by a factor of 20.25L(L−1) than the bound of [14].

Comparison with the bound of [33]. A recent paper [33] introduced generalization bounds
for convolutional networks based on parameter counting. This bound roughly scales like

O
(√

N(
∑L

l=1 ∥wl∥2+log(1/γ))+log(1/δ)

m

)
, where γ is a margin (typically smaller than 1), and N is

the number of trainable parameters (taking weight sharing into account by counting each parameter
of convolutional filters only once). While these bounds provide improved generalization guarantees
when reusing parameters, it scales as Ω(

√
N/m) which is very large in practice. For example,

the standard ResNet-50 architecture has approximately N = 23M trainable parameters while the
MNIST dataset has only m = 50000 training samples.

Comparison with the bounds of [32] and [47]. Recent papers [32] introduced generalization
bound for convolutional networks based on covering numbers and weight sharing. For example,

6

the bounds in Theorem 17 of [32] roughly scale as O

 L∏
l=1

∥W l∥2
√
m

E(w)1/α · Iα

, where E(w) =(∑L−1
l=1

k

α
2
l

∥(wl−ul)⊤∥α2,1
∥wl∥α2

+
∥wL∥α2

max
i

∥wL
i,:∥

α
2

)
, kl is the kernel size of the lth layer and W l is the matrix

corresponding to the linear operator associated with the lth convolutional layer, wi,: is the ith row of
a matrix w, α is either 2 or 2/3, Iα = L if α = 2 and Iα = 1 o.w. and ul are “reference” matrices
of the same dimensions as wl.

In general, neither our bounds nor those in [32] and [47] are inherently superior; with each being
better in different cases. The main difference between their bounds and our bound, is that while
their bounds include both multiplicative complexity term and additive complexity term, our bound
includes only a multiplcative complexity term. For instance, the bound in Theorem 17 in [32]
features both

∏L
l=1 ∥wl∥2 and E(w), whereas our bound exclusively contains the multiplicative

term ρ(w) =
∏L

l=1 ∥wl∥F . For certain cases, this works in favor of our bound, but at the same
time, our term

∏L
l=1 ∥wl∥F is comparably larger than

∏L
l=1 ∥wl∥2 due to the smaller norms used in

the former. As an example of a case where our bound is superior, consider the case described after
Theorem 3.2, where each convolutional layer operates on non-overlapping patches of size 2 and the
channel dimension is 1 at each layer. We choose ul = 0 for all l ∈ [L−1] (which is a standard choice
of reference matrices). We notice that ∥W l∥2 = ∥wl∥2 = ∥wl∥F since W l is a block matrix and wl

is a vector. In addition, for any matrix A, we have rank(A) ≥ ∥A⊤∥2,1

∥A∥2
≥ ∥A∥F

∥A∥2
≥ 1 and rank(A) ≥

∥A∥2

maxi ∥Ai,:∥2
≥ 1 (see [17]). Therefore, the bound in [32] scales as at least

∏L
l=1 ∥wl∥2√

m
· L3/2, while

our bound scales as
∏L

l=1 ∥wl∥2√
m

√
L which is smaller by a factor of L.

Vacuous bounds? A uniform convergence bound for a class F is an upper bound on the gen-
eralization gap that uniformly holds for all f ∈ F , i.e., supf∈F |errP (f) − errS(f)| ≤ ϵ(m,F)
(typically tends to 0 as m → ∞). The Rademacher complexity bound in Lemma 2.2 is a form of
uniform convergence bound. The issue with these bounds is that in interpolation regimes, where
there exists a function f ∈ FG that fits any labeling of the samples {xi}mi=1, uniform convergence
bounds are provably vacuous.

While the derivation of the bound in Theorem 3.2 follows the application of Rademacher com-
plexities, we emphasize that it is not a uniform convergence bound and is not necessarily vacuous.
Throughout the proof, we sliced the class FG into subsets FG,ρ = {f ∈ FG | ρ(w) ≤ ρ} (for
ρ ∈ N) and applied Lemma 2.2 for each of these subsets. This approach yields a bound that is
proportional to O(ρ/

√
m) for each of the slices FG,ρ. We then apply a union bound to combine all

of them to obtain a bound that scales as O(ρ(w)/
√
m). This does not give a uniform convergence

bound across all members of FG, since the bound is individualized for each member fw ∈ FG based
on the norm ρ(w). For example, for w = 0, the bound will be 0 which is non-vacuous.

When the learning algorithm minimizes ρ(w) and the minimal norm required to fit the training
labels is small, a tight bound can be achieved with a network that perfectly fits the training data.
For example, suppose we have a dataset S = {(xi, yi)}mi=1, a target function y(x) = ⟨w∗, x⟩, and
a hypothesis class F = {⟨w, x⟩ | w ∈ Rd}. A classic VC-theory bound scales as O(

√
d/m),

which is vacuous when d ≫ m. However, a norm-based bound scales as O(∥w∥/
√
m), which is

non-vacuous for any ∥w∥ ≤ ∥w∗∥ (as long as m > ∥w∗∥2). In addition, the function y can be
realized by {⟨w, x⟩ | ∥w∥ ≤ ∥w∗∥} ⊂ F . Specifically, for smaller ∥w∗∥, we need fewer samples to
ensure that the bound is non-vacuous for a minimal norm model that perfectly fits the training data.

3.1 Proof Sketch

We propose an extension to a well-established method for bounding the Rademacher complexity
of norm-bounded deep networks. This approach, originally developed by [13], utilizes a “peeling”
argument, where the complexity bound for a depth L network is reduced to a complexity bound for a
depth L− 1 network and applied repeatedly. Specifically, the lth step bounds the complexity bound
for depth l by using the product of the complexity bound for depth l − 1 and the norm of the lth
layer. By the end of this process, we obtain a bound that depends on the term Eξg(|

∑m
i=1 ξixi|)

7

(g(x) = x in [13] and g = exp in [14]), which can be further bounded using maxx∈X ∥x∥2. The
final bound scales with ρ̃(w) ·maxx∈X ∥x∥. Our extension further improves the tightness of these
bounds by incorporating additional information about the network’s sparsity.

To bound RX(FG,ρ) using ρ(w), we notice that each neuron operates on a small subset of the
neurons from the previous layer. Therefore, we can bound the contribution of a certain constituent
function zlj(x) = wl

jv
l−1
j (x) in the network using the norm ∥wl

j∥F and the complexity of vl−1
j (x)

instead of the full layer vl−1(x). To explain this process, we provide a proof sketch of Proposi-
tion 3.1 for convolutional networks G = (V,E) with non-overlapping patches. For simplicity, we
assume that d0 = 2L, cl = 1, and the strides and kernel sizes at each layer are k = 2. In par-
ticular, the network fw can be represented as a binary tree, where the output neuron is computed
as fw(x) = zLj0(x) = wL · σ(zL−1

1 (x), zL−1
2 (x)), zL−1

1 (x) = wL−1 · σ(zL−2
1 (x), zL−2

2 (x)) and
zL−1
2 (x) = wL−1 ·σ(zL−2

3 (x), zL−2
4 (x)) and so on. Similar to [14], we first bound the Rademacher

complexity using Jensen’s inequality,

mRX(FG,ρ) = 1
λ
log exp

(
λEξ sup

fw

m∑
i=1

ξifw(xi)

)
≤ 1

λ
log

(
Eξ sup

fw

exp

(∣∣∣∣∣λ
m∑
i=1

ξifw(xi)

∣∣∣∣∣
))

, (2)

where λ > 0 is an arbitrary parameter. As a next step, we rewrite right-hand side as follows:

Eξ sup
fw

exp

(
λ

∣∣∣∣∣
m∑
i=1

ξi · fw(xi)

∣∣∣∣∣
)

= Eξ sup
fw

exp

λ

√√√√∣∣∣∣∣
m∑
i=1

ξi · wL · σ(zL−1
1 (xi), z

L−1
2 (xi))

∣∣∣∣∣
2


≤ Eξ sup
fw

exp

λ

√√√√∥wL∥2F ·
2∑

j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(zL−1
j (xi))

∥∥∥∥∥
2

2

 . (3)

We notice that each zL−1
j (x) is itself a depth L − 1 binary-tree neural network. Therefore,

intuitively we would like to apply the same argument L − 1 more times. However, in con-
trast to the above, the networks σ(zL−1

1 (x)) = σ(wL−1(zL−2
1 (x), zL−2

2 (x))) and σ(zL−1
2 (x)) =

σ(wL−1(zL−2
3 (x), zL−2

4 (x))) end with a ReLU activation. To address this issue, [13, 14] proposed
a “peeling process” based on Equation 4.20 in [51] that can be used to bound terms of the form
Eξ sup

f ′∈F′,W : ∥W∥F≤R

exp
(
α
∥∥∑m

i=1 ξi · σ(Wf ′(xi))
∥∥). However, this bound is not directly applicable

when there is a sum inside the square root, as in equation 3 which includes a sum over j = 1, 2.
Therefore, a modified peeling lemma is required to deal with this case.
Lemma 3.4 (Peeling Lemma). Let σ be a 1-Lipschitz, positive-homogeneous activation function
which is applied element-wise (such as the ReLU). Then for any class of vector-valued functions
F ⊂ {f = (f1, . . . , fq) | ∀j ∈ [q] : fj : Rd → Rp}, and any convex and monotonically increasing
function g : R → [0,∞),

Eξ sup
f∈F

Wj : ∥Wj∥F≤R

g


√√√√ q∑

j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(Wjfj(xi))

∥∥∥∥∥
2

2

 ≤ 2Eξ sup
j∈[q], f∈F

g

(
√
qR

∥∥∥∥∥
m∑
i=1

ξi · fj(xi)

∥∥∥∥∥
2

)
.

By applying this lemma L − 1 times with g = exp and f representing the neurons preceding a
certain neuron at a certain layer, we can bound the term in equation 3 as follows:

≤ 2LEξ sup
j,w

exp

λ

√√√√ L∏
l=1

∥wl∥2F · 2L
∣∣∣∣∣

m∑
i=1

ξixij

∣∣∣∣∣
2


≤ 2L
d∑

j=1

Eξ exp

(
λ2L/2ρ ·

∣∣∣∣∣
m∑
i=1

ξixij

∣∣∣∣∣
)

≤ 4L sup
j

exp

λ22Lρ2·
∑m

i=1 x2
ij

2
+ λ2L/2ρ ·

√√√√ m∑
i=1

x2
ij

 ,

where the last inequality follows from standard concentration bounds (see the proof for details).
Finally, by equation 2 and properly adjusting λ, we can finally bound RX(FG,ρ).

4 Experiments

In this section, we empirically evaluate the generalization bounds derived in section 3. In each
experiment, we compare our bound with alternative bounds from the literature. We focus on simple

8

0 100 200 300 400 500
Epoch

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization gap

0 100 200 300 400 500
Epoch

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization gap

0 100 200 300 400 500
Epoch

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization gap

CONV-3-200 CONV-3-600 CONV-3-1000

Figure 1: Comparing our bound with prior bounds in the literature during training. We plot
our bound, the train and test errors, the generalization gap, and prior bounds from the literature
during training. For each plot, we train a CONV-L-H network on MNIST with a different number
of channels H .

200 400 600 800 1000
Width

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

200 400 600 800 1000
Width

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

200 400 600 800 1000
Width

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

CONV-4-H CONV-6-H CONV-8-H

Figure 2: Varying the number of channels. We plot our bound, the train and test errors, the
generalization gap, and prior bounds from the literature at the end of training. For each plot, we
train a CONV-L-H network on MNIST with a different number of layers L and channels H .

convolutional neural networks trained on MNIST and investigate the behavior of the bound when
varying different hyperparameters. Each experiment was averaged across five runs. For additional
experimental details, please refer to the appendix.

Network architecture. We used convolutional networks with L layers and H channels per layer
denoted by CONV-L-H . The networks consist of a stack of L 2×2 convolutional layers with a stride
of 1, 0 padding, and H output channels, utilizing ReLU activations followed by a fully-connected
layer. The overall number of trainable parameters is at least 4H + 4(L− 1)H2.

Optimization process. Each model was trained using SGD for MSE-loss minimization between
the logits of the network and the one-hot encodings of the training labels. We applied weight nor-
malization [52] to all trainable layers, except for the last one, which is left un-normalized. In order
to regularize the weight parameters, we used weight decay for each one of the layers of the network
with the same regularization parameter λ > 0. To train each model, we used an initial learning rate
of µ = 0.01 that is decayed by a factor of 0.1 at epochs 60, 100, 300, batch size 32, momentum of
0.9, and λ = 3e−3 by default.

Experiments. We conducted several experiments to compare our bound to alternative bounds from
the literature, when applied for neural networks trained on the MNIST dataset for classification.
Throughout these experiments, we compared our bound to the one in Theorem 1 of [14], the third
inequality in Theorem 2.1 of [33], Theorem 16 of [32], and Theorem 3.5 in [47] (explicitly as
mentioned in their Table 3). To compute the bound in [14] for multi-class classification, we adopted a
modified version based on the technique we utilized in the proof of Proposition 3.1, which allows us
to extend these bounds for multi-class classification. Since [33] did not provide an explicit value for
their coefficient C, we assumed it to be 1. In the first experiment we trained three models of different
widths for MNIST classification. As can be seen in Figure 1, our bound is significantly smaller
than the alternative bounds and is surprisingly close to 1, indicating its tightness. In the second
experiment, we compared our bound with alternative bounds from previous literature, focusing on
convolutional neural networks with varying depths and widths. As can be seen in Figure 2, even as

9

4 5 6 7 8 9
Depth

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

4 5 6 7 8 9
Depth

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2023
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

4 5 6 7 8 9
Depth

2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

CONV-L-200 CONV-L-600 CONV-L-1000

Figure 3: Varying the number of layers. We plot our bound, the train and test errors, the gener-
alization gap, and prior bounds from the literature at the end of training. For each plot, we train a
CONV-L-H network on MNIST with a different number of layers L and channels H .

8e-4 9e-4 1e-3 2e-3 3e-3 4e-3
2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

8e-4 9e-4 1e-3 2e-3 3e-3 4e-3
2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

8e-4 9e-4 1e-3 2e-3 3e-3 4e-3
2 17

2 12

2 7

2 2

23

28

213

218

223

228

233

238

20

Ledent et al. 2021
Graf et al. 2022
Golowich et al. 2020
Long et al. 2020
Our bound
Train error
Test error
Generalization Gap

H = 200 H = 600 H = 1000

Figure 4: Varying the regularization coefficient λ. We plot our bound, the train and test errors, the
generalization gap, and prior bounds from the literature at the end of 500 epochs. For each plot, we
trained a CONV-3-H network on MNIST with a varying number of channels H .

networks become highly overparameterized at large widths, the width does not appear to influence
the results of any of the bounds. In Figure 3, we showcase the results for convolutional networks of
different depths. Our bound increases exponentially with depth but rises more slowly than the bound
from [14]. As an ablation study, in in Figure 4, we compared our bound with alternative bounds,
this time varying the regularization coefficient λ. It is evident that our bound and some alternative
bounds decrease concurrently with the generalization gap of the neural network, as desired outcome.

5 Conclusions

We studied the question of why certain deep learning architectures, such as convolutional networks
and MLP-mixers, perform better than others on real-world datasets. To tackle this question, we de-
rived Rademacher complexity generalization bounds for sparse neural networks, which are orders of
magnitude better than a naive application of standard norm-based generalization bounds for fully-
connected networks. In contrast to previous papers [33, 32], our results do not rely on parameter
sharing between filters, suggesting that the sparsity of the neural networks is the critical component
to their success. This sheds new light on the central question of why certain architectures perform
so well and suggests that sparsity may be a key factor in their success. Even though our bounds are
not practical in general, our experiments show that they are quite tight for simple classification prob-
lems, unlike other bounds based on parameter counting and norm-based bounds for fully-connected
networks.

10

Acknowledgements

We thank Akshay Rangamani, Lorenzo Rosasco, Brian Cheung and Eran Malach for many relevant
discussions. This material is based on the work supported by the Center for Minds, Brains and
Machines (CBMM), funded by NSF STC award CCF-1231216. This work has also been sponsored
by DOE SEA-CROGS project (DE-SC0023191).

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-

age Recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’16, pages 770–778. IEEE, June 2016.

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[3] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision trans-
formers, 2021.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Association for Compu-
tational Linguistics, jun 2019.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems, volume 33. Curran Associates, Inc., 2020.

[7] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of Go with deep neural networks and tree search. Nature, 529:484–489, 2016.

[8] Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An evolutionary computa-
tion perspective, 2019. cite arxiv:1902.01724.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[10] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

11

[11] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

[12] Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning
through the prism of interpolation. Acta Numerica, 30:203 – 248, 2021.

[13] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in
neural networks. In Peter Grünwald, Elad Hazan, and Satyen Kale, editors, Proceedings of
The 28th Conference on Learning Theory, volume 40 of Proceedings of Machine Learning
Research, pages 1376–1401, Paris, France, 03–06 Jul 2015. PMLR.

[14] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity
of neural networks. Information and Inference: A Journal of the IMA, 9(2):473–504, 05 2020.

[15] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. In J. Mach. Learn. Res., 2001.

[16] Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension bounds for
piecewise linear neural networks. ArXiv, abs/1703.02930, 2017.

[17] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates Inc., 2017.

[18] Behnam Neyshabur, Srinadh Bhojanapalli, David A. McAllester, and Nathan Srebro. A
pac-bayesian approach to spectrally-normalized margin bounds for neural networks. ArXiv,
abs/1707.09564, 2018.

[19] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide
and deep neural networks, 2019.

[20] Amit Daniely and Elad Granot. Generalization bounds for neural networks via approximate
description length. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[21] Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via
lipschitz augmentation, 2019.

[22] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2019.

[23] Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis Haupt, and Tuo Zhao. On tighter generalization
bound for deep neural networks: Cnns, resnets, and beyond, 2018.

[24] Fengxiang He, Tongliang Liu, and Dacheng Tao. Why resnet works? residuals generalize,
2019.

[25] Vaishnavh Nagarajan and Zico Kolter. Deterministic PAC-bayesian generalization bounds for
deep networks via generalizing noise-resilience. In International Conference on Learning
Representations, 2019.

[26] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz. Non-
vacuous generalization bounds at the imagenet scale: a PAC-bayesian compression approach.
In International Conference on Learning Representations, 2019.

[27] Sanae Lotfi, Marc Anton Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and
Andrew Gordon Wilson. PAC-bayes compression bounds so tight that they can explain general-
ization. In Advances in Neural Information Processing Systems, volume 35. Curran Associates
Inc., 2022.

[28] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks, 2019.

12

[29] Dominic Richards and Ilja Kuzborskij. Stability & generalisation of gradient descent for shal-
low neural networks without the neural tangent kernel. In Advances in Neural Information
Processing Systems, volume 34. Curran Associates Inc., 2021.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[31] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[32] Antoine Ledent, Waleed Mustafa, Yunwen Lei, and Marius Kloft. Norm-based generalisation
bounds for deep multi-class convolutional neural networks. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 35(9):8279–8287, May 2021.

[33] Philip M. Long and Hanie Sedghi. Generalization bounds for deep convolutional neural net-
works. In International Conference on Learning Representations, 2020.

[34] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages 24261–24272. Curran Associates, Inc.,
2021.

[35] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303–314, 1989.

[36] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4:251–257, 1991.

[37] Hrushikesh N. Mhaskar. Neural networks for optimal approximation of smooth and analytic
functions. Neural Comput., 8(1):164–177, 1996.

[38] Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by mlp neural networks.
NEUROCOMPUTING, 25:81–91, 1999.

[39] Vitaly Maiorov, Ron Meir, and Joel Ratsaby. On the approximation of functional classes
equipped with a uniform measure using ridge functions. J. Approx. Theory, 99(1):95–111,
1999.

[40] Vitaly Maiorov. On best approximation by ridge functions. J. Approx. Theory, 99(1), 1999.

[41] Boris Hanin and Mark Sellke. Approximating continuous functions by relu nets of minimal
width, 2017.

[42] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. When and why are deep networks
better than shallow ones? In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, page 2343–2349. AAAI Press, 2017.

[43] Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks.
Proceedings of the National Academy of Sciences, 117(48):30039–30045, 2020.

[44] T. Poggio. Foundations of deep learning: Compositional sparsity of computable functions.
CBMM memo 138, 2022.

[45] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2020.

[46] Mengjia Xu, Akshay Rangamani, Qianli Liao, Tomer Galanti, and Tomaso Poggio. Dynamics
in deep classifiers trained with the square loss: Normalization, low rank, neural collapse, and
generalization bounds. Research, 6:0024, 2023.

13

[47] Florian Graf, Sebastian Zeng, Bastian Rieck, Marc Niethammer, and Roland Kwitt. On mea-
suring excess capacity in neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, vol-
ume 35, pages 10164–10178. Curran Associates, Inc., 2022.

[48] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learn-
ing. MIT Press, Cambridge, MA, 2 edition, 2018.

[49] Shai Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge eBooks, 2014.

[50] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[51] Michel Ledoux and Michel Talagrand. Probability in Banach spaces. Springer Berlin, Heidel-
berg, 1991.

[52] Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks, 2016.

[53] Gábor Lugosi Stéphane Boucheron, Olivier Bousquet. Theory of classification: a survey of
some recent advances. ESAIM: Probability and Statistics, 9:323–375, 3 2010.

[54] Tong Zhang. Statistical analysis of some multi-category large margin classification methods.
J. Mach. Learn. Res., 5:1225–1251, dec 2004.

[55] Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification methods.
Journal of Machine Learning Research, 8(36):1007–1025, 2007.

[56] Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Ronald
Ortner, Hans Ulrich Simon, and Sandra Zilles, editors, Algorithmic Learning Theory, pages
3–17, Cham, 2016. Springer International Publishing.

[57] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities - A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

14

6 Limitations

Our work demonstrates how a simple modification to the proof in [14] can yield tighter generaliza-
tion bounds for convolutional networks. Empirically, we have observed that our bound is reasonably
tight in basic learning settings (e.g., training 3-layer neural networks on MNIST), which is promis-
ing. However, this bound is anticipated to be generally loose for more complex learning settings.
One drawback of our bound is its dependence on depth. For instance, our factor ρ(w) represents a
product of L weight norms, which could increase as the depth L grows. Additionally, our bound
contains a product

∏L−1
l=1 kl, which increases exponentially with depth. As demonstrated in sec-

tion 3, this indicates that the bound is likely reasonable only when L depends logarithmically on
the input’s dimension. Consequently, our bound may not be suitable for very deep convolutional
networks. Finally, building upon the analysis in [14], our bounds are specific to a certain class of
ReLU neural networks and do not readily extend to architectures with different activation functions.

7 Broader Impact

This paper delves into the theoretical aspects of deep learning, specifically examining the reasons
behind the strong generalization capabilities of sparse neural networks. Such insights may enrich
our understanding of the success of deep learning and specific architectures, such as convolutional
networks [30] and MLP-mixers [34]. However, since this is a theoretical study, we do not anticipate
any direct negative societal impacts stemming from our research.

8 Additional Experimental Details

Compute. Each of the runs was done using a single GPU for at most 20 hours on a computing
cluster with several available GPU types (e.g., GeForce RTX 2080, GeForce RTX 2080 Ti, Quadro
RTX 6000, Tesla V-100, GeForce RTX A6000, A100, and GeForce GTX 1080 Ti).

Calculating our bound. Before discussing the calculation of the bound, let us first define how we
model a convolutional neural network within the framework outlined in section 2.

We focus on ReLU convolutional networks which comprise a fully-connected layer on top of a series
of convolutional layers. The lth convolutional layer possesses a kernel size of kl. Each neuron in this
lth layer accepts kl neurons from its predecessor layer as input (therefore its degree is deg(G)l = kl),
each with dimension cl−1, and outputs a single output node of dimension cl. The top linear layer
L following the series of convolutional layers receives a set of kL nodes as input (this represents
the image resultant from applying multiple convolutional layers), where each node is of the output
channel dimension of the previous layer. The output of this layer is of dimension k.

The bound derived in Theorem 3.2 of the main text can be written as follows:

2
√
2(ρ(w) + 1)

m
·

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(deg(G)l) + log(C))


·

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)| ·
m∑
i=1

∥z0j0(xi)∥22 + 3

√
log(2(ρ(w) + 2)2/δ)

2m
,

To compute this bound, we set δ = 0.001 (the bound holds uniformly with probability 1 − δ) and
γ = 1. The norm ρ(w) is calculated as the product of the norms of each one of the network’s layers
∥wl∥F . The norm of each of these layers is simply the Frobenius norm of the kernel tensor of the
layer. For the last fully-connected layer we calculate the norm of the full weight matrix. For the lth
convolutional layer, kl = |pred(l, jl)| = deg(G)l is the kernel’s size. For instance, if the layer is a
3 × 3 or 2 × 2 convolutional layer, the size is 9 or 4, respectively. It is worth noting that the bound
is independent of the size of the image kL that the fully-connected layer receives as input.

Finally, to calculate maxj1,...,jL
∑m

i=1 ∥z0j0(xi)∥22, with jl−1 ∈ pred(l, jl). It is important to note
that this term is bounded by maxj0

∑m
i=1 ∥z0j0(xi)∥22, where the maximum is taken over all input

patches. To calculate this quantity, we sum the squared norms of the j0th pixel across all samples
and return the maximum value across all possible j0 choices.

15

9 Proofs

Lemma 2.2. Let P be a distribution over Rc0d0 × [C] and F ⊂ {f ′ : X → RC}. Let
S = {(xi, yi)}mi=1 be a dataset of i.i.d. samples selected from P and X = {xi}mi=1. Then, with
probability at least 1− δ over the selection of S, for any fw ∈ F , we have

errP (fw)− errγS(fw) ≤ 2
√
2

γ
· RX(F) + 3

√
log(2/δ)

2m
. (1)

Proof. By Lemma 3.1 in [17], with probability at least 1−δ over the selection of S, for any fw ∈ F ,
we have

errP (fw)− errγS(fw) ≤ 2RX(F|γ) + 3

√
log(2/δ)

2m
,

where F|γ = {(x, y) 7→ ℓγ(−M(fw(x), y)) | fw ∈ F}, ℓγ(u, y) := min(1,max(0, 1 + M(u,y)
γ))

is the ramp loss function and M(u, j) = uj−maxi ̸=j ui (these quantities are standard [53, 54, 55]).
Next, by Lemma A.3 in [17], ℓγ(M(·, r)) is a (2/γ)-Lipschitz function. Hence, by Corollary 1
in [56],

RX(F|γ) ≤ 2
√
2

γm
· Eξir∼U [±1]

[
sup
fw

∑
i,r

ξirfw(xi)r

]
=

2
√
2

γ
· RX(F)

which completes the proof.

Lemma 3.4 (Peeling Lemma). Let σ be a 1-Lipschitz, positive-homogeneous activation function
which is applied element-wise (such as the ReLU). Then for any class of vector-valued functions
F ⊂ {f = (f1, . . . , fq) | ∀j ∈ [q] : fj : Rd → Rp}, and any convex and monotonically increasing
function g : R → [0,∞),

Eξ sup
f∈F

Wj : ∥Wj∥F≤R

g


√√√√ q∑

j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(Wjfj(xi))

∥∥∥∥∥
2

2

 ≤ 2Eξ sup
j∈[q], f∈F

g

(
√
qR

∥∥∥∥∥
m∑
i=1

ξi · fj(xi)

∥∥∥∥∥
2

)
.

Proof. Let W ∈ Rh×p be a matrix and let w1, . . . , wh be the rows of the matrix W . Define a

function Qj(v) :=
(∑m

i=1 ξi · σ(
v⊤

∥v∥2
fj(xi))

)2
taking a vector v ∈ Rp. We notice that

q∑
j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(Wjfj(xi))

∥∥∥∥∥
2

2

=

q∑
j=1

h∑
r=1

∥wjr∥22

(
m∑
i=1

ξi · σ(
w⊤

jr

∥wjr∥2
fj(xi))

)2

=

q∑
j=1

h∑
r=1

∥wjr∥22 ·Qj(wjr).

For any wj1, . . . , wjh, we have

h∑
r=1

∥wjr∥22 ·Qj(wjr) ≤ R ·max
r

Qj(wjr), (4)

16

which is obtained for ŵj1, . . . , ŵjh, where ŵji = 0 for all i ̸= r∗ and ŵjr∗ of norm R for some
r∗ ∈ [h]. Together with the fact that g is a monotonically increasing function, we obtain

Eξ sup
f∈F

Wj : ∥Wj∥F≤R

g


√√√√ q∑

j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(Wjfj(xi))

∥∥∥∥∥
2

2


≤ Eξ sup

f∈F
w1...,wq : ∥wj∥2=R

g

√√√√ q∑
j=1

∣∣ m∑
i=1

ξi · σ(w⊤
j fj(xi))

∣∣2

≤ Eξ sup
j∈[q], f∈F

w1...,wq : ∥wj∥2=R

g

√√√√q ·
∣∣ m∑
i=1

ξi · σ(w⊤
j fj(xi))

∣∣2
= Eξ sup

j∈[q], f∈F
w: ∥w∥2=R

g

(
√
q ·
∣∣ m∑
i=1

ξi · σ(w⊤fj(xi))
∣∣) .

Since g(|z|) ≤ g(z) + g(−z),

Eξ sup
j∈[q], f∈F
w: ∥w∥2=R

g

(
√
q ·
∣∣ m∑
i=1

ξi · σ(w⊤fj(xi))
∣∣)

≤ Eξ sup
j∈[q], f∈F
w: ∥w∥2=R

g

(
√
q ·

m∑
i=1

ξi · σ(w⊤fj(xi))

)

+ Eξ sup
j∈[q], f∈F
w: ∥w∥2=R

g

(
−√

q ·
m∑
i=1

ξi · σ(w⊤fj(xi))

)

= 2Eξ sup
j∈[q], f∈F
w: ∥w∥2=R

g

(
√
q ·

m∑
i=1

ξi · σ(w⊤fj(xi))

)
,

where the last equality follows from the symmetry in the distribution of the ξi random variables.
By Equation 4.20 in [51] and Cauchy-Schwartz, we have the following:

Eξ sup
j∈[q], f∈F
w: ∥w∥2=R

g

(
√
q ·

m∑
i=1

ξi · σ(w⊤fj(xi))

)

≤ Eξ sup
j∈[q], f∈F
w: ∥w∥2=R

g

(
√
q ·

m∑
i=1

ξi · w⊤fj(xi)

)

≤ Eξ sup
j∈[q], f∈F
w: ∥w∥2=R

g

(
√
q · ∥w∥2

∥∥∥∥∥
m∑
i=1

ξi · fj(xi)

∥∥∥∥∥
2

)

≤ Eξ sup
j∈[q], f∈F

g

(
√
qR

∥∥∥∥∥
m∑
i=1

ξi · fj(xi)

∥∥∥∥∥
2

)
.

Proposition 3.1. Let G be a neural network architecture of depth L and let ρ > 0. Let X = {xi}mi=1
be a set of samples. Then,

RX(FG,ρ) ≤ ρ

m
·

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(deg(G)l) + log(C))


·

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)| ·
m∑
i=1

∥z0j0(xi)∥22,

where the maximum is taken over j0, j1, . . . , jL, such that, jl−1 ∈ pred(l, jl) for all l ∈ [L].

17

Proof. We denote by fw an arbitrary member of FG,ρ and wl
jl

the weights of the jlth neuron of the
lth layer. Due to the homogeneity of the ReLU function, each function fw ∈ FG,ρ can be rewritten

as fŵ, where ŵL := ρ wL

∥wL∥F
and for all l < L and jl ∈ [dl], ŵl

jl
:=

wl
jl

maxj∈[dl]
∥wl

j∥F
. In particular,

we have FG,ρ ⊂ F̂G,ρ := {fw | ∥wL∥F ≤ ρ and ∀i < L, jl ∈ [dl] : ∥wl
jl
∥F ≤ 1} since the ReLU

function is homogeneous.

We first consider that

mR := mRX(F̂G,ρ) = Eξ

[
sup
ŵ

m∑
i=1

C∑
r=1

ξirfŵ (xi)r

]

= Eξ

sup
ŵ

m∑
i=1

C∑
r=1

ξir
∑
jL−1

⟨ŵL
rjL−1

, zL−1
jL−1

(xi)⟩


= Eξ

sup
ŵ

∑
jL−1

C∑
r=1

(ŵL
rjL−1

)⊤
m∑
i=1

ξirz
L−1
jL−1

(xi)


≤ ρ · Eξ

[
sup
ŵ

max
r,jL−1

∥∥∥∥∥
m∑
i=1

ξirz
L−1
jL−1

(xi)

∥∥∥∥∥
2

]

where the last inequality follows from moving the norm of ŵL to the vector ŵL
rjL−1

for maximizing

the term
∑

jL−1

∑C
r=1(ŵ

L
rjL−1

)⊤
∑m

i=1 ξirz
L−1
jL−1

(xi) and applying the Cauchy-Schwartz inequality.
Next, we apply Jensen’s inequality,

Eξ

[
sup
ŵ

max
r,jL−1

∥∥∥∥∥
m∑
i=1

ξirz
L−1
jL−1

(xi)

∥∥∥∥∥
2

]
≤ 1

λ
· logEξ sup

ŵ,r,jL−1

exp

(
λ

∥∥∥∥∥
m∑
i=1

ξirz
L−1
jL−1

(xi)

∥∥∥∥∥
2

)

≤ 1

λ
· logEξ sup

ŵ,r,jL−1

exp

λ

√√√√∥∥∥∥∥
m∑
i=1

ξirz
L−1
jL−1

(xi)

∥∥∥∥∥
2

2

 ,

where the supremum is taken over the weights ŵl
jl

(l ∈ [L], jl ∈ [dl]) that are described above.
Next, we use Lemma 3.4,

mR ≤ ρ

λ
· log

Eξ sup
ŵ,r,jL−1

exp

λ ·

√√√√∥∥∥∥∥
m∑
i=1

ξir · zL−1
jL−1

(xi)

∥∥∥∥∥
2

2


=

ρ

λ
· log

Eξ sup
ŵ,r,jL−1

exp

λ ·

√√√√∥∥∥∥∥
m∑
i=1

ξir · σ(ŵL−1
jL−1

vL−2
jL−1

(xi))

∥∥∥∥∥
2

2


≤ ρ

λ
· log

2Eξ sup
ŵ,r,jL−1

exp

λ ·

√√√√∥∥∥∥∥
m∑
i=1

ξir · vL−2
jL−1

(xi)

∥∥∥∥∥
2

2


=

ρ

λ
· log

2Eξ sup
ŵ,r,jL−1

exp

λ ·

√√√√√ ∑
jL−2∈pred(L−1,jL−1)

∥∥∥∥∥
m∑
i=1

ξir · σ(ŵL−2
jL−2

vL−3
jL−2

(xi))

∥∥∥∥∥
2

2




≤ ρ

λ
· log

4Eξ sup
ŵ,r,jL−1,jL−2

exp

λ ·

√√√√|pred(L− 1, jL−1)|

∥∥∥∥∥
m∑
i=1

ξir · vL−3
jL−2

(xi)

∥∥∥∥∥
2

2

 ,

where the supremum is taken over the parameters of fŵ and j1 ∈ pred(L, j0). By applying this
process recursively L times, we obtain the following inequality,

mR ≤ ρ

λ
· log

2LEξ max
r,j0,...,jL

exp

λ ·

√√√√L−1∏
l=1

|pred(l, jl)| ·

∥∥∥∥∥
m∑
i=1

ξir · z0j0(xi)

∥∥∥∥∥
2

 , (5)

18

where the maximum is taken over j0, . . . , jL, such that, jl−1 ∈ pred(l, jl) and r ∈ [C]. We notice
that

Eξ max
r,j0,...,jL

exp

λ ·

√√√√L−1∏
l=1

|pred(l, jl)| ·

∥∥∥∥∥
m∑
i=1

ξir · z0j0(xi)

∥∥∥∥∥
2


≤

∑
r,j0,...,jL

Eξ exp

λ ·

√√√√L−1∏
l=1

|pred(l, jl)| ·

∥∥∥∥∥
m∑
i=1

ξir · z0j0(xi)

∥∥∥∥∥
2


≤ C

L−1∏
l=1

deg(G)l · max
r,j0,...,jL

Eξ exp

λ ·

√√√√L−1∏
l=1

|pred(l, jl)| ·

∥∥∥∥∥
m∑
i=1

ξir · z0j0(xi)

∥∥∥∥∥
2

 .

(6)

Following the proof of Theorem 1 in [14], by applying Jensen’s inequality and Theorem 6.2 in [57]
we obtain that for any α > 0,

Eξ exp

(
α

∥∥∥∥∥
m∑
i=1

ξir · z0j0(xi)

∥∥∥∥∥
2

)
≤ exp

α2∑m
i=1 ∥z

0
j0(xi)∥22

2
+ α

√√√√ m∑
i=1

∥z0j0(xi)∥22

 . (7)

Hence, by combining equations 5-7 with α = λ ·
√∏L−1

l=1 |pred(l, jl)|, we obtain that

mR ≤ ρ

λ
· log

2LC

L−1∏
l=1

deg(G)l · max
r,j0,...,jL

Eξ exp

λ ·

√√√√L−1∏
l=1

|pred(l, jl)| ·

∥∥∥∥∥
m∑
i=1

ξir · z0j0(xi)

∥∥∥∥∥
2


=

ρ

λ
· max
j0,...,jL

log

2LC

L−1∏
l=1

deg(G)l · Eξ exp

λ ·

√√√√L−1∏
l=1

|pred(l, jl)| ·

∥∥∥∥∥
m∑
i=1

ξir · z0j0(xi)

∥∥∥∥∥
2


≤

ρ · (log(2)L+
∑L−1

l=1 log(deg(G)l) + log(C))

λ

+

λρ max
r,j0,...,jL

∏L−1
l=1 |pred(l, jl)| ·

∑m
i=1 ∥z

0
j0(xi)∥22

2

+ ρ

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)| ·
m∑
i=1

∥z0j0(xi)∥22

The choice λ =

√
2(log(2)L+

∑L−1
l=1 log(deg(G)l)+log(C))

maxj0,...,jL

∏L−1
l=1 |pred(l,jl)|·

∑m
i=1 ∥z0

j0
(xi)∥2

2

gives the desired inequality.

Theorem 3.2. Let P be a distribution over Rc0d0 × {±1}. Let S = {(xi, yi)}mi=1 be a dataset of
i.i.d. samples selected from P . Then, with probability at least 1− δ over the selection of S, for any
fw ∈ FG,

errP (fw)− errγS(fw) ≤ 2
√
2(ρ(w) + 1)

γm
·

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(deg(G)l) + log(C))


·

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)| ·
m∑
i=1

∥z0j0(xi)∥22 + 3

√
log(2(ρ(w) + 2)2/δ)

2m
,

where the maximum is taken over j0, . . . , jL, such that, jl−1 ∈ pred(l, jl) for all l ∈ [L].

Proof. Let t ∈ N∪ {0} and Gt = FG,t. By Lemma 2.2, with probability at least 1− δ
t(t+1) , for any

function fw ∈ Gt, we have

errP (fw)− errγS(fw) ≤ 2
√
2

γ
· RX(Gt) + 3

√
log(2/δ)

2m
. (8)

19

By Proposition 3.1 in the main text, we have

RX(Gt) ≤ t

m
·

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(deg(G)l) + log(C))


·

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)| ·
m∑
i=1

∥z0j0(xi)∥22,

because of the union bound over all t ∈ N, equation 1 holds uniformly for all t ∈ N and fw ∈ Gt
with probability at least 1−δ. For each fw with norm ρ(w) we then apply the bound with t = ⌈ρ(w)⌉
since fw ∈ Gt, we have

errP (fw)− errγS(fw) ≤ 2
√
2 · t

γm
·

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(deg(G)l) + log(C))


·

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)| ·
m∑
i=1

∥z0j0(xi)∥22 + 3

√
log(2(t+ 1)2/δ)

2m

≤ 2
√
2(ρ(w) + 1)

γm

1 +

√√√√2(log(2)L+

L−1∑
l=1

log(deg(G)l) + log(C))


·

√√√√ max
j0,...,jL

L−1∏
l=1

|pred(l, jl)|
m∑
i=1

∥z0j0(xi)∥22 + 3

√
log(2(ρ(w) + 2)2/δ)

2m
,

which proves the desired bound.

20

	Introduction
	Related Work
	Contributions

	Problem Setup
	Rademacher Complexities
	Architectures

	Theoretical Results
	Proof Sketch

	Experiments
	Conclusions
	Limitations
	Broader Impact
	Additional Experimental Details
	Proofs

