
CBMM Memo No. 058 June 28, 2021

Theory I: Why and When Can Deep Networks Avoid the Curse of
Dimensionality?

by

Tomaso Poggio1 Hrushikesh Mhaskar2 Lorenzo Rosasco1 Brando Miranda1 Qianli Liao1

1Center for Brains, Minds, and Machines, McGovern Institute for Brain Research,
Massachusetts Institute of Technology, Cambridge, MA, 02139.

2Department of Mathematics, California Institute of Technology, Pasadena, CA 91125;
Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711

Abstract: The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep
convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.
This 2021 version deletes Proposition 4 of the previous version which was wrong. Thanks to Eran Malach for pointing this out.

This work was supported by the Center for Brains, Minds and Machines (CBMM), funded
by NSF STC award CCF - 1231216. H.M. is supported in part by ARO Grant W911NF-15-1-
0385.

1

International Journal of Automation and Computing X(X), X X, X-X
DOI: XXX

Theory I: Why and When Can Deep Networks Avoid the Curse of
Dimensionality

Tomaso Poggio1 Hrushikesh Mhaskar2 Lorenzo Rosasco1 Brando Miranda1 Qianli Liao1

1Center for Brains, Minds, and Machines, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139.
2Department of Mathematics, California Institute of Technology, Pasadena, CA 91125; Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711

Abstract: The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a
special case of these conditions, though weight sharing is not the main reason for their exponential advantage. This 2021 version deletes Proposition 4 of the previous
version which was wrong. Thanks to Eran Malach for pointing this out.

Keywords: Deep and Shallow Networks, Convolutional Neural Networks, Function Approximation, Deep Learning

1 A theory of deep learning

1.1 Introduction

There are at three main theory questions about Deep Neural Net-
works. The first set of questions is about the power of the architec-
ture – which classes of functions can it approximate and learn well?
The second set of questions is about the learning process: what is
the landscape of the empirical risk? The third question is about
generalization. Overparametrization may explain why minima are
easy to find during training but then why do the minima found by
Stochastic Gradient Descent generalize so well?

In this paper we focus especially on the first set of questions, sum-
marizing several theorems that have appeared online in 2015[1, 2, 3],
and in 2016[4, 5]). We then describe additional results as well as a
few conjectures and open questions. The main message is that deep
networks have the theoretical guarantee, which shallow networks
do not have, that they can avoid the curse of dimensionality for an
important class of problems, corresponding to compositional func-
tions, that is functions of functions. An especially interesting subset
of such compositional functions are hierarchically local composi-
tional functions where all the constituent functions are local in the
sense of bounded small dimensionality. The deep networks that can
approximate them without the curse of dimensionality are of the
deep convolutional type (though weight sharing is not necessary).

Implications of the theorems likely to be relevant in practice are:

1. Certain deep convolutional architectures have a theoretical
guarantee that they can be much better than one layer archi-
tectures such as kernel machines;

2. the problems for which certain deep networks are guaranteed
to avoid the curse of dimensionality (see for a nice review [6])
correspond to input-output mappings that are compositional.
Since in a very specific sense all computable functions are
compositional, we focus on certain specific types of composi-
tionality. The most interesting class of functions are composed
of a hierarchy of constituent functions that are local: an exam-
ple is f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)),
h22(h13(x5, x6), h14(x7, x8))). The compositional function
f requires only “local” computations (here with just dimen-
sion 2) in each of its constituent functions h;

3. the key aspect of convolutional networks that can give them
an exponential advantage is not weight sharing but locality at
each level of the hierarchy.

2 Previous theoretical work

Deep Learning references start with Hinton’s backpropagation and
with Lecun’s convolutional networks (see for a nice review [7]).
Of course, multilayer convolutional networks have been around at
least as far back as the optical processing era of the 70s. The
Neocognitron[8] was a convolutional neural network that was
trained to recognize characters. The property of compositional-
ity was a main motivation for hierarchical models of visual cortex
such as HMAX which can be regarded as a pyramid of AND and
OR layers[9], that is a sequence of conjunctions and disjunctions.
Several papers in the ’80s focused on the approximation power and
learning properties of one-hidden layer networks (called shallow
networks here). Very little appeared on multilayer networks, (but
see [10, 11, 12]), mainly because one hidden layer nets performed em-
pirically as well as deeper networks. On the theory side, a review
by Pinkus in 1999[13] concludes that “...there seems to be reason
to conjecture that the two hidden layer model may be significantly
more promising than the single hidden layer model...”. A version
of the questions about the importance of hierarchies was asked
in [14] as follows: “A comparison with real brains offers another,
and probably related, challenge to learning theory. The “learn-
ing algorithms” we have described in this paper correspond to
one-layer architectures. Are hierarchical architectures with more
layers justifiable in terms of learning theory? It seems that the
learning theory of the type we have outlined does not offer any
general argument in favor of hierarchical learning machines for
regression or classification. This is somewhat of a puzzle since the
organization of cortex – for instance visual cortex – is strongly
hierarchical. At the same time, hierarchical learning systems show
superior performance in several engineering applications.” Be-
cause of the great empirical success of deep learning over the last
three years, several papers addressing the question of why hierar-
chies have appeared. Sum-Product networks, which are equivalent
to polynomial networks (see [15, 16]), are a simple case of a hierar-
chy that was analyzed[17] but did not provide particularly useful
insights. Montufar and Bengio[18] showed that the number of linear
regions that can be synthesized by a deep network with ReLU non-
linearities is much larger than by a shallow network. The meaning
of this result in terms of approximation theory and of our results is
at the moment an open question1. Relevant to the present review is
the work on hierarchical quadratic networks[16], together with func-
tion approximation results[19, 13]. Also relevant is the conjecture by
Shashua (see [20]) on a connection between deep learning networks
and the hierarchical Tucker representations of tensors. In fact, our
theorems describe formally the class of functions for which the
conjecture holds. This paper describes and extends results pre-

1We conjecture that the result may be similar to other examples in section 4.2. It says
that among the class of functions that are piecewise linear, there exist functions that can
be synthesized by deep networks with a certain number of units but require a much large
number of units to be synthesized by shallow networks

3

sented in[21, 22, 23] and in[24, 4] which derive new upper bounds for
the approximation by deep networks of certain important classes of
functions which avoid the curse of dimensionality. The upper bound
for the approximation by shallow networks of general functions
was well known to be exponential. It seems natural to assume that,
since there is no general way for shallow networks to exploit a com-
positional prior, lower bounds for the approximation by shallow
networks of compositional functions should also be exponential.
In fact, examples of specific functions that cannot be represented
efficiently by shallow networks have been given very recently by
Telgarsky [25] and by Shamir [26]. We provide in theorem 5 another
example of a class of compositional functions for which there is a
gap between shallow and deep networks.

3 Function approximation by deep networks

In this section, we state theorems about the approximation proper-
ties of shallow and deep networks.

3.1 Degree of approximation

The general paradigm is as follows. We are interested in determin-
ing how complex a network ought to be to theoretically guarantee
approximation of an unknown target function f up to a given accu-
racy ε > 0. To measure the accuracy, we need a norm ‖ · ‖ on some
normed linear space X. As we will see the norm used in the results
of this paper is the sup norm in keeping with the standard choice
in approximation theory. Notice, however, that from the point of
view of machine learning, the relevant norm is the L2 norm. In this
sense, several of our results are stronger than needed. On the other
hand, our main results on compositionality require the sup norm
in order to be independent from the unknown distribution of the
inputa data. This is important for machine learning.

Let VN be the be set of all networks of a given kind with complexity
N which we take here to be the total number of units in the network
(e.g., all shallow networks with N units in the hidden layer). It
is assumed that the class of networks with a higher complexity
include those with a lower complexity; i.e., VN ⊆ VN+1. The
degree of approximation is defined by

dist(f, VN) = inf
P∈VN

‖f − P‖. (1)

For example, if dist(f, VN) = O(N−γ) for some γ > 0, then
a network with complexity N = O(ε

− 1
γ) will be sufficient to

guarantee an approximation with accuracy at least ε. Since f is
unknown, in order to obtain theoretically proved upper bounds, we
need to make some assumptions on the class of functions from
which the unknown target function is chosen. This a priori infor-
mation is codified by the statement that f ∈W for some subspace
W ⊆ X. This subspace is usually a smoothness class characterized
by a smoothness parameter m. Here it will be generalized to a
smoothness and compositional class, characterized by the parame-
ters m and d (d = 2 in the example of Figure 1; in general is the
size of the kernel in a convolutional network).

3.2 Shallow and deep networks

This section characterizes conditions under which deep networks
are “better” than shallow network in approximating functions. Thus
we compare shallow (one-hidden layer) networks with deep net-
works as shown in Figure 1. Both types of networks use the same
small set of operations – dot products, linear combinations, a fixed
nonlinear function of one variable, possibly convolution and pool-
ing. Each node in the networks we consider usually corresponds to

a node in the graph of the function to be approximated, as shown in
the Figure. In particular each node in the network contains a certain
number of units. A unit is a neuron which computes

(〈x,w〉+ b)+, (2)

where w is the vector of weights on the vector input x. Both t and
the real number b are parameters tuned by learning. We assume here
that each node in the networks computes the linear combination of
r such units

r∑
i=1

ci(〈x, ti〉+ bi)+ (3)

Notice that for our main example of a deep network corresponding
to a binary tree graph, the resulting architecture is an idealized
version of the plethora of deep convolutional neural networks de-
scribed in the literature. In particular, it has only one output at the
top unlike most of the deep architectures with many channels and
many top-level outputs. Correspondingly, each node computes a
single value instead of multiple channels, using the combination
of several units (see Equation 3). Our approach and basic results
apply rather directly to more complex networks (see third note in
section 6). A careful analysis and comparison with simulations will
be described in future work.

The logic of our theorems is as follows.

• Both shallow (a) and deep (b) networks are universal, that is
they can approximate arbitrarily well any continuous function
of n variables on a compact domain. The result for shallow
networks is classical. Since shallow networks can be viewed
as a special case of deep networks, it clear that for any contin-
uous function of n variables, there exists also a deep network
that approximates the function arbitrarily well on a compact
domain.

• We consider a special class of functions of n variables on a
compact domain that are a hierarchical compositions of local
functions such as

f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8))) (4)

The structure of the function in equation 4 is represented by a
graph of the binary tree type. This is the simplest example of
compositional functions, reflecting dimensionality d = 2 for
the constituent functions h. In general, d is arbitrary but fixed
and independent of the dimensionality n of the compositional
function f . In our results we will often think of n increasing
while d is fixed. In section 4 we will consider the more general
compositional case.

• The approximation of functions with a compositional struc-
ture – can be achieved with the same degree of accuracy by
deep and shallow networks but that the number of parameters
are much smaller for the deep networks than for the shallow
network with equivalent approximation accuracy. It is intu-
itive that a hierarchical network matching the structure of a
compositional function should be “better” at approximating
it than a generic shallow network but universality of shallow
networks asks for non-obvious characterization of “better”.
Our result makes clear that the intuition is indeed correct.

4 X(X), X X

x1 x2 x3 x4 x5 x6 x7 x8

a b c

….
∑

x1 x2 x3 x4 x5 x6 x7 x8

….
….

….
......

∑

...

...

...

∑

x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

Figure 1 The top graphs are associated to functions; each of the bottom diagrams depicts the ideal network approximating the function above. In a) a shallow universal
network in 8 variables and N units approximates a generic function of 8 variables f(x1, · · · , x8). Inset b) shows a binary tree hierarchical network at the bottom
in n = 8 variables, which approximates well functions of the form f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))) as
represented by the binary graph above. In the approximating network each of the n− 1 nodes in the graph of the function corresponds to a set of Q = N

n−1
ReLU

units computing the ridge function
∑Q
i=1 ai(〈vi,x〉+ ti)+, with vi,x ∈ R2, ai, ti ∈ R. Each term in the ridge function corresponds to a unit in the node (this is

somewhat different from todays deep networks, but equivalent to them, see text and note in 6). In a binary tree with n inputs, there are log2n levels and a total of n− 1
nodes. Similar to the shallow network, a hierarchical network is universal, that is, it can approximate any continuous function; the text proves that it can approximate a
compositional functions exponentially better than a shallow network. No invariance – that is weight sharing – is assumed here. Notice that the key property that makes
convolutional deep nets exponentially better than shallow for compositional functions is the locality of the constituent functions – that is their low dimensionality.
Weight sharing corresponds to all constituent functions at one level to be the same (h11 = h12 etc.). Inset c) shows a different mechanism that can be exploited by the
deep network at the bottom to reduce the curse of dimensionality in the compositional function at the top: leveraging different degrees of smoothness of the constituent
functions, see Theorem 6 in the text. Notice that in c) the input dimensionality must be≥ 2 in order for deep nets to have an advantage over shallow nets. The simplest
examples of functions to be considered for a), b) and c) are polynomials with a structure corresponding to the graph at the top.

5

In the perspetive of machine learning, we assume that the shallow
networks do not have any structural information on the function to
be learned (here its compositional structure), because they cannot
represent it directly and cannot exploit the advantage of a smaller
number of parameters. In any case, in the context of approximation
theory, we will exhibit and cite lower bounds of approximation by
shallow networks for the class of compositional functions. Deep
networks with standard architectures on the other hand do represent
compositionality in their architecture and can be adapted to the
details of such prior information.

We approximate functions of n variables of the form of Equation
(4) with networks in which the activation nonlinearity is a smoothed
version of the so called ReLU, originally called ramp by Breiman
and given by σ(x) = x+ = max(0, x) . The architecture of the
deep networks reflects Equation (4) with each node hi being a ridge
function, comprising one or more neurons.

Let In = [−1, 1]n, X = C(In) be the space of all continuous
functions on In, with ‖f‖ = maxx∈In |f(x)|. Let SN,n denote
the class of all shallow networks with N units of the form

x 7→
N∑
k=1

akσ(〈wk, x〉+ bk),

where wk ∈ Rn, bk, ak ∈ R. The number of trainable parameters
here is (n+2)N ∼ n. Letm ≥ 1 be an integer, andWn

m be the set
of all functions of n variables with continuous partial derivatives
of orders up to m <∞ such that ‖f‖+

∑
1≤|k|1≤m ‖D

kf‖ ≤ 1,
where Dk denotes the partial derivative indicated by the multi-
integer k ≥ 1, and |k|1 is the sum of the components of k.

For the hierarchical binary tree network, the analogous spaces are
defined by considering the compact set Wn,2

m to be the class of
all compositional functions f of n variables with a binary tree
architecture and constituent functions h in W 2

m. We define the
corresponding class of deep networks DN,2 to be the set of all
deep networks with a binary tree architecture, where each of the
constituent nodes is in SM,2, where N = |V |M , V being the set
of non–leaf vertices of the tree. We note that in the case when n is
an integer power of 2, the total number of parameters involved in a
deep network in DN,2 – that is, weights and biases, is 4N .

Two observations are critical to understand the meaning of our
results:

• compositional functions of n variables are a subset of func-
tions of n variables, that is Wn

m ⊇Wn,2
m . Deep networks can

exploit in their architecture the special structure of compo-
sitional functions, whereas shallow networks are blind to it.
Thus from the point of view of shallow networks, functions in
Wn,2
m are just functions in Wn

m; this is not the case for deep
networks.

• the deep network does not need to have exactly the same com-
positional architecture as the compositional function to be
approximated. It is sufficient that the acyclic graph represent-
ing the structure of the function is a subgraph of the graph
representing the structure of the deep network. The degree
of approximation estimates depend on the graph associated
with the network and are thus an upper bound on what could
be achieved by a network exactly matched to the function
architecture.

The following two theorems estimate the degree of approximation
for shallow and deep networks.

3.3 Shallow networks

The first theorem is about shallow networks.

Theorem 1. Let σ : R→ R be infinitely differentiable, and not a
polynomial. For f ∈Wn

m the complexity of shallow networks that
provide accuracy at least ε is

N = O(ε−n/m) and is the best possible. (5)

Notes In [27, Theorem 2.1], the theorem is stated under the condition
that σ is infinitely differentiable, and there exists b ∈ R such that
σ(k)(b) 6= 0 for any integer k ≥ 0. It is proved in [28] that the
second condition is equivalent to σ not being a polynomial. The
proof in [27] relies on the fact that under these conditions on σ, the
algebraic polynomials in n variables of (total or coordinatewise)
degree < q are in the uniform closure of the span of O(qn) func-
tions of the form x 7→ σ(〈w, x〉 + b) (see Appendix 4.1). The
estimate itself is an upper bound on the degree of approximation
by such polynomials. Since it is based on the approximation of the
polynomial space contained in the ridge functions implemented
by shallow networks, one may ask whether it could be improved
by using a different approach. The answer relies on the concept of
nonlinear n–width of the compact set Wn

m (cf. [29, 4]). The n-width
results imply that the estimate in Theorem (1) is the best possible
among all reasonable [29] methods of approximating arbitrary func-
tions in Wn

m. � The estimate of Theorem 1 is the best possible if
the only a priori information we are allowed to assume is that the
target function belongs to f ∈Wn

m. The exponential dependence
on the dimension n of the number ε−n/m of parameters needed to
obtain an accuracy O(ε) is known as the curse of dimensionality.
Note that the constants involved in O in the theorems will depend
upon the norms of the derivatives of f as well as σ.

A simple but useful corollary follows from the proof of Theorem
1 about polynomials (which are a smaller space than spaces of
Sobolev functions). Let us denote with Pnk the linear space of
polynomials of degree at most k in n variables. Then

Corollary 1. Let σ : R → R be infinitely differentiable, and not
a polynomial. Every f ∈ Pnk can be realized with an arbitrary
accuracy by shallow network with r units, r =

(
n+k
k

)
≈ kn.

3.4 Deep hierarchically local networks

Our second and main theorem is about deep networks with smooth
activations and is recent (preliminary versions appeared in [3, 2, 4]).
We formulate it in the binary tree case for simplicity but it ex-
tends immediately to functions that are compositions of constituent
functions of a fixed number of variables d instead than of d = 2
variables as in the statement of the theorem (in convolutional net-
works d corresponds to the size of the kernel).

Theorem 2. For f ∈ Wn,2
m consider a deep network with the

same compositonal architecture and with an activation function σ :
R→ R which is infinitely differentiable, and not a polynomial. The
complexity of the network to provide approximation with accuracy
at least ε is

N = O((n− 1)ε−2/m). (6)

Proof To prove Theorem 2, we observe that each of the constituent
functions being in W 2

m, (1) applied with n = 2 implies that each
of these functions can be approximated from SN,2 up to accuracy
ε = cN−m/2. Our assumption that f ∈WN,2

m implies that each of
these constituent functions is Lipschitz continuous. Hence, it is easy
to deduce that, for example, if P , P1, P2 are approximations to the

6 X(X), X X

constituent functions h, h1, h2, respectively within an accuracy of
ε, then since ‖h − P‖ ≤ ε, ‖h1 − P1‖ ≤ ε and ‖h2 − P2‖ ≤ ε,
then ‖h(h1, h2) − P (P1, P2)‖ = ‖h(h1, h2) − h(P1, P2) +
h(P1, P2) − P (P1, P2)‖ ≤ ‖h(h1, h2) − h(P1, P2)‖ +
‖h(P1, P2)− P (P1, P2)‖ ≤ cε by Minkowski inequality. Thus

‖h(h1, h2)− P (P1, P2)‖ ≤ cε,
for some constant c > 0 independent of the functions involved.
This, together with the fact that there are (n− 1) nodes, leads to
(6). �

Also in this case the proof provides the following corollary about
the subset Tnk of the space Pnk which consists of compositional
polynomials with a binary tree graph and constituent polynomial
functions of degree k (in 2 variables)

Corollary 2. Let σ : R → R be infinitely differentiable, and not
a polynomial. Let n = 2l. Then f ∈ Tnk can be realized by a
deep network with a binary tree graph and a total of r units with
r = (n− 1)

(
2+k
2

)
≈ (n− 1)k2.

It is important to emphasize that the assumptions on σ in the the-
orems are not satisfied by the ReLU function x 7→ x+, but they
are satisfied by smoothing the function in an arbitrarily small inter-
val around the origin. This suggests that the result of the theorem
should be valid also for the non-smooth ReLU. Section 4.1 provides
formal results. Stronger results than the theorems of this section
(see [5]) hold for networks where each unit evaluates a Gaussian
non–linearity; i.e., Gaussian networks of the form

G(x) =

N∑
k=1

ak exp(−|x− wk|2), x ∈ Rd (7)

where the approximation is on the entire Euclidean space.

In summary, when the only a priori assumption on the target func-
tion is about the number of derivatives, then to guarantee an ac-
curacy of ε, we need a shallow network with O(ε−n/m) trainable
parameters. If we assume a hierarchical structure on the target func-
tion as in Theorem 2, then the corresponding deep network yields
a guaranteed accuracy of ε with O(ε−2/m) trainable parameters.
Note that Theorem 2 applies to all f with a compositional archi-
tecture given by a graph which correspond to, or is a subgraph of,
the graph associated with the deep network – in this case the graph
corresponding to Wn,d

m . Theorem 2 leads naturally to the notion of
effective dimensionality that we formalize in the next section

Definition 1. The effective dimension of a class W of functions
(for a given norm) is said to be d if for every ε > 0, any function in
W can be recovered within an accuracy of ε (as measured by the
norm) using an appropriate network (either shallow or deep) with
ε−d parameters.

Thus, the effective dimension for the class Wn
m is n/m, that of

Wn,2
m is 2/m. Notice that these results on deep networks imply

that the function class they represent as a hypothesis space has low
covering numbers.

4 General compositionality results: functions
composed by a hierarchy of functions with
bounded effective dimensionality

The main class of functions we considered in previous papers con-
sists of functions as in Figure 1 b that we called compositional

functions. The term “compositionality” was used with the meaning
it has in language and vision, where higher level concepts are com-
posed of a small number of lower level ones, objects are composed
of parts, sentences are composed of words and words are composed
of syllables. Notice that this meaning of compositionality is nar-
rower than the mathematical meaning of composition of functions.
The compositional functions we have described in previous papers
may be more precisely called functions composed of hierarchically
local functions.

Here we generalize formally our previous results to the broader
class of compositional functions (beyond the hierarchical locality
of Figure 1b to Figure 1c and Figure 2) by restating formally a few
comments of previous papers. Let us begin with one of the previous
examples. Consider

Q(x, y) = (Ax2y2 +Bx2y

+Cxy2 +Dx2 + 2Exy

+Fy2 + 2Gx+ 2Hy + I)2
10

.

Since Q is nominally a polynomial of coordinatewise degree 211,
[27, Lemma 3.2] shows that a shallow network with 211 + 1 units is
able to approximate Q arbitrarily well on I2. However, because
of the hierarchical structure of Q, [27, Lemma 3.2] shows also that a
hierarchical network with 9 units can approximate the quadratic
expression, and 10 further layers, each with 3 units can approximate
the successive powers. Thus, a hierarchical network with 11 layers
and 39 units can approximate Q arbitrarily well. We note that even
if Q is nominally of degree 211, each of the monomial coefficients
in Q is a function of only 9 variables, A, · · · , I .

A different example is

Q(x, y) = |x2 − y2|. (8)

This is obviously a Lipschitz continuous function of 2 variables.
The effective dimension of this class is 2, and hence, a shallow
network would require at least cε−2 parameters to approximate it
within ε. However, the effective dimension of the class of univariate
Lipschitz continuous functions is 1. Hence, if we take into account
the fact that Q is a composition of a polynomial of degree 2 in 2
variables and the univariate Lipschitz continuous function t 7→ |t|,
then it is easy to see that the same approximation can be achieved
by using a two layered network with O(ε−1) parameters.

To formulate our most general result that includes the examples
above as well as the constraint of hierarchical locality, we first
define formally a compositional function in terms of a directed
acyclic graph. Let G be a directed acyclic graph (DAG), with the
set of nodes V . A G–function is defined as follows. Each of the
source node obtains an input from R. Each in-edge of every other
node represents an input real variable, and the node itself represents
a function of these input real variables, called a constituent function.
The out-edges fan out the result of this evaluation. We assume that
there is only one sink node, whose output is the G-function. Thus,
ignoring the compositionality of this function, it is a function of n
variables, where n is the number of source nodes in G.

Theorem 3. Let G be a DAG,n be the number of source nodes,
and for each v ∈ V , let dv be the number of in-edges of v. Let
f : Rn 7→ R be a compositional G-function, where each of the con-
stitutent function is in W dv

mv . Consider shallow and deep networks
with infinitely smooth activation function as in Theorem 1. Then
deep networks – with an associated graph that corresponds to the
graph of f – avoid the curse of dimensionality in approximating f
for increasing n, whereas shallow networks cannot directly avoid
the curse. In particular, the complexity of the best approximating
shallow network is exponential in n

7

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

Figure 2 The figure shows the graphs of functions that may have small effective
dimensionality, depending on the number of units per node required for good
approximation.

Ns = O(ε−
n
m), (9)

where m = minv∈V mv , while the complexity of the deep network
is

Nd = O(
∑
v∈V

ε−dv/mv). (10)

Following definition 1 we call dv/mv the effective dimension of
function v. Then, deep networks can avoid the curse of dimen-
sionality if the constituent functions of a compositional function
have a small effective dimension; i.e., have fixed, “small” dimen-
sionality or fixed, “small” “roughness. A different interpretation of
Theorem 3 is the following.

Proposition 1. If a family of functions f : Rn 7→ R of smooth-
ness m has an effective dimension < n/m, then the functions
are compositional in a manner consistent with the estimates in
Theorem 3.

Notice that the functions included in this theorem are functions
that are either local or the composition of simpler functions or both.
Figure 2 shows some examples in addition to the examples at the
top of Figure Figure 1.

As before, there is a simple corollary for polynomial functions:

Corollary 3. Let σ : R→ R be infinitely differentiable, and not a
polynomial. With the set up as in Theorem 3, let f be DAG polyno-
mial; i.e., a DAG function, each of whose constituent functions is a
polynomial of degree k. Then f can be represented by a deep net-
work with O(|VN |kd) units, where |VN | is the number of non-leaf
vertices, and d is the maximal indegree of the nodes.

For example, if G is a full binary tree with 2n leaves, then the
nominal degree of the G polynomial as in Corollary 3 is kk

n

, and
therefore requires a shallow network with O(k2k

n

) units, while a
deep network requires only O(nk2) units.

Notice that polynomials in Snk are sparse with a number of terms
which is not exponential in n, that is it is not O(kn) but linear in n
(that is O(nk)) or at most polynomial in n.

4.1 Approximation results for shallow and deep net-
works with (non-smooth) ReLUs

The results we described so far use smooth activation functions. We
already mentioned why relaxing the smoothness assumption should
not change our results in a fundamental way. While studies on the
properties of neural networks with smooth activation abound, the
results on non-smooth activation functions are much more sparse.
Here we briefly recall some of them.

In the case of shallow networks, the condition of a smooth activa-
tion function can be relaxed to prove density (see [13], Proposition
3.7):

Proposition 2. Let σ =: R→ R be in C0, and not a polynomial.
Then shallow networks are dense in C0.

In particular, ridge functions using ReLUs of the form∑r
i=1 ci(〈wi, x〉+ bi)+, with wi, x ∈ Rn, ci, bi ∈ R are dense in

C.

Networks with non-smooth activation functions are expected to
do relatively poorly in approximating smooth functions such as
polynomials in the sup norm. “Good” degree of approximation rates
(modulo a constant) have been proved in the L2 norm. Define B the
unit ball in Rn. Call Cm(Bn) the set of all continuous functions
with continuous derivative up to degree m defined on the unit ball.
We define the Sobolev space Wm

p as the completion of Cm(Bn)

with respect to the Sobolev norm p (see for details [13] page 168).
We define the space Bmp = {f : f ∈ Wm

p , ‖f‖m,p ≤ 1} and the
approximation error E(Bm2 ;H;L2) = infg∈H ‖f − g‖L2 . It is
shown in [13, Corollary 6.10] that

Proposition 3. ForMr : f(x) =
∑r
i=1 ci(〈wi, x〉+bi)+ it holds

E(Bm2 ;Mr;L2) ≤ Cr−
m
n for m = 1, · · · , n+3

2
.

These approximation results with respect to the L2 norm cannot be
applied to derive bounds for compositional networks. Indeed, in the
latter case, as we remarked already, estimates in the uniform norm
are needed to control the propagation of the errors from one layer
to the next, see Theorem 2. Results in this direction are given in [30],
and more recently in [31] and [5] (see Theorem 3.1). In particular,
using a result in [31] and following the proof strategy of Theorem 2
it is possible to derive the following results on the approximation
of Lipshitz continuous functions with deep and shallow ReLU
networks that mimics our Theorem 2:

Theorem 4. Let f be a L-Lipshitz continuous function of n vari-
ables. Then, the complexity of a network which is a linear combi-
nation of ReLU providing an approximation with accuracy at least
ε is

Ns = O
((ε

L

)−n)
,

wheres that of a deep compositional architecture is

Nd = O
((

n− 1)(
ε

L

)−2
)
.

Our general Theorem 3 can be extended in a similar way. Theorem
4 is an example of how the analysis of smooth activation functions
can be adapted to ReLU. Indeed, it shows how deep compositional
networks with standard ReLUs can avoid the curse of dimension-
ality. In the above results, the regularity of the function class is
quantified by the magnitude of Lipshitz constant. Whether the latter
is the best notion of smoothness for ReLU based networks, and
if the above estimates can be improved, are interesting questions
that we defer to a future work. A result that is more intuitive and
may reflect what networks actually do is described in Appendix 4.3.
Though the construction described there provides approximation in
the L2 norm but not in the sup norm, this is not a problem under
any discretization of real number required for computer simulations
(see Appendix).

Figures 3, 4, 5, 6 provide a sanity check and empirical support for
our main results and for the claims in the introduction.

8 X(X), X X

Figure 3 The figure shows on the top the graph of the function to be approximated,
while the bottom part of the figure shows a deep neural network with the same
graph structure. The left and right node inf the first layer has each n units
giving a total of 2n units in the first layer. The second layer has a total of 2n
units. The first layer has a convolution of size n to mirror the structure of the
function to be learned. The compositional function we approximate has the form
f(x1, x2, x3, x4) = h2(h11(x1, x2), h12(x3, x4)) with h11, h12 and h2

as indicated in the figure.

4.2 Lower bounds and gaps

So far we have shown that there are deep networks – for instance of
the convolutional type – that can avoid the curse of dimensionality
if the functions they are learning are blessed with compositionality.
There are no similar guarantee for shallow networks: for shallow
networks approximating generic continuous functions the lower and
the upper bound are both exponential[13]. From the point of view of
machine learning, it is obvious that shallow networks, unlike deep
ones, cannot exploit in their architecture the reduced number of
parameters associated with priors corresponding to compositional
functions. In past papers we listed a few examples, some of which
are also valid lower bounds from the point of view of approximation
theory:

• The polynomial considered earlier

Q(x1, x2, x3, x4) = (Q1(Q2(x1, x2), Q3(x3, x4)))1024,

can be approximated by deep networks with a smaller number
of parameters than shallow networks is based on polynomial
approximation of functions of the type g(g(g())). Here, how-
ever, a formal proof of the impossibility of good approxima-
tion by shallow networks is not available. For a lower bound
we need at least one example of a compositional function
which cannot be approximated by shallow networks with a
non-exponential degree of approximation.

• Such an example, for which a proof of the lower bound exists
since a few decades, consider a function which is a linear
combination of n tensor product Chui–Wang spline wavelets,
where each wavelet is a tensor product cubic spline. It is
shown in [11, 12] that is impossible to implement such a func-
tion using a shallow neural network with a sigmoidal activa-
tion function using O(n) neurons, but a deep network with
the activation function (x+)2 can do so. In this case, as we
mentioned, there is a formal proof of a gap between deep
and shallow networks. Similarly, Eldan and Shamir [35] show
other cases with separations that are exponential in the input
dimension.

• As we mentioned earlier, Telgarsky proves an exponential
gap between certain functions produced by deep networks
and their approximation by shallow networks. The theorem
[25] can be summarized as saying that a certain family of
classification problems with real-valued inputs cannot be
approximated well by shallow networks with fewer than expo-
nentially many nodes whereas a deep network achieves zero
error. His upper bound can be proved directly from our main
theorem by considering a different function – the real-valued
polynomial x1x2...xd defined on the cube (−1, 1)d which
can be seen as a compositional function with a binary tree
graph.

• We exhibit here another example to illustrate a limitation of
shallow networks in approximating a compositional function.
Let n ≥ 2 be an integer, B ⊂ Rn be the unit ball of Rn.
We consider the class W of all compositional functions f =
f2 ◦ f1, where f1 : Rn → R, and

∑
|k|≤4 ‖D

kf1‖∞ ≤ 1,
f2 : R→ R and ‖D4f2‖∞ ≤ 1. We consider

∆(AN) := sup
f∈W

inf
P∈AN

‖f − P‖∞,B ,

whereAN is either the class SN of all shallow networks with
N units or DN of deep networks with two layers, the first
with n inputs, and the next with one input. The both cases,
the activation function is a C∞ function σ : R → R that is
not a polynomial.

Theorem 5. There exist constants c1 > 0 such that for N ≥
c1,

∆(SN) ≥ d2−N/(n−1)e, (11)

In contrast, there exists c3 > 0 such that

∆(DN) ≤ c3N−4/n. (12)

The constants c1, c2, c3 may depend upon n.

PROOF. The estimate (12) follows from the estimates already
given for deep networks. To prove (11), we use Lemma 3.2
in [12]. Let φ be a C∞ function supported on [0, 1], and we
consider fN (x) = φ(|4Nx|2). We may clearly choose φ so
that ‖fN‖∞ = 1. Then it is clear that each fN ∈W . Clearly,

∆(SN) ≥ inf
P∈SN

max
x∈B
|fN (x)− P (x)|. (13)

We choose P ∗(x) =
∑N
k=1 σ(〈w∗k, x〉+ b∗k) such that

inf
P∈SN

max
x∈B
|fN (x)−P (x)| ≥ (1/2) max

x∈B
|fN (x)−P ∗(x)|.

(14)
Since fN is supported on {x ∈ Rn : |x| ≤ 4−N}, we
may imitate the proof of Lemma 3.2 in [12] with g∗k(t) =
σ(t+b∗k). Let x0 ∈ B be such that (without loss of generality)
fN (x0) = maxx∈B |fN (x)|, and µ0 be the Dirac measure
supported at x0. We group {w∗k} in m = dN/(n − 1)e
disjoint groups of n − 1 vectors each. For each group, we
take vectors {v`} such that v` is orthogonal to the w∗k’s in
group `. The argument in the proof of Lemma 3.2 in [12] can
be modified to get a measure µ with total variation 2m such
that∫
B

fN (x)dµ(x) = ‖fN‖∞,
∫
B

g∗k(x)dµ(x) = 0, k = 1, · · · , N.

It is easy to deduce from here as in [12] using the duality
principle that

max
x∈B
|fN (x)− P ∗(x)| ≥ c2−m.

Together with (13) and (14), this implies (11).

9

Figure 4 An empirical comparison of shallow vs 2-layers binary tree networks in the approximation of compositional functions. The loss function is the standard
mean square error (MSE). There are several units per node of the tree. In our setup here the network with an associated binary tree graph was set up so that each layer
had the same number of units and shared parameters. The number of units for the shallow and binary tree neural networks had the same number of parameters. On
the left the function is composed of a single ReLU per node and is approximated by a network using ReLU activations. On the right the compositional function is
f(x1, x2, x3, x4) = h2(h11(x1, x2), h12(x3, x4)) and is approximated by a network with a smooth ReLU activation (also called softplus). The functions h1, h2,
h3 are as described in Figure 3. In order to be close to the function approximation case, a large data set of 60K training examples was used for both training sets. We
used for SGD the Adam[32] optimizer. In order to get the best possible solution we ran 200 independent hyper parameter searches using random search [33] and reported
the one with the lowest training error. The hyper parameters search was over the step size, the decay rate, frequency of decay and the mini-batch size. The exponential
decay hyper parameters for Adam were fixed to the recommended values according to the original paper [32]. The implementations were based on TensorFlow [34].

Figure 5 Another comparison of shallow vs 2-layers binary tree networks in the learning of compositional functions. The set up of the experiment was the same as in the
one in figure 4 except that the compositional function had two ReLU units per node instead of only one. The right part of the figure shows a cross section of the function
f(x1, x2, 0.5, 0.25) in a bounded interval x1 ∈ [−1, 1], x2 ∈ [−1, 1]. The shape of the function is piecewise linear as it is always the case for ReLUs networks.

10 X(X), X X

0 10 20 30 40 50 60

Epoch

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

T
ra

in
in

g
 e

rr
o

r
o

n
 C

IF
A

R
-1

0

ShallowFC, 2 Layers, #Params 1577984

DeepFC, 5 Layers, #Params 2364416

DeepConv, No Sharing, #Params 563888

DeepConv, Sharing, #Params 98480

0 10 20 30 40 50 60

Epoch

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

V
a

lid
a

ti
o

n
 e

rr
o

r
o

n
 C

IF
A

R
-1

0

ShallowFC, 2 Layers, #Params 1577984

DeepFC, 5 Layers, #Params 2364416

DeepConv, No Sharing, #Params 563888

DeepConv, Sharing, #Params 98480

Figure 6 We show that the main advantage of deep Convolutional Networks (ConvNets) comes from "hierarchical locality" instead of weight sharing. We train two
5-layer ConvNets with and without weight sharing on CIFAR-10. ConvNet without weight sharing has different filter parameters at each spatial location. There are 4
convolutional layers (filter size 3x3, stride 2) in each network. The number of feature maps (i.e., channels) are 16, 32, 64 and 128 respectively. There is an additional
fully-connected layer as a classifier. The performances of a 2-layer and 5-layer fully-connected networks are also shown for comparison. Each hidden layer of the
fully-connected network has 512 units. The models are all trained for 60 epochs with cross-entropy loss and standard shift and mirror flip data augmentation (during
training). The training errors are higher than those of validation because of data augmentation. The learning rates are 0.1 for epoch 1 to 40, 0.01 for epoch 41 to 50 and
0.001 for rest epochs. The number of parameters for each model are indicated in the legends. Models with hierarchical locality significantly outperform shallow and
hierarchical non-local networks.

So by now plenty of examples of lower bounds exist showing a gap
between shallow and deep networks. A particularly interesting case
is the product function, that is the monomial f(x1, · · · , xn) =
x1x2 · · ·xn which is, from our point of view, the prototypical com-
positional functions. Keeping in mind the issue of lower bounds,
the question here has to do with the minimum integer r(n) such that
the function f is in the closure of the span of σ(〈wk, x〉+bk), with
k = 1, · · · , r(n), and wk, bk ranging over their whole domains.
Such a result has been claimed for the case of smooth ReLUs, using
unusual group techniques and is sketched in the Appendix of [36].

Notice, in support of the conjecture, that assuming that a shal-
low network with (non-smooth) ReLUs has a lower bound of
r(q) = O(q) will lead to an apparent contradiction with Hastad the-
orem (which is about representation not approximation of Boolean
functions) by restricting xi from xi ∈ (−1, 1) to xi ∈ {−1,+1}.
Hastad theorem (see [37] and the earlier enabling work of [38]) es-
tablishes the inapproximability of the parity function by shallow
circuits of non-exponential size.

4.3 Messy graphs and densely connected deep net-
works

As mentioned already, the approximating deep network does not
need to exactly match the architecture of the compositional function
as long as the graph or tree associated with the function is contained
in the graph associated with the network. This is of course good
news: the compositionality prior embedded in the architecture of
the network does not to reflect exactly the graph of a new function
to be learned. We have shown that for a given class of composi-
tional functions characterized by an associated graph there exist
a deep network that approximates such a function better than a
shallow network. The same network approximates well functions
characterized by subgraphs of the original class.

The proofs of our theorems show that linear combinations of com-

positional functions are universal in the sense that they can ap-
proximate any function and that deep networks with a number of
units that increases exponentially with layers can approximate any
function. Notice that deep compositional networks can interpolate
if they are overparametrized with respect to the data, even if the
data reflect a non-compositional function.

As an aside, note that the simplest compositional function – addition
– is trivial in the sense that it offers no approximation advantage
to deep networks. The key function is multiplication which is for
us the prototypical compositional functions. As a consequence,
polynomial functions are compositional – they are linear combi-
nations of monomials which are compositional. However, their
compositional structure does not confer any advantage in terms
of approximation, because of the exponential number of composi-
tional terms.

As we mentioned earlier, networks corresponding to graphs that
include the graph of the function to be learned can exploit com-
positionality. The relevant number of parameters to be optimized,
however, is the number of parameters r in the network and not the
number of parameters r∗ (r∗ < r) of the optimal deep network
with a graph exactly matched to the graph of the function to be
learned. As an aside, the price to be paid in using a non-optimal
prior depend on the learning algorithm. For instance, under sparsity
constraints it may be possible to pay a smaller price than r (but
higher than r∗).

In this sense, some of the densely connected deep networks used
in practice – which contain sparse graphs possibly relevant for the
function to be learned and which are still “smaller” than the expo-
nential number of units required to represent a generic function of
n variables – may be capable in some cases of exploiting an un-
derlying compositionality structure without paying an exhorbitant
price in terms of required complexity.

11

5 Connections with the theory of Boolean
functions

The approach followed in our main theorems suggest the follow-
ing considerations (see Appendix 1 for a brief introduction). The
structure of a deep network is reflected in polynomials that are best
approximated by it – for instance generic polynomials or sparse
polynomials (in the coefficients) in d variables of order k. The tree
structure of the nodes of a deep network reflects the structure of a
specific sparse polynomial. Generic polynomial of degree k in d
variables are difficult to learn because the number of terms, train-
able parameters and associated VC-dimension are all exponential
in d. On the other hand, functions approximated well by sparse
polynomials can be learned efficiently by deep networks with a tree
structure that matches the polynomial. We recall that in a similar
way several properties of certain Boolean functions can be “read
out” from the terms of their Fourier expansion corresponding to
“large” coefficients, that is from a polynomial that approximates
well the function.

Classical results [37, 38] about the depth-breadth tradeoff in circuits
design show that deep circuits are more efficient in representing
certain Boolean functions than shallow circuits. Hastad proved that
highly-variable functions (in the sense of having high frequencies
in their Fourier spectrum), in particular the parity function cannot
even be decently approximated by small constant depth circuits
(see also [39]).

Notice that Hastad’s results on Boolean functions have been often
quoted in support of the claim that deep neural networks can repre-
sent functions that shallow networks cannot. For instance Bengio
and LeCun [40] write “We claim that most functions that can be
represented compactly by deep architectures cannot be represented
by a compact shallow architecture”.”.

Finally, we want to mention a few other observations on Boolean
functions that shows an interesting connection with our approach.
It is known that within Boolean functions the AC0 class of poly-
nomial size constant depth circuits is characterized by Fourier
transforms where most of the power spectrum is in the low order
coefficients. Such functions can be approximated well by a poly-
nomial of low degree and can be learned well by considering only
such coefficients. There are two algorithms [41] that allow learning
of certain Boolean function classes:

1. the low order algorithm that approximates functions by con-
sidering their low order Fourier coefficients and

2. the sparse algorithm which learns a function by approximat-
ing its significant coefficients.

Decision lists and decision trees can be learned by the first algo-
rithm. Functions with small L1 norm can be approximated well
by the second algorithm. Boolean circuits expressing DNFs can be
approximated by the first one but even better by the second. In fact,
in many cases a function can be approximated by a small set of
coefficients but these coefficients do not correspond to low-order
terms. All these cases are consistent with the notes about sparse
functions in section 6.

6 Notes on a theory of compositional compu-
tation

The key property of the theory of compositional functions sketched
here is that certain deep networks can learn them avoiding the curse

of dimensionality because of the blessing of compositionality via a
small effective dimension.

We state here several comments and conjectures.

1. General comments

• Properties of the compositionality type may have a
more significant impact than smoothness properties
in countering the curse of dimensionality in practical
cases of learning and approximation.

• The estimates on the n–width imply that there is some
function in either Wn

m (theorem 1) or Wn,2
m (theorem

2) for which the approximation cannot be better than
that suggested by the theorems.

• The main question that may be asked about the rele-
vance of the theoretical results of this paper and net-
works used in practice has to do with the many “chan-
nels” used in the latter and with our assumption that
each node in the networks computes a scalar function
– the linear combination of r units (Equation 3). The
following obvious but interesting extension of Theo-
rem 1 to vector-valued functions says that the number
of hidden units required for a given accuracy in each
component of the function is the same as in the scalar
case considered in our theorems (of course the number
of weigths is larger):
Corollary 4. Let σ : R → R be infinitely differen-
tiable, and not a polynomial. For a vector-valued func-
tion f : Rn → Rq with components fi ∈ Wn

m, i =
1, · · · , q the number of hidden units in shallow net-
works with n inputs, q outputs that provide accuracy at
least ε in each of the components of f is

N = O(ε−n/m) . (15)

The demonstration follows the proof of theorem 1, see
Figure 7 and also Appendix 4.1. It amounts to realizing
that the hidden units (or linear combinations of them)
can be equivalent to the monomials of a generic poly-
nomial of degree k in n variables that can be used by
a different set of coefficients for each of the fi. This
argument of course does not mean that during learning
this is what happens; it provides one way to perform
the approximation and an associated upper bound. The
corollary above leads to a simple argument that gener-
alizes our binary tree results to standard, multi-channel
deep convolutional networks by introducing a set of
virtual linear units as ouputs of one layer and inputs of
the next one. This in turn leads to the following pre-
diction: for consistent approximation accuracy across
the layers, the rank of the weights matrices between
units in successive layers should be in the order of the
number of the dimensionality in the first layer (inputs
and outputs have to be defined wrt support of the con-
volution kernel). This suggests rank-deficient weight
matrices in present networks.

• We have used polynomials (but see Appendix 4.3) to
prove results about complexity of approximation in the
case of neural networks. Neural network learning with
SGD may or may not synthesize polynomial, depend-
ing on the smoothness of the activation function and
on the target. This is not a problem for theoretically es-
tablishing upper bounds on the degree of convergence
because results using the framework on nonlinear width
guarantee the “polynomial” bounds are optimal.

• Both shallow and deep representations may or may not
reflect invariance to group transformations of the in-
puts of the function ([42, 22]). Invariance – also called

12 X(X), X X

Figure 7 An explanation of the connection between the network used in the proofs in Theory I and the networks (bottom) used in practice.

13

weight sharing – decreases the complexity of the net-
work. Since we are interested in the comparison of
shallow vs deep architectures, we have considered the
generic case of networks (and functions) for which in-
variance is not assumed. In fact, the key advantage of
deep vs. shallow network – as shown by the proof of
the theorem – is the associated hierarchical locality (the
constituent functions in each node are local that is have
a small dimensionality) and not invariance (which des-
ignates shared weights that is nodes at the same level
sharing the same function). One may then ask about
the relation of these results with i-theory[43]. The origi-
nal core of i-theory describes how pooling can provide
either shallow or deep networks with invariance and
selectivity properties. Invariance of course helps but
not exponentially as hierarchical locality does.

• There are several properties that follow from the the-
ory here which are attractive from the point of view of
neuroscience. A main one is the robustness of the re-
sults with respect to the choice of nonlinearities (linear
rectifiers, sigmoids, Gaussians etc.) and pooling.

• In a machine learning context, minimization over a
training set of a loss function such as the square loss
yields an empirical approximation of the regression
function p(y/x). Our hypothesis of compositionality
becomes an hypothesis about the structure of the condi-
tional probability function.

2. Spline approximations, Boolean functions and tensors

• Consider again the case of section 4 of a multivari-
ate function f : [0, 1]d → R. Suppose to discretize it
by a set of piecewise constant splines and their tensor
products. Each coordinate is effectively replaced by n
boolean variables.This results in a d-dimensional table
with N = nd entries. This in turn corresponds to a
boolean function f : {0, 1}N → R. Here, the assump-
tion of compositionality corresponds to compressibility
of a d-dimensional table in terms of a hierarchy of
d− 1 2-dimensional tables. Instead of nd entries there
are (d − 1)n2 entries. This has in turn obvious con-
nections with HVQ (Hierarchical Vector Quantization),
discussed in Appendix 5.

• As Appendix 4.3 shows, every function f can be ap-
proximated by an epsilon-close binary function fB .
Binarization of f : Rn → R is done by using k parti-
tions for each variable xi and indicator functions. Thus
f 7→ fB : {0, 1}kn → R and sup|f − fB | ≤ ε, with
ε depending on k and bounded Df .

• fB can be written as a polynomial (a Walsh decompo-
sition) fB ≈ pB . It is always possible to associate a pb
to any f , given ε.

• The binarization argument suggests a direct way to
connect results on function approximation by neural
nets with older results on Boolean functions. The latter
are special cases of the former results.

• One can think about tensors in terms of d-dimensional
tables. The framework of hierarchical decompositions
of tensors – in particular the Hierarchical Tucker format
– is closely connected to our notion of compositionality.
Interestingly, the hierarchical Tucker decomposition
has been the subject of recent papers on Deep Learning
(for instance see [20]). This work, as well more classical
papers [44], does not characterize directly the class of
functions for which these decompositions are effective.
Notice that tensor decompositions assume that the sum
of polynomial functions of order d is sparse (see eq. at
top of page 2030 of [44]). Our results provide a rigorous
grounding for the tensor work related to deep learning.

There is obviously a wealth of interesting connections
with approximation theory that should be explored.
Notice that the notion of separation rank of a tensor is
very closely related to the effective r in Equation 25.

3. Sparsity

• We suggest to define binary sparsity of f , in terms of
the sparsity of the boolean function pB ; binary sparsity
implies that an approximation to f can be learned by
non-exponential deep networks via binarization. Notice
that if the function f is compositional the associated
Boolean functions fB is sparse; the converse is not true.

• In many situations, Tikhonov regularization corre-
sponds to cutting high order Fourier coefficients. Spar-
sity of the coefficients subsumes Tikhonov regulariza-
tion in the case of a Fourier representation. Notice that
as an effect the number of Fourier coefficients is re-
duced, that is trainable parameters, in the approximat-
ing trigonometric polynomial. Sparsity of Fourier co-
efficients is a general constraint for learning Boolean
functions.

• Sparsity in a specific basis. A set of functions may be
defined to be sparse in a specific basis when the num-
ber of parameters necessary for its ε-approximation
increases less than exponentially with the dimension-
ality. An open question is the appropriate definition
of sparsity. The notion of sparsity we suggest here is
the effective r in Equation 25. For a general function
r ≈ kn; we may define sparse functions those for
which r << kn in

f(x) ≈ P ∗k (x) =

r∑
i=1

pi(〈wi, x〉). (16)

where P ∗ is a specific polynomial that approximates
f(x) within the desired ε. Notice that the polynomial
P ∗k can be a sum of monomials or a sum of, for instance,
orthogonal polynomials with a total of r parameters. In
general, sparsity depends on the basis and one needs
to know the basis and the type of sparsity to exploit
it in learning, for instance with a deep network with
appropriate activation functions and architecture.
There are function classes that are sparse in every bases.
Examples are compositional functions described by a
binary tree graph.

4. Deep Networks as memories
Notice that independently of considerations of generalization,
deep compositional networks are expected to be very efficient
memories – in the spirit of hierarchical vector quantization –
for associative memories reflecting compositional rules (see
Appendix 5 and [45]). Notice that the advantage with respect
to shallow networks from the point of view of memory capac-
ity can be exponential (as in the example after Equation 31
showing mshallow ≈ 10104mdeep).

5. Theory of computation, locality and compositionality

• From the computer science point of view, feedforward
multilayer networks are equivalent to finite state ma-
chines running for a finite number of time steps[46, 47].
This result holds for almost any fixed nonlinearity in
each layer. Feedforward networks are equivalent to cas-
cades without loops (with a finite number of stages) and
all other forms of loop free cascades (i.e. McCulloch-
Pitts nets without loops, perceptrons, analog percep-
trons, linear threshold machines). Finite state machines,
cascades with loops, and difference equation systems
which are Turing equivalent, are more powerful than
multilayer architectures with a finite number of layers.

14 X(X), X X

The latter networks, however, are practically universal
computers, since every machine we can build can be ap-
proximated as closely as we like by defining sufficiently
many stages or a sufficiently complex single stage. Re-
current networks as well as differential equations are
Turing universal.

In other words, all computable functions (by a Turing
machine) are recursive, that is composed of a small
set of primitive operations. In this broad sense all com-
putable functions are compositional (composed from el-
ementary functions). Conversely a Turing machine can
be written as a compositional function y = f (t(x, p)
where f : Zn×Pm 7→ Zh×P k, P being parameters
that are inputs and outputs of f . If t is bounded we have
a finite state machine, otherwise a Turing machine. in
terms of elementary functions. As mentioned above,
each layer in a deep network correspond to one time
step in a Turing machine. In a sense, this is sequen-
tial compositionality, as in the example of Figure 1 c.
The hierarchically local compositionality we have intro-
duced in this paper has the flavour of compositionality
in space.

Of course, since any function can be approximated
by polynomials, and a polynomial can always be cal-
culated using a recursive procedure and a recursive
procedure can always be unwound as a “deep network”,
any function can always be approximated by a compo-
sitional function of a few variables. However, generic
compositionality of this type does not guarantee good
approximation properties by deep networks.

• Hierarchically local compositionality can be related to
the notion of local connectivity of a network. Connec-
tivity is a key property in network computations. Local
processing may be a key constraint also in neuroscience.
One of the natural measures of connectivity that can be
introduced is the order of a node defined as the number
of its distinct inputs. The order of a network is then the
maximum order among its nodes. The term order dates
back to the Perceptron book ([48], see also [47]). From
the previous observations, it follows that a hierarchical
network of order at least 2 can be universal. In the
Perceptron book many interesting visual computations
have low order (e.g. recognition of isolated figures).
The message is that they can be implemented in a sin-
gle layer by units that have a small number of inputs.
More complex visual computations require inputs from
the full visual field. A hierarchical network can achieve
effective high order at the top using units with low or-
der. The network architecture of Figure 1 b) has low
order: each node in the intermediate layers is connected
to just 2 other nodes, rather than (say) all nodes in the
previous layer (notice that the connections in the trees
of the figures may reflect linear combinations of the
input units).

• Low order may be a key constraint for cortex. If it cap-
tures what is possible in terms of connectivity between
neurons, it may determine by itself the hierarchical
architecture of cortex which in turn may impose com-
positionality to language and speech.

• The idea of functions that are compositions of “sim-
pler” functions extends in a natural way to recurrent
computations and recursive functions. For instance
h(f (t)g((x))) represents t iterations of the algorithm
f (h and g match input and output dimensions to f).

7 Why are compositional functions so com-
mon?

Let us provide a couple of simple examples of compositional func-
tions. Addition is compositional but the degree of approximation
does not improve by decomposing addition in different layers of a
network; all linear operators are compositional with no advantage
for deep networks; multiplication as well as the AND operation (for
Boolean variables) is the prototypical compositional function that
provides an advantage to deep networks. So compositionality is
not enough: we need certain sublasses of compositional functions
(such as the hierarchically local functions we described) in order to
avoid the curse of dimensionality.

It is not clear, of course, why problems encountered in practice
should match this class of functions. Though we and others have
argued that the explanation may be in either the physics or the
neuroscience of the brain, these arguments (see Appendix 2) are
not (yet) rigorous. Our conjecture at present is that compositionality
is imposed by the wiring of our cortex and is reflected in language
and the common problems we worry about. Thus compositionality
of several – but not all – computations on images many reflect the
way we describe and think about them.

Acknowledgment

This work was supported by the Center for Brains, Minds and
Machines (CBMM), funded by NSF STC award CCF – 1231216.
HNM was supported in part by ARO Grant W911NF-15-1-0385.
We thank O. Shamir for useful emails that prompted us to clarify
our results in the context of lower bounds and for pointing out a
number of typos and other mistakes. We gratefully acknowledge the
support of NVIDIA Corporation with the donation of the DGX-1
used for this research.

References
[1] F. Anselmi, L. Rosasco, C. Tan, and T. Poggio, “Deep convolutional

network are hierarchical kernel machines,” Center for Brains, Minds and
Machines (CBMM) Memo No. 35, also in arXiv, 2015.

[2] T. Poggio, L. Rosasco, A. Shashua, N. Cohen, and F. Anselmi, “Notes on
hierarchical splines, dclns and i-theory,” tech. rep., MIT Computer Science
and Artificial Intelligence Laboratory, 2015.

[3] T. Poggio, F. Anselmi, and L. Rosasco, “I-theory on depth vs width: hier-
archical function composition,” CBMM memo 041, 2015.

[4] H. Mhaskar, Q. Liao, and T. Poggio, “Learning real and boolean func-
tions: When is deep better than shallow?,” Center for Brains, Minds and
Machines (CBMM) Memo No. 45, also in arXiv, 2016.

[5] H. Mhaskar and T. Poggio, “Deep versus shallow networks: an approxima-
tion theory perspective,” Center for Brains, Minds and Machines (CBMM)
Memo No. 54, also in arXiv, 2016.

[6] D. L. Donoho, “High-dimensional data analysis: The curses and blessings
of dimensionality,” in AMS CONFERENCE ON MATH CHALLENGES
OF THE 21ST CENTURY, 2000.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, pp. 436–444,
2015.

[8] K. Fukushima, “Neocognitron: A self-organizing neural network for a
mechanism of pattern recognition unaffected by shift in position,” Biologi-
cal Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

15

[9] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition
in cortex,” Nature Neuroscience, vol. 2, pp. 1019–1025, Nov. 1999.

[10] H. Mhaskar, “Approximation properties of a multilayered feedforward
artificial neural network,” Advances in Computational Mathematics, pp. 61–
80, 1993.

[11] C. Chui, X. Li, and H. Mhaskar, “Neural networks for localized approx-
imation,” Mathematics of Computation, vol. 63, no. 208, pp. 607–623,
1994.

[12] C. K. Chui, X. Li, and H. N. Mhaskar, “Limitations of the approxima-
tion capabilities of neural networks with one hidden layer,” Advances in
Computational Mathematics, vol. 5, no. 1, pp. 233–243, 1996.

[13] A. Pinkus, “Approximation theory of the mlp model in neural networks,”
Acta Numerica, vol. 8, pp. 143–195, 1999.

[14] T. Poggio and S. Smale, “The mathematics of learning: Dealing with
data,” Notices of the American Mathematical Society (AMS), vol. 50, no. 5,
pp. 537–544, 2003.

[15] B. B. Moore and T. Poggio, “Representations properties of multilayer feed-
forward networks,” Abstracts of the First annual INNS meeting, vol. 320,
p. 502, 1998.

[16] R. Livni, S. Shalev-Shwartz, and O. Shamir, “A provably efficient algo-
rithm for training deep networks,” CoRR, vol. abs/1304.7045, 2013.

[17] O. Delalleau and Y. Bengio, “Shallow vs. deep sum-product networks,”
in Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011. Proceedings
of a meeting held 12-14 December 2011, Granada, Spain., pp. 666–674,
2011.

[18] R. Montufar, G. F.and Pascanu, K. Cho, and Y. Bengio, “On the number of
linear regions of deep neural networks,” Advances in Neural Information
Processing Systems, vol. 27, pp. 2924–2932, 2014.

[19] H. N. Mhaskar, “Neural networks for localized approximation of real
functions,” in Neural Networks for Processing [1993] III. Proceedings of
the 1993 IEEE-SP Workshop, pp. 190–196, IEEE, 1993.

[20] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of deep
learning: a tensor analysis,” CoRR, vol. abs/1509.0500, 2015.

[21] F. Anselmi, J. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, and T. Poggio,
“Unsupervised learning of invariant representations with low sample com-
plexity: the magic of sensory cortex or a new framework for machine
learning?.,” Center for Brains, Minds and Machines (CBMM) Memo No. 1.
arXiv:1311.4158v5, 2014.

[22] F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, and T. Poggio,
“Unsupervised learning of invariant representations,” Theoretical Computer
Science, 2015.

[23] T. Poggio, L. Rosaco, A. Shashua, N. Cohen, and F. Anselmi, “Notes on
hierarchical splines, dclns and i-theory,” CBMM memo 037, 2015.

[24] Q. Liao and T. Poggio, “Bridging the gap between residual learning, re-
current neural networks and visual cortex,” Center for Brains, Minds and
Machines (CBMM) Memo No. 47, also in arXiv, 2016.

[25] M. Telgarsky, “Representation benefits of deep feedforward networks,”
arXiv preprint arXiv:1509.08101v2 [cs.LG] 29 Sep 2015, 2015.

[26] I. Safran and O. Shamir, “Depth separation in relu networks for approxi-
mating smooth non-linear functions,” arXiv:1610.09887v1, 2016.

[27] H. N. Mhaskar, “Neural networks for optimal approximation of smooth
and analytic functions,” Neural Computation, vol. 8, no. 1, pp. 164–177,
1996.

[28] E. Corominas and F. S. Balaguer, “Condiciones para que una funcion in-
finitamente derivable sea un polinomio,” Revista matemática hispanoamer-
icana, vol. 14, no. 1, pp. 26–43, 1954.

[29] R. A. DeVore, R. Howard, and C. A. Micchelli, “Optimal nonlinear approx-
imation,” Manuscripta mathematica, vol. 63, no. 4, pp. 469–478, 1989.

[30] H. N. Mhaskar, “On the tractability of multivariate integration and ap-
proximation by neural networks,” J. Complex., vol. 20, pp. 561–590, Aug.
2004.

[31] F. Bach, “Breaking the curse of dimensionality with convex neural net-
works,” arXiv:1412.8690, 2014.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[33] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[34] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on het-
erogeneous systems,” 2015. Software available from tensorflow.org.

[35] R. Eldan and O. Shamir, “The power of depth for feedforward neural
networks,” arXiv preprint arXiv:1512.03965v4, 2016.

[36] M. Lin, H.and Tegmark, “Why does deep and cheap learning work so
well?,” arXiv:1608.08225, pp. 1–14, 2016.

[37] J. T. Hastad, Computational Limitations for Small Depth Circuits. MIT
Press, 1987.

[38] M. Furst, J. Saxe, and M. Sipser, “Parity, circuits, and the polynomial-time
hierarchy,” Math. Systems Theory, vol. 17, pp. 13–27, 1984.

[39] N. Linial, M. Y., and N. N., “Constant depth circuits, fourier transform,
and learnability,” Journal of the ACM, vol. 40, no. 3, p. 607–620, 1993.

[40] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards ai,” in
Large-Scale Kernel Machines (L. Bottou, O. Chapelle, and J. DeCoste,
D.and Weston, eds.), MIT Press, 2007.

[41] Y. Mansour, “Learning boolean functions via the fourier transform,” in
Theoretical Advances in Neural Computation and Learning (V. Roychowd-
hury, K. Siu, and A. Orlitsky, eds.), pp. 391–424, Springer US, 1994.

[42] S. Soatto, “Steps Towards a Theory of Visual Information: Active Percep-
tion, Signal-to-Symbol Conversion and the Interplay Between Sensing and
Control,” arXiv:1110.2053, pp. 0–151, 2011.

[43] F. Anselmi and T. Poggio, Visual Cortex and Deep Networks. MIT Press,
2016.

[44] L. Grasedyck, “Hierarchical Singular Value Decomposition of Tensors,”
SIAM J. Matrix Anal. Appl., no. 31,4, pp. 2029–2054, 2010.

[45] F. Anselmi, L. Rosasco, and T. Tan, C.and Poggio, “Deep Convolutional
Networks are Hierarchical Kernel Machines,” Center for Brains, Minds
and Machines (CBMM) Memo No. 35, also in arXiv, 2015.

[46] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge eBooks, 2014.

[47] T. Poggio and W. Reichardt, “On the representation of multi-input sys-
tems: Computational properties of polynomial algorithms.,” Biological
Cybernetics, 37, 3, 167-186., 1980.

[48] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry. Cambridge MA: The MIT Press, ISBN 0-262-63022-2, 1972.

[49] D. Ruderman, “Origins of scaling in natural images,” Vision Res., pp. 3385
– 3398, 1997.

[50] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” NeuralComputation, vol. 7, pp. 219–269, 1995.

[51] T. Poggio and F. Girosi, “A theory of networks for approximation and
learning,” Laboratory, Massachusetts Institute of Technology, vol. A.I.
memo n1140, 1989.

[52] J. Mihalik, “Hierarchical vector quantization. of images in transform do-
main.,” ELEKTROTECHN. CA5, 43, NO. 3. 92,94., 1992.

[53] F. Girosi and T. Poggio, “Representation properties of networks: Kol-
mogorov’s theorem is irrelevant,” Neural Computation, vol. 1, no. 4,
pp. 465–469, 1989.

[54] F. Girosi and T. Poggio, “Networks and the best approximation property,”
Biological Cybernetics, vol. 63, pp. 169–176, 1990.

[55] M. Anthony and P. Bartlett, Neural Network Learning - Theoretical Foun-
dations. Cambridge University Press, 2002.

16 X(X), X X

Appendix: observations,
theorems and conjectures

1 Boolean Functions

One of the most important tools for theoretical computer scientists
for the study of functions of n Boolean variables, their related cir-
cuit design and several associated learning problems, is the Fourier
transform over the Abelian group Zn2 . This is known as Fourier
analysis over the Boolean cube {−1, 1}n. The Fourier expansion of
a Boolean function f : {−1, 1}n → {−1, 1} or even a real-valued
Boolean function f : {−1, 1}n → [−1, 1] is its representation as a
real polynomial, which is multilinear because of the Boolean nature
of its variables. Thus for Boolean functions their Fourier represen-
tation is identical to their polynomial representation. In this paper
we use the two terms interchangeably. Unlike functions of real
variables, the full finite Fourier expansion is exact, instead of an ap-
proximation. There is no need to distingush between trigonometric
and real polynomials. Most of the properties of standard harmonic
analysis are otherwise preserved, including Parseval theorem. The
terms in the expansion correspond to the various monomials; the
low order ones are parity functions over small subsets of the vari-
ables and correspond to low degrees and low frequencies in the
case of polynomial and Fourier approximations, respectively, for
functions of real variables.

2 Does Physics or Neuroscience imply compo-
sitionality?

It has been often argued that not only text and speech are compo-
sitional but so are images. There are many phenomena in nature
that have descriptions along a range of rather different scales. An
extreme case consists of fractals which are infinitely self-similar,
iterated mathematical constructs. As a reminder, a self-similar ob-
ject is similar to a part of itself (i.e. the whole is similar to one or
more of the parts). Many objects in the real world are statistically
self-similar, showing the same statistical properties at many scales:
clouds, river networks, snow flakes, crystals and neurons branch-
ing. A relevant point is that the shift-invariant scalability of image
statistics follows from the fact that objects contain smaller clus-
ters of similar surfaces in a selfsimilar fractal way. Ruderman [49]

analysis shows that image statistics reflects what has been known
as the property of compositionality of objects and parts: parts are
themselves objects, that is selfsimilar clusters of similar surfaces in
the physical world. Notice however that, from the point of view of
this paper, it is misleading to say that an image is compositional: in
our terminology a function on an image may be compositional but
not its argument. In fact, functions to be learned may or may not be
compositional even if their input is an image since they depend on
the input but also on the task (in the supervised case of deep learn-
ing networks all weights depend on x and y). Conversely, a network
may be given a function which can be written in a compositional
form, independently of the nature of the input vector such as the
function “multiplication of all scalar inputs’ components”. Thus
a more reasonable statement is that “many natural questions on
images correspond to algorithms which are compositional”. Why
this is the case is an interesting open question. An answer inspired
by the condition of “locality” of the constituent functions in our
theorems and by the empirical success of deep convolutional net-
works has attracted some attention. The starting observation is that
in the natural sciences– physics, chemistry, biology – many phe-
nomena seem to be described well by processes that that take place
at a sequence of increasing scales and are local at each scale, in
the sense that they can be described well by neighbor-to-neighbor
interactions.

Notice that this is a much less stringent requirement than renormal-
izable physical processes [36] where the same Hamiltonian (apart
from a scale factor) is required to describe the process at each
scale (in our observation above, the renormalized Hamiltonian only
needs to remain local at each renormalization step)2. As discussed
previously [3] hierarchical locality may be related to properties
of basic physics that imply local interactions at each level in a
sequence of scales, possibly different at each level. To complete
the argument one would have then to assume that several different
questions on sets of natural images may share some of the initial
inference steps (first layers in the associated deep network) and
thus share some of features computed by intermediate layers of a
deep network. In any case, at least two open questions remain that
require formal theoretical results in order to explain the connection
between hierarchical, local functions and physics:

• can hierarchical locality be derived from the Hamiltonians of
physics? In other words, under which conditions does coarse
graining lead to local Hamiltonians? According to Tegmark
locality of the Hamiltonian ensures locality at every stage of
coarse graining.

• is it possible to formalize how and when the local hierarchical
structure of computations on images is related to the hierarchy
of local physical process that describe the physical world
represented in the image?

It seems to us that the above set of arguments is unsatisfactory
and unlikely to provide the answer. One of the arguments is that
iterated local functions (from Rn to Rn with n increasing without
bound) can be Turing universal and thus can simulate any physical
phenomenon (as shown by the game Life which is local and Turing
universal). Of course, this does not imply that the simulation will
be efficient but it weakens the physics-based argument. An alterna-
tive hypothesis in fact is that locality across levels of explanation
originates from the structure of the brain – wired, say, similarly to
convolutional deep networks – which is then forced to use local
algorithms of the type shown in Figure 19. Such local algorithms
allow the organism to survive because enough of the key problems
encountered during evolution can be solved well enough by them.
So instead of claiming that all questions on the physical world are
local because of its physics we believe that local algorithms are
good enough over the distribution of evolutionary relevant prob-
lems. From this point of view locality of algorithms follows from
the need to optimize local connections and to reuse computational
elements. Despite the high number of synapses on each neuron it
would be impossible for a complex cell to pool information across
all the simple cells needed to cover an entire image, as needed by a
single hidden layer network.

3 Splines: some notes

3.1 Additive and Tensor Product Splines

Additive and tensor product splines are two alternatives to radial
kernels for multidimensional function approximation. It is well
known that the three techniques follow from classical Tikhonov
regularization and correspond to one-hidden layer networks with
either the square loss or the SVM loss.

We recall the extension of classical splines approximation tech-
niques to multidimensional functions. The setup is due to Jones et

2Tegmark and Lin [36] have also suggested that a sequence of generative processes can be
regarded as a Markov sequence that can be inverted to provide an inference problem with
a similar compositional structure. The resulting compositionality they describe does not,
however, correspond to our notion of hierarchical locality and thus our theorems cannot be
used to support their claims.

17

al. (1995) [50].

3.1.1 Tensor product splines

The best-known multivariate extension of one-dimensional splines
is based on the use of radial kernels such as the Gaussian or the
multiquadric radial basis function. An alternative to choosing a
radial function is a tensor product type of basis function, that is a
function of the form

K(x) = Πd
j=1k(xj)

where xj is the j-th coordinate of the vector x and k(x) is the
inverse Fourier transform associated with a Tikhonov stabilizer
(see [50]).

We notice that the choice of the Gaussian basis function for k(x)
leads to a Gaussian radial approximation scheme with K(x) =

e−‖x‖
2

.

3.1.2 Additive splines

Additive approximation schemes can also be derived in the frame-
work of regularization theory. With additive approximation we
mean an approximation of the form

f(x) =

d∑
µ=1

fµ(xµ) (17)

where xµ is the µ-th component of the input vector x and the fµ
are one-dimensional functions that will be defined as the additive
components of f (from now on Greek letter indices will be used in
association with components of the input vectors). Additive models
are well known in statistics (at least since Stone, 1985) and can be
considered as a generalization of linear models. They are appeal-
ing because, being essentially a superposition of one-dimensional
functions, they have a low complexity, and they share with linear
models the feature that the effects of the different variables can
be examined separately. The resulting scheme is very similar to
Projection Pursuit Regression. We refer to [50] for references and
discussion of how such approximations follow from regularization.

Girosi et al. [50] derive an approximation scheme of the form (with
i corresponding to spline knots – which are free parameters found
during learning as in free knots splines - and µ corresponding to
new variables as linear combinations of the original components of
x):

f(x) =

d′∑
µ=1

n∑
i=1

cµiK(〈tµ, x〉−bµ) =
∑
µ=1

∑
i=1

cµiK(〈tµ, x〉−bµi) .

(18)

Note that the above can be called spline only with a stretch of the
imagination: not only the wµ but also the tµ depend on the data in
a very nonlinear way. In particular, the tµ may not correspond at
all to actual data point. The approximation could be called ridge
approximation and is related to projection pursuit. When the basis
function K is the absolute value that is K(x − y) = |x − y| the
network implements piecewise linear splines.

Is the approximation by deep nets more of the fixed knots or the
free knots type? In the fixed knots case we expect the weights of all
the layers apart the last one to depend on the x part of the examples
but not on the y. The simulations shown in figure 8.

3.2 Hierarchical Splines

Consider an additive approximation scheme (see subsection) in
which a function of d variables is approximated by an expression
such as

f(x) =

d∑
i

φi(x
i) (19)

where xi is the i-th component of the input vector x and the φi
are one-dimensional spline approximations. For linear piecewise
splines φi(xi) =

∑
j cij |x

i − bji |. Obviously such an approxima-
tion is not universal: for instance it cannot approximate the function
f(x, y) = xy. The classical way to deal with the problem is to
use tensor product splines. The new alternative that we propose
here is hierarchical additive splines, which in the case of a 2-layers
hierarchy has the form

f(x) =

K∑
j

φj(

d∑
i

φi(x
i)). (20)

and which can be clearly extended to an arbitrary depth. The intu-
ition is that in this way, it is possible to obtain approximation of a
function of several variables from functions of one variable because
interaction terms such as xy in a polynomial approximation of a
function f(x, y) can be obtained from terms such as elog(x)+log(y).

We start with a lemma about the relation between linear rectifiers,
which do not correspond to a kernel, and absolute value, which is a
kernel.

Lemma 1 Any given superposition of linear rectifiers∑
i c
′
i(x − b

′i)+ with c′i, b
′i given, can be represented

over a finite interval in terms of the absolute value kernel
with appropriate weights. Thus there exist ci, b

i such that∑
i c
′
i(x− b

′i)+ =
∑
i ci|x− b

i|.

The proof follows from the facts that a) the superpositions
of ramps is a piecewiselinear function, b) piecewise linear
functions can be represented in terms of linear splines and c) the
kernel corresponding to linear splines in one dimension is the
absolute value K(x, y) = |x− y|.

Now consider two layers in a network in which we assume degen-
erate pooling for simplicity of the argument. Because of Lemma 1,
and because weights and biases are arbitrary we assume that the the
nonlinearity in each edge is the absolute value. Under this assump-
tion, unit j in the first layer, before the non linearity, computes

f j(x) =
∑
i=1

cji |
〈
ti, x

〉
− bi|, (21)

where x and w are vectors and the ti are real numbers. Then the
second layer output can be calculated with the nonlinearity | · · · |
instead of (·)2.

18 X(X), X X

Figure 8 Training original CIFAR. Fix bottom as random, re-train middle and top: training 100%, testing 85%

Figure 9 Fix bottom as (the layer from a net trained on random labels), re-train middle and top: training 52.76%, testing 48.15%.

19

Figure 10 Fix bottom and middle as (the layer from a net trained on random labels), re-train the top: training 30.45%, testing 30.37%.

In the case of a network with two inputs x, y the effective output
after pooling at the first layer may be φ(1)(x, y) = t1|x + b1| +
t2|y + b2|, that is the linear combination of two “absolute value”
functions. At the second layer terms like φ(2)(x, y) = |t1|x+b1|+
t2|y + b2| + b3| may appear. The output of a second layer still
consists of hyperplanes, since the layer is a kernel machine with an
output which is always a piecewise linear spline.

Networks implementing tensor product splines are universal in the
sense that they approximate any continuous function in an interval,
given enough units. Additive splines on linear combinations of
the input variables of the form in eq. (21) are also universal (use
Theorem 3.1 in [13]). However additive splines on the individual
variables are not universal while hierarchical additive splines are:

Theorem Hierarchical additive splines networks are universal.

4 On multivariate function approximation

Consider a multivariate function f : [0, 1]d → R discretized by
tensor basis functions:

φ(i1,...,id)(x1, ..., xd) :=

d∏
µ=1

φiµ(xµ), (22)

with φiµ : [0, 1]→ R, 1 ≤ iµ ≤ nµ, 1 ≤ µ ≤ d

to provide

f(x1, ..., xd) =

n1∑
i1=1

· · ·
nd∑
id=1

c(i1, ..., id)φ(i1, ..., id)(x1, ..., xd).

(23)

The one-dimensional basis functions could be polynomials (as
above), indicator functions, polynomials, wavelets, or other sets
of basis functions. The total number N of basis functions scales
exponentially in d as N =

∏d
µ=1 nµ for a fixed smoothness class

m (it scales as d
m

).

We can regard neural networks as implementing some form of this
general approximation scheme. The problem is that the type of
operations available in the networks are limited. In particular, most
of the networks do not include the product operation (apart from
“sum-product” networks also called “algebraic circuits”) which is
needed for the straightforward implementation of the tensor prod-
uct approximation described above. Equivalent implementations
can be achieved however. In the next two sections we describe
how networks with a univariate ReLU nonlinearity may perform
multivariate function approximation with a polynomial basis and
with a spline basis respectively. The first result is known and we
give it for completeness. The second is simple but new.

4.1 Neural Networks: polynomial viewpoint

One of the choices listed above leads to polynomial basis functions.
The standard approach to prove degree of approximations uses
polynomials. It can be summarized in three steps:

20 X(X), X X

1. Let us denote with Hk the linear space of homogeneous
polynomials of degree k in Rn and with Pk =

⋃k
s=0Hs

the linear space of polynomials of degree at most k in n
variables. Set r =

(
n−1+k

k

)
= dimHk and denote by πk

the space of univariate polynomials of degree at most k. We
recall that the number of monomials in a polynomial in d
variables with total degree ≤ N is

(
d+N
d

)
and can be written

as a linear combination of the same number of terms of the
form (〈w, x〉+ b)N .
We first prove that

Pk(x) = span((
〈
wi, x

〉
)s : i = 1, · · · , r, s = 1, · · · , k

(24)
and thus, with, pi ∈ πk,

Pk(x) =

r∑
i=1

pi(〈wi, x〉). (25)

Notice that the effective r, as compared with the theoretical
r which is of the order r ≈ kn, is closely related to the
separation rank of a tensor. Also notice that a polynomial
of degree k in n variables can be represented exactly by a
network with r = kn units.

2. Second, we prove that each univariate polynomial can be
approximated on any finite interval from

N (σ) = span{σ(λt− θ)}, λ, θ ∈ R (26)

in an appropriate norm.

3. The last step is to use classical results about approximation
by polynomials of functions in a Sobolev space:

E(Bmp ;Pk;Lp) ≤ Ck−m (27)

where Bmp is the Sobolev space of functions supported on the
unit ball in Rn.

The key step from the point of view of possible implementations
by a deep neural network with ReLU units is step number 2. A
univariate polynomial can be synthesized – in principle – via the
linear combination of ReLUs units as follows. The limit of the
linear combination σ((a+h)x+b)−σ(ax+b)

h
contains the monomial

x (assuming the derivative of σ is nonzero). In a similar way one
shows that the set of shifted and dilated ridge functions has the fol-
lowing property. Consider for ci, bi, λi ∈ R the space of univariate
functions

Nr(σ) =

{
r∑
i=1

ciσ(λix− bi)

}
. (28)

The following (see Propositions 3.6 and 3.8 in [13]) holds

Proposition 4. If σ ∈ C(R) is not a polynomial and σ ∈ C∞, the
closure ofN contains the linear space of algebraic polynomial of
degree at most r − 1.

Since r ≈ kn and thus k ≈ r1/n equation 27 gives

E(Bmp ;Pk;Lp) ≤ Cr−
m
n . (29)

4.2 Neural Networks: splines viewpoint

Another choice of basis functions for discretization consists of
splines. In particular, we focus for simplicity on indicator functions
on partitions of [0, 1], that is piecewise constant splines. Another
attractive choice are Haar basis functions. If we focus on the binary
case, section 4.3 tells the full story that does not need to be repeated
here. We just add a note on establishing a partition

Suppose that a = x1 < x2 · · · < xm = b are given points, and set
∆x the maximum separation between any two points.

• If f ∈ C[a, b] then for every ε > 0 there is a δ > 0 such that
if ∆x < δ, then |f(x)−Sf(x)| < ε for all x ∈ [a, b], where
Sf is the spline interpolant of f .

• if f ∈ C2[a, b] then for all x ∈ [a, b]

|f(x)− Sf(x)| ≤ 1

8
(∆x)2maxa≤z≤b|f ′′(z)|

The first part of the Proposition states that piecewise linear interpo-
lation of a continuous function converges to the function when the
distance between the data points goes to zero. More specifically,
given a tolerance, we can make the error less than the tolerance
by choosing ∆x sufficiently small. The second part gives an upper
bound for the error in case the function is smooth, which in this
case means that f and its first two derivatives are continuous.

4.3 Non-smooth ReLUs: how deep nets may work in
reality

Our main theorem (2) in this paper is based on polynomial approx-
imation. Because of the n-width result other approaches to approxi-
mation cannot yield better rates than polynomial approximation. It
is, however, interesting to consider other kinds of approximation
that may better capture what deep neural network with the ReLU
activation functions implement in practice as a consequence of
minimizing the empirical risk.

Our construction shows that a network with non-smooth ReLU
activation functions can approximate any continuous function with
a rate similar to our other results in this paper. A weakness of this
results wrt to the other ones in the paper is that it is valid in the
L2 norm but not in the sup norm. This weakness does not matter
in practice since a discretization of real number, say, by using 64
bits floating point representation, will make the class of functions a
finite class for which the result is valid also in the L∞ norm. The
logic of the argument is simple:

• Consider the constituent functions of the binary tree, that is
functions of two variables such as g(x1, x2). Assume that g
is Lipschitz with Lipschitz constant L. Then for any ε it is
possible to set a partition of x1, x2 on the unit square that
allows piecewise constant approximation of g with accuracy
at least ε in the sup norm.

• We show then that a multilayer network of ReLU units can
compute the required partitions in the L2 norm and perform
piecewise constant approximation of g.

Notice that partitions of two variables x and y can in principle be
chosen in advance yielding a finite set of points 0 =: x0 < x1 <
· · · < xk := 1 and an identical set 0 =: y0 < y1 < · · · < yk := 1.
In the extreme, there may be as little as one partition – the binary

21

case. In practice, the partitions can be assumed to be set by the
architecture of the network and optimized during learning. The
simple way to choose partitions is to choose an interval on a regular
grid. The other way is an irregular grid optimized to the local
smoothness of the function. As we will mention later this is the
difference between fixed-knots splines and free-knots splines.

We describe next a specific construction.

Here is how a linear combination of ReLUs creates a unit that is
active if x1 ≤ x ≤ x2 and y0 ≤ y ≤ y1. Since the ReLU activation
t+ is a basis for piecewise linear splines, an approximation to an
indicator function (taking the value 1 or 0, with knots at x1, x1 +η,
x2 x2 + η,) for the interval between x1 and x2 can be synthesized
using at most 4 units in one layer. A similar set of units creates an
approximate indicator function for the second input y. A set of 3
ReLU’s can then perform a min operations between the x and the
y indicator functions, thus creating an indicator function in two
dimensions.

In greater detail, the argument is as follows: For any ε > 0, 0 ≤
x0 < x1 < 1, it is easy to construct an ReLU network Rx0,x1 with
4 units as described above so that

‖χ[x0,x1) −R‖L2[0,1] ≤ ε.

We define another ReLU network with two inputs and 3 units by

φ(x1, x2) := (x1)+ − (−x1)+ − (x1 − x2)+ = min(x1, x2)

=
x1 + x2

2
+
|x1 − x2|

2
.

Then, with I = [x0, x1)×[y0, y1), we define a two layered network
with 11 units total by

ΦI(x, y) = φ(Rx0,x1(x), Ry0,y1(y)).

Then it is not difficult to deduce that

‖χI − ΦI‖2L2([0,1]2) =

∫ 1

0

∫ 1

0

|min(χ[x0,x1)(x), χ[y0,y1)(y))−
min(Rx0,x1(x), Ry0,y1(y))|2dxdy ≤ cε2.

Notice that in this case dimensionality is n = 2; notice that in gen-
eral the number of units is proportional to kn which is of the same
order as

(
n+k
k

)
which is the number of parameters in a polynomial

in n variables of degree k. The layers we described compute the
entries in the 2D table corresponding to the bivariate function g.
One node in the graph (there are n− 1 nodes in a binary tree with
n inputs) contains O(k2) units; the total number of units in the
network is (n− 1)O(k2). This construction leads to the following
results.

Proposition 5. Compositional functions on the unit cube with an
associated binary tree graph structure and constituent functions
that are Lipschitz can be approximated by a deep network of ReLU
units within accuracy ε in the L2 norm with a number of units in
the order of O((n − 1)Lε−2), where L is the worse – that is the
max – of the Lipschitz constant among the constituent functions.

Of course, in the case of machine numbers – the integers – we
can think of zero as a very small positive number. In this case, the
symmetric difference ratio ((x+ ε)+− (x− ε)+)/(2ε) is the hard
threshold sigmoidal function if ε is less than this smallest positive
number. So, we have the indicator function exactly as long as we
stay away from 0. From here, one can construct a deep network as
usual.

Notice that the number of partitions in each of two variables that are
input to each node in the graph is k = L

ε
where L is the Lipschitz

constant associated with the function g approximated by the node.
Here the role of smoothness is clear: the smaller L is, the smaller
is the number of variables in the approximating Boolean function.
Notice that if g ∈W 2

1 , that is g has bounded first derivatives, then g
is Lipschitz. However, higher order smoothness beyond the bound
on the first derivative cannot be exploited by the network because
of the non-smooth activation function3.

We conjecture that the construction above that performs piecewise
constant approximation is qualitatively similar to what deep net-
works may represent after training. Notice that the partitions we
used correspond to a uniform grid set a priori depending on global
properties of the function such as a Lipschitz bound. In supervised
training of deep network the location of each partition is likely to
be optimized in a greedy way as a function of the performance on
the training set and therefore as a function of inputs and output.
Our Theorem 2 and Theorem 5 are obtained under this assumption.
In any case, their proofs suggest two different ways of how deep
networks could perform function approximations, the first by using
derivatives and the second by using piecewise linear splines. In the
latter case, optimizing the partition as a function of the input-output
examples correspond to free-knots splines. The case in which the
partitions depend on the inputs but not the target, correspond to
classical fixed-knots splines. As an aside, one expects that networks
with smooth ReLUs will perform better than networks with non-
smooth ReLUs in the approximation of very smooth functions.

Still another way to create with ReLUs a discrete table correp-
sonding to the multiplication of two variables, each taking discrete
values on a bounded interval is hash the two dimensional table into
a one dimensional table. For instance assume that x and y take
integer values between [0, 9]. Set the variable z = 10x+ y. This
is a one dimensional table equivalent to the 2-dimensional table
x × y. This Cantor-like mapping idea works only if restricted to
machine numbers, that is to the integers.

5 Vector Quantization and Hierarchical Vec-
tor Quantization

Let us start with the observation that a network of radial Gaussian-
like units become in the limit of σ → 0 a look-up table with entries
corresponding to the centers. The network can be described in
terms of soft Vector Quantization (VQ) (see section 6.3 in Poggio
and Girosi, [51]). Notice that hierarchical VQ (dubbed HVQ) can
be even more efficient than VQ in terms of storage requirements
(see e.g. [52]). This suggests that a hierarchy of HBF layers may be
similar (depending on which weights are determined by learning)
to HVQ. Note that compression is achieved when parts can be
reused in higher level layers as in convolutional networks. Notice
that the center of one unit at level n of a “convolutional” hierarchy
is a combinations of parts provided by each of the lower units
feeding in it. This may even happen without convolution and
pooling as shown in the following extreme example.

Example Consider the case of kernels that are in the limit
delta-like functions (such as Gaussian with very small variance).
Suppose that there are four possible quantizations of the input
x: x1, x2, x3, x4. One hidden layer would consist of four
units δ(x − xi), i = 1, · · · , 4. But suppose that the vectors
x1, x2, x3, x4 can be decomposed in terms of two smaller parts or
features x′ and x”, e.g. x1 = x′⊕x”, x2 = x′⊕x′, x3 = x”⊕x”

3In the case of univariate approximation on the interval [−1, 1], piecewise linear func-
tions with inter-knot spacing h gives an accuracy of (h2/2)M , where M is the max
absolute value of f ′′ . So, a higher derivative does lead to better approximation : we need√

2M/ε units to give an approximation of ε. This is a saturation though. Even higher
smoothness does not help.

22 X(X), X X

and x4 = x” ⊕ x′. Then a two layer network could have two
types of units in the first layer δ(x − x′) and δ(x − x”); in the
second layer four units will detect the conjunctions of x′ and
x” corresponding to x1, x2, x3, x4. The memory requirements
will go from 4N to 2N/2 + 8 where N is the length of the
quantized vectors; the latter is much smaller for large N . Memory
compression for HVQ vs VQ – that is for multilayer networks vs
one-layer networks – increases with the number of (reusable) parts.
Thus for problems that are compositional, such as text and images,
hierarchical architectures of HBF modules minimize memory
requirements.

Classical theorems (see refrences in [53, 54] show that one hidden
layer networks can approximate arbitrarily well rather general
classes of functions. A possible advantage of multilayer vs one-
layer networks that emerges from the analysis of this paper is
memory efficiency which can be critical for large data sets and is
related to generalization rates.

6 Approximating compositional functions
with shallow and deep networks: numeri-
cal experiments

Figures 3, 4 , 14, 5, 11, 12, 13 15, and 16 show some of our
numerical experiments.

7 Compositional functions and scalable algo-
rithms

We formalize the requirements on the algorithms of local com-
positionality is to define scalable computations as a subclass of
nonlinear discrete operators, mapping vectors from Rn into Rd (for
simplicity we put in the following d = 1). Informally we call an
algorithm Kn : Rn 7→ R scalable if it maintains the same “form”
when the input vectors increase in dimensionality; that is, the same
kind of computation takes place when the size of the input vector
changes. This motivates the following construction. Consider a
“layer” operator H2m : R2m 7→ R2m−2 for m ≥ 1 with a special
structure that we call “shift invariance”.

Definition 2. For integer m ≥ 2, an operator H2m is shift-
invariant if H2m = H ′m ⊕H ′′m where R2m = Rm⊕Rm, H ′ =
H ′′ and H ′ : Rm 7→ Rm−1. An operator K2M : R2M → R is
called scalable and shift invariant if K2M = H2 ◦ · · ·H2M where
each H2k, 1 ≤ k ≤M , is shift invariant.

We observe that scalable shift-invariant operators K : R2m 7→ R
have the structure K = H2 ◦ H4 ◦ H6 · · · ◦ H2m, with H4 =
H ′2 ⊕H ′2, H6 = H ′′2 ⊕H ′′2 ⊕H ′′2 , etc..

Thus the structure of a shift-invariant, scalable operator consists of
several layers; each layer consists of identical blocks; each block
is an operator H : R2 7→ R: see Figure 19 . We note also that an
alternative weaker constraint on H2m in Definition 2, instead of
shift invariance, is mirror symmetry, that is H ′′ = R ◦H ′, where
R is a reflection. Obviously, shift-invariant scalable operator are
equivalent to shift-invariant compositional functions. Obviously the
definition can be changed in several of its details. For instance for
two-dimensional images the blocks could be operators H : R5 →
R mapping a neighborhood around each pixel into a real number.

The final step in the argument uses the results of previous sections
to claim that a nonlinear node with two inputs and enough units

can approximate arbitrarily well each of the H2 blocks. This leads
to conclude that deep convolutional neural networks are natural
approximators of scalable, shift-invariant operators.

8 Old-fashioned generalization bounds

Our estimate of the number of units and parameters needed for
a deep network to approximate compositional functions with an
error εG allow the use of one of several available bounds for the
generalization error of the network to derive sample complexity
bounds. It is important to notice however that these bounds do not
apply to the networks used today, since they assume a number of
parameters smaller than the size of the training set. We report them
for the interest of the curious reader. Consider theorem 16.2 in [55]

which provides the following sample bound for a generalization
error εG with probability at least 1−δ in a network in which theW
parameters (weights and biases) which are supposed to minimize
the empirical error (the theorem is stated in the standard ERM
setup) are expressed in terms of k bits:

M(εG, δ) ≤
2

ε2G
(kW log 2 + log(

2

δ
)) (30)

This suggests the following comparison between shallow and deep
compositional (here binary tree-like networks). Assume a network
size that ensure the same approximation error ε .

Then in order to achieve the same generalization error εG, the
sample size Mshallow of the shallow network must be much larger
than the sample size Mdeep of the deep network:

Mdeep

Mshallow
≈ εn. (31)

This implies that for largish n there is a (large) range of training
set sizes between Mdeep and Mshallow for which deep networks
will not overfit (corresponding to small εG) but shallow networks
will (for dimensionality n ≈ 104 and ε ≈ 0.1 Equation 31 yields
mshallow ≈ 10104mdeep).

A similar comparison is derived if one considers the best possible
expected error obtained by a deep and a shallow network. Such
an error is obtained finding the architecture with the best trade-off
between the approximation and the estimation error. The latter is
essentially of the same order as the generalization bound implied
by inequality (30), and is essentially the same for deep and shallow
networks, that is

rn√
M
, (32)

where we denoted by M the number of samples. For shallow net-
works, the number of parameters corresponds to r units of n di-
mensional vectors (plus off-sets), whereas for deep compositional
networks the number of parameters corresponds to r units of 2
dimensional vectors (plus off-sets) in each of the n−1 units. Using
our previous results on degree of approximation, the number of
units giving the best approximation/estimation trade-off is

rshallow ≈
(√

M

n

) n
m+n

and rdeep ≈
(√

M
) 2
m+2

(33)

23

Figure 11 An empirical comparison of shallow vs 3-layers binary tree networks in the learning of compositional functions. The loss function is the the standard mean
square error (MSE). There are several units per node of the tree. In our setup here the network with an associated binary tree graph was set up so that each layer had the
same number of units. The number of units for the shallow and binary tree neural network were chosen such that both architectures had the approximately same number
of parameters. The compositional function is f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))) and is approximated
by a network with ReLU activations. A description of the compositional function is as follows: the first layer units h11, h12, h13, h14 are equal to h1(x, y) =
0.59cos(1.5π(x+ y)), the second layer units h21, h22 are equal to h2(x, y) = 1.1(x+ y)2− 1 and the final layer unit h3 is also h3(x, y) = 1.1(x+ y)2− 1.
The training and test sets both had 60K training examples. The variant of SGD that was used was the Adam [32] optimizer for both experiments. In order to get the best
solution possible we ran 200 independent hyper parameter searches using random search [33] and then reported the one with the lowest training error for both tasks. The
hyper parameters included the step size, the decay rate, frequency of decay and the mini-batch size. The exponential decay hyper parameters for Adam were kept fixed
to the recommended values according to the original paper [32]. The implementations were based on TensorFlow [34].

24 X(X), X X

Figure 12 An empirical comparison of shallow vs 3-layers binary tree networks in the learning of compositional functions. The loss function is the the standard mean
square error (MSE). There are several units per node of the tree. In our setup here the network with an associated binary tree graph was set up so that each layer had the
same number of units. The number of units for the shallow and binary tree neural network were chosen such that both architectures had the approximately the same number
of parameters. The compositional function is f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))) and is approximated by a
network with ReLU activations. A description of the compositional function is as follows: the first layer units h11, h12, h13, h14 are equal to h1(x, y) = 0.7(x+2y)2,
the second layer units h21, h22 are equal to h2(x, y) = 0.6(1.1x+ 1.9y)3 and the final layer unit h3 is also h3(x, y) = 1.3

√
1.2x+ 1.3. The experiment setup

(training and evaluation) was the same as in 11.

25

Figure 13 An empirical comparison of shallow vs 3-layers binary tree networks in the learning of compositional functions with Gaussian noise. The loss function is the
the standard mean square error (MSE). There are several units per node of the tree. In our setup here the network with an associated binary tree graph was set up so that
each layer had the same number of units. The number of units for the shallow and binary tree neural network were chosen such that both architectures had the same
number of parameters. The noisy compositional function is f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))) + ε and is
learned by a network with ReLU activations. The functions h1, h2, h3 are as described in Figure 12. The training and test sets both had 2K training examples. The
variant of SGD that was used was the Adam [32] optimizer for both experiments. In order to get the best solution possible we ran 200 independent hyper parameter
searches using random search [33]. For the left figure we choose the hyper parameter selection that resulted in the lowest training error. For the right figure choose ch the
hyper parameter selection that resulted in the lowest validation error. For both we reported the corresponding training and test error. The hyper parameters included the
step size, the decay rate, frequency of decay and the mini-batch size. The exponential decay hyper parameters for Adam were the recommended values according to the
original paper [32]. Its interesting to note that when the training error was used as a selection criterion, overfitting seemed to happen for both the shallow and binary tree
network. However, when the validation set is used as the selection criterion overfitting is not observed anymore for either model. In addition, the test error for the binary
tree neural network noticeably decreases while it does not for the shallow network.

for shallow and deep networks, respectively. The corresponding
(excess) expected errors E are

Eshallow ≈
(

n√
M

) m
m+n

(34)

for shallow networks and

Edeep ≈
(

1√
M

) m
m+2

(35)

for deep networks. For the expected error, as for the generalization
error, deep networks appear to achieve an exponential gain. The
above observations hold under the assumption that the optimization
process during training finds the optimum parameters values for
both deep and shallow networks. Taking into account optimization,
e.g. by stochastic gradient descent, requires considering a further
error term, but we expect that the overall conclusions about gener-
alization properties for deep vs. shallow networks should still hold
true.

9 Part II and III of the Theory

As we mentioned in the introduction, a theory of Deep Learning
should consist of at least three main parts: Approximation, Opti-
mization of the Empirical Risk and Generalization.

This paper is mainly concerned with the first part – Approximation
Theory. We summarize briefly the two other parts.

Theory II: Landscape of the Empirical Risk

We assume a deep networks of the binary tree type with weight
sharing. We also assume overparametrization, that is more param-
eters than data points, since this is how successful deep networks
have been used.

In general, under these conditions, we expect that zeros of the
empirical error yield a set of quasi-polynomial equations (at
the zeros) that have an infinite number of solutions (for the
network weights) and are sparse because of ReLUs (the argu-
ments of some of the ReLUs are negative and thus the value of
the corresponding ReLUs is zero). The equations have the form
c1ABCA+ c2ABCdc3A

′BC′b+ ... = y with coefficients repre-
senting components of the data vectors (one vector per data point);
the unknowns are A,B,C,B′, · · · . The system of equations is lin-
ear in the monomials with nonlinear constraints e.g. ABCD = z1,
ABCd = z2 on the unknown weights A,B,C · · · . It is underde-
termined (more unknowns than equations, e.g. data points) because
of the assumed overparametrization. We use Bezout theorem to
estimate an upper bound in the number of real zeros.

Theory III: Generalization by SGD

Part III deals with the puzzle that solutions found by “repeat SGD”
in underdetermined situations (fewer data points e.g. equations
than unknown parameters) empirically generalize well on new
data. Our key result is to show that repeat SGD is CVloo stable
on a empirical risk which has many degenerate global minima. It
therefore generalizes. In other words we have the following claim

Claim: Suppose the following properties ofH, ρ, Z are satisfied:

1. ISn [f] has M (convex, possibly degenerate) global minima

Then repeat SGD on Sn generalizes.

Noteworthy features of generalization by “repeat SGD” is that
the intrinsic noise associated with SGD wrt GD is the key to its
generalization properties. The intuition is that because of the noise
term, SGD finds with high probability structurally stable zeros (that
is robust wrt to perturbations of the weights) and these coincide
with CVloo stable solutions.

26 X(X), X X

Figure 14 An empirical comparison of shallow vs 2-layers binary tree networks in the learning of compositional functions with Gaussian noise. The loss function is the
the standard mean square error (MSE). There are several units per node of the tree. The network with an associated binary tree graph was set up so that each layer had
the same number of units. By choosing appropriately the number of units for the shallow and binary tree neural networks, both architectures had the same number of
parameters. The noisy compositional function is f(x1, x2, x3, x4) = h2(h11(x1, x2), h12(x3, x4)) + ε and is learned by a network with ReLU activations. The
functions h11,h12, h2 are as described in Figure 3. The training and test sets both had 2K training examples. The variant of SGD that was used was the Adam [32]

optimizer for both experiments. In order to get the best solution possible we ran 200 independent hyper parameter searches using random search [33] and then reported
the one with the lowest training error for both tasks. The hyper parameters included the step size, the decay rate, frequency of decay and the mini-batch size. The
exponential decay hyper parameters for Adam were the recommended values according to the original paper [32]. The implementations were based on TensorFlow [34].

27

Figure 15 Here we empirically show that depth of the network and compositionality of the function are important. We compare shallow vs 3-layers binary tree networks in
the task of approximating a function that is not compositional. In particular the function is a linear combination of 100 ReLU units f(x) =

∑100
i=1 ci(〈wi, x〉+ bi)+.

The loss function is the the standard mean square error (MSE). The training set up was the same as in figure 12. This experiment shows that when compositionality is
not present in the function to be approximated then having depth in the network can actually worsen performance of the network (confront with in 12).

Figure 16 The figure suggests again that that depth of the network and compositionality of the function are important. The figure compares shallow vs a 3-layers binary
tree networks in the task of approximating a function that lacks the structure of local hierarchy and compositionality. In particular if the compositionality of the function
presented in figure 12 is missing, 3-layered binary tree networks show a decreased approximation accuracy (see left figure). However, the performance of shallow
networks remain completely unchanged as shown on the right figure. Compositionality of the function in 12 was broken by shuffling the input coordinates x ∈ R8

randomly but uniformly across all the training examples. More precisely a fixed shuffling function shuffle(x) was selected and the deep and shallow networks were
trained with the data set X = {(shuffle(xi), f(xi)}60,000i=1 . The figure on the left shows that the binary tree network was not able to do better than the shallow
network once compositionality was missing from the data. The figure on the right shows that this did not change the performance of the shallow network.

28 X(X), X X

Figure 17 This figure shows a situation in which the structure of the neural network does not match exactly the structure of the function to be learned. In particular, we
compare the approximation accuracy of networks that contain the original function as a function of increasing in similarity between the network graph and the function
graph. The function being approximated is the same as in 12.d. The network subgraphs 4 and 5 have the same convolution structure on the first layer with filter size 4.
For the second layer subgraph 5 has more connections than subgraph 4, which reflects the higher error of subgraph 5. More precisely, subgraph 4 has a filter of size of
two units with stride of two units while subgraph 5 has filter size of three units and stride of size one. This figure shows that even when the structure of the networks
does not match exactly the function graph, the accuracy is still good.

29

Figure 18 An empirical comparison of shallow vs 3-layers binary tree networks in the learning of compositional functions. The loss function is the the standard mean
square error (MSE). There are several units per node of the tree. In our setup here the network with an associated binary tree graph was set up so that each layer
had the same number of units. The number of units for the shallow and binary tree neural network are the same. The compositional function is the product function
f(x1, ..., x8) =

∏8
i=1 xi (also known the parity function when the input is restricted to {−1,+1}) and is approximated by a network with ReLU activations. The

variant of SGD that was used was the Adam [32] optimizer for both experiments. In order to get the best solution possible we ran 200 independent hyper parameter
searches using random search [33] and then reported the one with the lowest training error for both tasks. The hyper parameters included the step size, the decay rate,
frequency of decay and the mini-batch size. The exponential decay hyper parameters for Adam were kept fixed to the recommended values according to the original
paper [32]. The implementations were based on TensorFlow [34].

30 X(X), X X

Figure 19 A shift-invariant, scalable operator. Processing is from the bottom
(input) to the top (output). Each layer consists of identical blocks, each block has
two inputs and one output; each block is an operatorH2 : R2 7→ R. The step of
combining two inputs to a block into one output corresponds to coarse-graining
of a Ising model.

