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SGD vs GD: high noise and rank shrinkage
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Abstract

It was always obvious that SGD with small minibatch size yields for neural networks much higher
asymptotic fluctuations in the updates of the weight matrices than GD. It has also been often reported
that SGD in deep RELU networks shows empirically a low-rank bias in the weight matrices. A recent
theoretical analysis derived a bound on the rank and linked it to the size of the SGD fluctuations [25].
In this paper, we provide an empirical and theoretical analysis of the convergence of SGD vs GD, first
for deep RELU networks and then for the case of linear regression, where sharper estimates can be
obtained and which is of independent interest. In the linear case, we prove that the component W⊥ of
the matrix W corresponding to the null space of the data matrix X converges to zero for both SGD and
GD, provided the regularization term is non-zero. Because of the larger number of updates required
to go through all the training data, the convergence rate per epoch of these components is much faster
for SGD than for GD. In practice, SGD has a much stronger bias than GD towards solutions for weight
matrices W with high fluctuations – even when the choice of mini batches is deterministic – and low
rank, provided the initialization is from a random matrix. Thus SGD with non-zero regularization, shows
the coupled phenomenon of asymptotic noise and a low-rank bias– unlike GD.

This material is based upon work supported by the Center for Brains,
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1 Introduction

Over the past few years, deep neural networks have challenged machine learning theory with several
puzzles. One of them is the role and properties of minibatch SGD vs GD. It seems generally accepted
that, apart from computational advantages, SGD is similar to GD in its basic properties. There are,
however, clear di�erences. In particular, SGD updates never reach equilibrium across updates (for
�xed learning rate, small mini-batch size and weight decay � > 0): the gradient of the loss is never
zero, as shown in Figure 1 � unlike GD [1]. Hence, Neural Collapse as described by [2] does not strictly
take place. This in turn implies that SGD, unlike GD, asymptotically shows both a speci�c �SGD
noise� and, as we suggest, a speci�c form of low rank bias.

1.1 Related Work

Stochastic gradient descent (SGD) is a widely used method for optimizing deep learning models [3].
Despite the inherent similarities between Stochastic Gradient Descent (SGD) and Gradient Descent
(GD), recent research has highlighted various distinctions between the solutions learned by both al-
gorithms. For example, in the context of stochastic convex optimization, SGD is known to converge
within O

�
1
� 2

�
iterations to a solution with � excess expected error. In contrast, GD, using an equal

number of iterations, might result in over�tting [4]. On the empirical side, it was observed that SGD
with smaller batches generalizes more e�ectively than with larger batches [5, 6], and that GD. Despite
numerous studies, the subtle yet signi�cant e�ects of SGD, especially in comparison to GD regarding
tendencies towards large �uctuations and low rank, are not completely understood. Current literature
lacks comprehensive comparisons of SGD and GD in these respects.

In an e�ort to understand the success of deep learning, various papers have explored the implicit
regularization e�ects of gradient-based optimization. A major focus of signi�cant research in recent
years has been the implicit bias of linear neural networks towards rank minimization. The majority
of this interest centered around the matrix factorization problem, which is equivalent to training a
depth-2 linear neural network with multiple outputs with respect to the square loss. For instance,
[7] conjectured and provided both empirical and theoretical evidence that, with su�ciently small
step sizes and initialization close to the origin, gradient descent on a full-dimensional factorization
converges to the minimum nuclear norm solution. However, this conjecture was later refuted by [8],
which demonstrated that norm minimization does not occur in a wide range of matrix factorization
problems. [9] postulated that the implicit regularization in matrix factorization can be explained
by rank minimization and also hypothesized that some notion of rank minimization may be key to
explaining generalization in deep learning. [8] provided evidence that the implicit regularization in
matrix factorization acts as a heuristic for rank minimization. Beyond factorization problems, [10]
demonstrated that in linear networks with an output dimension of 1, gradient �ow (GF) with respect
to exponentially-tailed classi�cation loss functions converges to networks where the weight matrix of
every layer has a rank of 1.

In the non-linear case, the situation is more complex. An empirical study found that during mini-
mization SGD spans a small subspace, implying an e�ective bias on the rank of the weight matrices [11].
A couple of papers tried to study the inductive bias of gradient-based methods to learn low-rank weight
matrices from a theoretical standpoint. For example, in [12, 13, 14] they considered a setting where the
model is at the global minima of theL 2 regularization subject to �tting all of the training samples. For
example, [13] showed that in this setting, the weight matrices of a two-layer network become rank 1 at
the global minimum when the data is assumed to lie on a one-dimensional manifold. This result was
later extended in [12] for datasets that lie on higher dimensional spaces. Additionally, [14] discovered
that in su�ciently deep ReLU networks, when �tting the data, the weight matrices in the topmost
layers become low-rank at the global minimum. This observation is also related to the property of
Neural Collapse [15, 1]. In separate work, [16] prove that for linear multilayer networks SGD, but not
GD, has a non-zero probability to jump from a higher rank minimum to a lower rank one1.

Despite recent advancements in understanding the tendency of weight matrices to be low-rank at
the global minimum, the fundamental causes of this behavior during the optimization process are not
yet fully understood. Previous studies [10] have demonstrated that when univariate linear networks
are trained on binary classi�cation tasks using exponentially-tailed loss functions through gradient

1This work assumes a matrix completion task and additive regularization instead of the (more natural) choice of
regularizing the product of the norms of the layers (as we assume here, see Appendix and see [1]).
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�ow (GF), the networks tend to converge to weight matrices with a rank of one, especially when the
data is linearly separable. Building on this, a more recent paper [17] found that when training ReLU
networks with multiple linear top layers using GF, these top layers also tend to converge to rank one
weight matrices.

In this work we describe an empirical and theoretical analysis of SGD vs GD convergence, �rst
for deep RELU networks and then for the case of linear regression. We describe relevant di�erences
between GD and SGD: the latter is characterized by asymptotic intrinsic �uctuations in the weight
matrices in the bottom and middle layers � even in the absence of any explicit randomness in the
algorithm � which are coupled with a bias towards shrinking the components of the weight matrices
in the null space of the data � which can be described as a speci�c form of a bias towards small rank.
For one-layer linear networks we provide an analysis of convergence of SGD vs GD in a special but
important case: the components of the matrixW corresponding to the null space of the data matrix
X converges to zero for both SGD and GD, but the decay is much faster for SGD (measured over an
epoch). Thus SGD is much more e�ective than GD at pruning features that are not supported by the
input or output data.

2 Deep RELU networks

In a previous paper [1] we discussed several di�erences between SGD and GD. In particular, in the
presence of regularization, SGD never converges, across its updates of the weights, to a perfect equi-
librium: there is always, generically, SGD noise. We concluded that the underlying reason is a rank
constraint in the SGD updates that depends on the size of the mini-batches � an observation that,
to our knowledge, seems to have escaped previous studies. The argument can be seen by considering
the SGD update equations, which are given here in terms of reparametrization of the weight matrices
Wk using � k Vk = Wk , � k = kWk k, � = � L

k=1 � k (see [1]). We also de�ne the output of the network as
g(x) = �f (x); �f n = yn f n > 0, � = 1

N

P
n

�f n and M = 1
N

P
n

�f 2
n .

The normalized weight matricesVk and � are �rst initialized, and then iteratively updated in the
following manner

�  � � �
2
B

X

(x n ;y n )2S 0

(1 � � �f n ) �f n � 2���

Vk  Vk �
2
B

�
BX

j =1

�
�
1 � � �f j

�
�

� Vk
�f j +

@�f j

@Vk

�� (1)

where S0 is selected uniformly as a subset of the training setS of sizeB , � > 0 is the learning rate.
It is important to emphasize that we assume here regularization on the product of the norms of the
layers (instead of the sum of the norms). Such a regularization follows from normalizing each weight
matrix by weight normalization; it is a natural choice to preserve homogeneity of the network.

A study of Equations 1 is in the Appendix. A main result is the following lemma (proof in the
Appendix):

Lemma 1. Let f W be a neural network. Assume that we iteratively train� and f Vk gL
k=1 using the pro-

cess described above with weight decay� > 0. Suppose that training converges, that is@L S 0( �; f Vk gL
k =1 )

@� =

0 and 8 k 2 [L ] : @L S 0( �; f Vk gL
k =1 )

@Vk
= 0 for all mini-batches S0 � S of size B < jSj. Assume that

8 n 2 [N ] : �f n 6= 0 . Then, the ranks of the matricesVk are at most � 2.

Lemma 1 shows that there cannot be convergence to a unique set of weightsf Vk gL
k=1 that satisfy

equilibrium for all minibatches. More details of the argument are illustrated in [18]. When � = 0 ,
interpolation of all data points is expected: in this case, the GD equilibrium can be reached without
any �uctuation since the SGD-speci�c noise essentially disappears, as shown by the histograms on the
left and the right hand side of Figure 10 in [1]. For � > 0, however, the solution f Vk g; k = 1 ; � � � ; L
is not the same for all samples: there isno convergence to a unique solutionbut instead �uctuations
between solutions during training.
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2.1 Testing key predictions about SGD �uctuations

The analysis of section C in the Appendix leads to a few predictions about SGD noise that we have
tested in our experiments.

(1) Fluctuations in �f n during training should be minimal for � = 0 � just due to the �nite learning
rate of gradient descent � and increase for increasing� . Separately, � , which is the average
margin over all the training data, increases according to the theory with increasing� because
� = ( M + � )� . The corresponding margin �f n for di�erent � in the case of binary classi�cation on
CIFAR10 trained with SGD are shown in Figure 1. As predicted, the variance of the �uctuations
is small with � = 0 and grows with increasing � . Notice that the asymptotic �uctuations in
f n across di�erent n, are due to �uctuations in the Vk weight matrices for k < L , that is, for
weight matrices that did not undergo neural collapse. From an analysis of the equations (see [1],
it seems likely that the �uctuations in � are small.

(2) According to Lemma 1 there should be no SGD speci�c noise when the mini-batch size is equal to
the training dataset size � that when SGD becomes GD � and no dependence of these �uctuations
on � . Our experiments con�rm this prediction, see Figure 2. There are large �uctuations because,
using the same hyper-parameters of the other experiments, GD does not converge to zero square
loss and in fact is quite far from it with a signi�cant percentage of incorrect classi�cations on
the training set.

(3) According to Equation 25 the norm of the update of Vk depends on� , because� > 0 ensures
`n > 0. It should be minimal at the top layer, assuming that the top layer is close to converging
to Neural Collapse, since the rank of the top layer is small (2 in our case). Figure 3 con�rms our
prediction and shows the dependency onk and � .

(4) Larger rank of Vk leads to largerkVk (t +1) � Vk (t)k as suggested by Equation 1: compare Figure
4(a) and Figure 4(b).

(5) In the case of exponential-type loss functions such as the logistic loss, the presence of the SGD-
speci�c noise is expected, even when� = 0 , because of Equation 17. The cross-entropy loss
margin results with di�erent � are shown in Figure 5 (a), while the square loss results are shown

in (b). Even for � = 0 there cannot be interpolation: the value of e� � �f n

1+ e� � �f n
in the Equation 17

is always positive (and controlled by � ). Of course the size of the �uctuations is expected to
increase further with increasing� , as shown in Figure 5 (a).

2.2 Low-rank bias of SGD?

In previous work [1] we suggested that the rank constraint of the SGD updates not only implies SGD-
speci�c �uctuations, as described in the previous sections, but also a bias towards low rank solutions2.
This conjecture was formalized in an upper bound on the rank [18] which however is quite loose in
most practical cases. The underlying intuition was based on Equations 1. In the case ofB = N , the
equations describe gradient descent for which it is well known thatkVk (t + 1) � Vk (t)k goes to zero
with t ! 1 . In the case ofB = 1 , however, the right hand side of theVk equation is not a gradient of
the loss. Thus we cannot infer that the SGD update necessarily decreases in norm. The SGD update
equations only suggests that at the end of one epochVk is the linear combination of rank 1 matrix
updates, implying that Vk has rank � N . We will show in the next section, however, that for a linear
network under the same conditions yielding SGD-speci�c �uctuations (� > 0 and B < N ) there is
a SGD speci�c bias towards aggressively pruning the components ofW that are in the null space of
the data. We believe that this argument can be directly extended to multilayer, nonlinear networks,
applying the linear result to each layer starting from the top layer to the bottom one and iterating.

2This bias reinforces a similar bias that SGD shares with GD � due to maximization of the margin under normalization
(that can be inferred from [14])
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Figure 1: (a) Margin distributions � that is histograms of f (xn ) � over 10000 training data samples for
binary classi�cation on the CIFAR10, trained with SGD and our deep ReLU networks with varying � .
(b) A zoomed-in view of the blue rectangular region in (a) reveals more detailed margin changes with
� ranging from 0 (without regularization) to 1e-04. The margins exhibit little noise (i.e., very small
standard deviations) when � = 0 and 1e-06. An increase of� from 5e-05 to 0.01, leads to an increase
in the average margin, but, more interestingly to an increase in the standard deviation of the noise
distribution.

3 Linear regression

3.1 SGD and GD

Consider the linear regression problem of �nding the best linear networkW 2 R m � d that satis�es
Wx = y from a set of N training data x i 2 R d with i = 1 ; � � � ; N , and corresponding targetyi 2 R m

with i = 1 ; � � � ; N . We always assume to be in an overparameterized setting whereN < d . The
empirical loss/risk with weight decay is given by

L (W ) =
NX

i =1

kWx i � yi k2 + � kW k2; (2)

where� denotes the weight decay regularization parameter, andkW k the Frobenius norm of the weight
matrix. The loss L is minimized by the gradient �ow

_W = �
@L
@W

= �
2
N

NX

i =1

(Wx i � yi )xT
i � 2�W: (3)

The corresponding gradient descent iteration corresponds is

W (t + 1) � W (t) = �
2�
N

NX

i =1

(W (t)x i � yi )xT
i � 2��W (t); (4)

and the Stochastic Gradient descent (SGD) iteration is

W (t + 1) � W (t) = �
2�
B

X

i 2 S t

(W (t)x i � yi )xT
i � 2��W (t); (5)

where one minibatchSt of sizeB � N is selected uniformly as a subset of the training datasetS; � > 0
is the learning rate which we assume �xed in this paper (unlike typical setups in which� decreases
with iterations). Gradient descent is the special case whereSt = S (i.e., minibatch size B = N ). In
the following we consider a realization of the stochastic process associated with SGD. In fact there is
no di�erence in the analysis of this section if we just assume that the mini-batches of size1 are selected
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