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Abstract

Square loss has been observed to perform well in classification tasks, at least as well as crossen-
tropy. However, a theoretical justification is lacking. Here we develop a theoretical analysis for the
square loss that also complements the existing asymptotic analysis for the exponential loss.
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Implicit dynamic regularization in deep networks

Tomaso Poggio, Qianli Liao

Abstract

Square loss has been observed to perform well in classification tasks, at least as well as
crossentropy [1]. However, a theoretical justification is lacking. Here we propose an analysis
for gradient descent under the square loss in RELU networks that complements the existing
asymptotic analysis for exponential-type loss functions [2]. In particular we predict

• that there exist an initial transient phase (TP) of regularization resulting from the
nonlinear dynamics of the norm of the layers in RELU networks;

• that the TP lasts longer for smaller initializations and for deeper networks keeping the
norm small;

• that a second, more classical, implicit regularization follows, ensuring convergence to a
local minimum norm solution.

1 Introduction
It seems that any explanation of the ability of deep networks to be predictive requires the
identification of a hidden mechanism of complexity control at work during the training of deep
networks, ensuring CV stability of the solution (good stability implies good test error[3]).

In the case of exponential-type loss functions such a mechanism has been identified in the
margin maximization effect of minimizing exponential-type loss functions [4, 5, 6]. However, this
mechanism cannot explain the good empirical results that can be obtained using the square loss
[1], assuming of course that specific forms of gradient descent used in such experiments – such as
momentum or batch normalization – are not hiding complexity control effects.

In trying to solve this puzzle, we identify an interesting dynamics constraining the norm of
the network that strictly depends on the presence of multiple layers and has properties matching
several empirical observations. We conjecture that this transient phase of norm control (together
with the implicit regularization of iterative gradient descent once close to a degenerate minimum)
may have a significant role in explaining the stability of trained deep networks.

This note is a preliminary communication with more details, proofs and experiments to follow
in a future update.
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2 The dynamics of the norm and of the normalized weights

2.1 Gradient descent

The natural approach to training deep networks for binary classification using the square loss
is to use stochastic gradient descent to find the weights Wk that minimize L = 1

N

∑
n `

2
n =

1
N

∑N
n (g(xn)−yn)2, with y = ±1. In this note, we consider gradient descent instead of stochastic

gradient descent. We also assume NOT to use batch normalization, momentum, weight decay,
data augmentation (although the dynamic for the weight normalization algorithm is very similar).

Gradient descent on L = 1
N (

∑
n g

2
n − 2

∑
n yngn +N) gives

Ẇk = − ∂L

∂Wk
= − 2

N

∑
n

gn
∂gn
∂Wk

+ 2
N

∑
n

yn
∂gn
∂Wk

(1)

We now consider separately the dynamics of the norms and of the normalized weights.

2.2 Notation and assumptions

• We set g(x) = ρgV (x) with ρ, V, gV defined as in [6];

• in the following we use the notation fn meaning gV (xn), that is the normalized network;

• we assume ||x|| = 1 implying ||gV (x)|| = ||f(x)|| ≤ 1 at convergence;

• we assume that at initialization all the layers have the same norm, that is ρk is the same
for all k at initialization.

2.3 Dynamics of norm and normalized weights

We consider the dynamical system induced by GD on a deep net with RELUs. We change
variables by using Wk = ρkVk, ||Vk|| = 1. Following the calculations in [6], the following identies
hold: ∂ρk

∂Wk
= V T

k and ∂gn

∂Wk
= ρ

ρk

∂fn

∂Vk
. This implies

Ẇk = − 2
N

ρ

ρk
[
∑
n

(ρfn − yn)∂fn
∂Vk

] (2)

Thus gradient descent on L = L =
∑
n(ρfn − yn)2 with the constraints on Vk and ρk yields

the dynamical system (with Ẇk = − ∂L
∂Wk

)

ρ̇k = ∂ρk
∂Wk

Ẇk = V T
k Ẇk = −2

∑
n

(ρLk fn − yn)fnρL−1
k = −2ρL−1

k [
∑
n

ρLk (fn)2 −
∑
n

fnyn] (3)

and, with Sk = I − VkV T
k ,

V̇k = ∂Vk
∂Wk

Ẇk = Sk
ρk
Ẇk = −2 ρ

ρ2
k

∑
n

(ρfn − yn)(∂fn
∂Vk
− Vkfn). (4)
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Because of the third assumption we can use the following

Lemma 1 ∂ρ2
k

∂t is independent of k.

to claim that all ρk are the same at all times. Thus ρ = ρLk , where L is the number of layers.
We use Equation 3 to derive the dynamics of ρ = ρLk in terms of ρ̇ =

∑
k
∂ρ
∂ρk

ρ̇k
Thus

ρ̇ = 2Lρ
2L−2

L [−
∑
n

ρ(fn)2 +
∑
n

fnyn] (5)

which has a potentially very interesting dynamics as shown in the simplified simulations of Figure
1. The equilibrium value for ρ̇k = 0 is

ρeq =
∑
n ynfn∑
n f

2
n

. (6)

Similarly for Vk:

V̇k = −2ρ
L−2

L

∑
n

(ρfn − yn)(∂fn
∂Vk
− Vkfn) (7)

At equilibrium for Vk – that is when V̇k = 0 – the equation gives (with `n = ρfn − yn and
assuming

∑
fn`n 6= 0) ∑

n

(ρfn − yn)(∂fn
∂Vk

) =
∑
n

(ρfn − yn)(Vkfn) (8)

Since
∑
n(ρeqfn−yn)fn = 0 from Equation 6, it follows that at V̇k = 0 we obtain

∑
n `n

∂fn

∂Vk
= 0.

This condition is consistent with equilibrium at ρeq since it implies, by multipying it from the
left with V T ,

∑
n `nfn = 0.

3 Conjectures and predictions
To give an intuition of what we expect, given the previous analysis, let us assume that the initial
conditions are ρt=0 ≈ 0 (but ρt=0 > 0) and at least some of the ynfn < maxV ynfn = 1. Then
ρ(t) eventually grows (most of the time, when it soes not go to zero), but very slowly for a
longish time until it grows very quickly. The dynamics of Equation 5 is that the smaller ρt=0 is,
the longer it takes to ρ to grow (this phenomenon increase with larger L). Thus ρ is constrained
by the nonlinear dynamics to be very small for a transient phase T of SGD iterations (as we
mentioned, T is longer with more layers and longer with smaller initialization). During this time
gradient flow on Wk is trying to minimize

∑
n(ρfn − yn)2 under the norm constraint. At around

T , ρ will grow quickly to a value which depends on
∑

yif(xi)∑
f2(xi)

. The intuition is that this dynamics
(from t = 0 to t = T ) is similar to minimizing the square loss under the constraint of a small ρ
that is

min
Wk

L =
∑

(ρf(xi)− yi)2 s.t.ρ ≤ C (9)
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Figure 1: Plot of y which is the square root of ρ for L = 4, assuming that
∑
f2
n and

∑
ynfn are

constant; the bottom plots show the effect of different initial conditions.
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Figure 2: On the left: plot of λ in a Tikhonov regularization hypothetically equivalent to the
nonlinear dynamics of Equation 5. On the right is the corresponding dynamics for ρ.

which is Ivanov regularization, which is itself “equivalent” to Tikhonov regularization with
appropriate λ(ρ) (see Figure 2).

The main difference is that in our case the constraint is only applied for a time T . What
happens after T ? To answer this question, let me recall the behavior of iterative gradient descent
in the case of linear networks (see for instance [7]). In this case, the behavior of gradient descent
is equivalent to a vanishing regularization with λ ≈ 1

T where T is the number of iterations;
convergence is to the minimum norm solution, if initialization is around zero norm. In the
nonlinear case, the same behavior could be expected once GD is close to a minimum because
then the loss should be locally equivalent to a Morse-Bott function (we are thinking about a
positive definite Hessian in some directions and degenerate in the others).

The problem is that, unlike the linear case, the weights associated with the degenerate
directions at the minimum may have grown to non-zero values during the iterations before
reaching a neighborhood of the minimum. A constraint of small norm as in equation 9 for the
initial T iteration may be key in ensuring a small norm before reaching a minimum: iterative
gradient descent will then ensure convergence to a local linear pseudoinverse (defined in terms of
the Jacobians for the nondegenerate directions).

3.1 Remarks

• Notice that ρ̇k > 0 as long as ρ is not much larger than 1 and
∑
n fnyn > 0.

• The lowest value of ρk at equilibrium (ρ̇k = 0) is ρk = 1 which can be achieved if ynfn is
either = 1 or = 0.
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• Values ynfn = 1, ρ = 1 are stationary points of the dynamics of Vk given by V̇k = 0: they
are minimizers with zero square loss. Notice that, in general, classification with maximum
margin is not minimum norm interpolation of the labels.

• The dynamics of the “weight normalization” gradient descent algorithm can be derived
using Lagrange multipliers: it has the same dynamics as described here and a slightly
different dynamics for Vk (see [6]).

• Equation 6 is a critical point for the dynamics of ρ under GD but NOT under SGD. In
the case of SGD the asymptotic value of ρ for fixed

∑
fiyi c an be expected to fluctuate

randomly around the
∑

n
ynfn∑

n
f2

n
. Similar comments also apply to the dynamics of Vk.

3.2 Open questions

• For GD under the exponential loss, in addition to the same initial dynamic regularization,
we expect a margin maximization effect at long times as shown in [2]. Thus deep nets under
the square loss are more likely to overfit at long times than under exponential-type loss
functions (unless momentum or regularization is used). As a consequence, early stopping is
more likely to be effective for the square loss than for exponential-type loss functions.

• Does the TP regularization we have identified play a major role in obtaining solutions
with good predictive performance? If yes, this may also explain why recurrent networks
work almost as well as unrolled networks: the dynamic is effectively the same, though the
number of parameters is much higher in the second case.

• Equation 5 implies an especially interesting dynamics for ResNets, since they are equivalent
to the combination of a set of neworks with different depths from 2 to L layers and shared
weights. Does this provide a more gradual control of the norm?

• Separability (ynfn > 0,∀n) and small ρ (ρ > 1 but close to 1) may imply a bias towards
large and small values of fn across n (remember that ||x||2 ≤ ||x||1 ≤ d

1
2 ||x||2). The

question is why the dynamics should be biased towards min ρ provided that ρfi ≥ 1, ∀i.

• Suppose we control ρk independently of Vk and of equation 5: will this lead to solutions
with better generalization?
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