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Abstract
Atari games are an excellent testbed for studying intelligent
behavior, as they offer a range of tasks that differ widely in
their visual representation, game dynamics, and goals pre-
sented to an agent. The last two years have seen a spate of
research into artificial agents that use a single algorithm to
learn to play these games. The best of these artificial agents
perform at better-than-human levels on most games, but re-
quire hundreds of hours of game-play experience to produce
such behavior. Humans, on the other hand, can learn to per-
form well on these tasks in a matter of minutes. In this pa-
per we present data on human learning trajectories for several
Atari games, and test several hypotheses about the mecha-
nisms that lead to such rapid learning.

Introduction
Reinforcement learning algorithms using deep neural net-
works have begun to surpass human-level performance on
complex control problems like Atari games (Guo et al. 2014;
Mnih et al. 2015; Van Hasselt, Guez, and Silver 2015;
Schaul et al. 2015; Stadie, Levine, and Abbeel 2015). How-
ever, these algorithms require hundreds of hours of game-
play to achieve human levels of performance, while our ex-
periments show that humans are able to learn these tasks
in a matter of minutes. This suggests that these algorithms
may employ different representations and learning mecha-
nisms than humans. Many decades of research in cognitive
science has shown that humans have early-arising ”start-up”
software – rich representations about objects and physics
(Spelke 1990; Baillargeon 2004; Baillargeon et al. 2009;
Rips and Hespos 2015) and about agents (Johnson, Slaugh-
ter, and Carey 1998; Tremoulet and Feldman 2000; Csibra et
al. 2003; Schlottmann et al. 2006; Spelke and Kinzler 2007;
Csibra 2008; Kiley Hamlin et al. 2013), and that humans
have the capacity to rapidly acquire new concepts (Carey
1978; Landau, Smith, and Jones 1988; Markman 1989;
Bloom 2000; Xu and Tenenbaum 2007; Lake, Salakhutdi-
nov, and Tenenbaum 2015) and build intuitive theories (Mur-
phy and Medin 1985; Carey 1985; Gopnik, Meltzoff, and
Bryant 1997), which they can use to explain (Lombrozo
2009; Williams and Lombrozo 2010), predict (Rips 1975;
Murphy and Ross 1994), and imagine (Ward 1994; Jern and
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Kemp 2013). For a thorough review of the human ”start-up”
software, see Lake et al. (2016).

In addition to bringing early-arising representations to
bear on Atari tasks, humans come equipped with rich prior
knowledge about the world – for example, knowledge about
keys, doors, ice, birds, and so on. While such knowledge
could give humans an edge over AI algorithms, we believe
that it plays a minimal role in humans’ ability to rapidly mas-
ter these tasks. Instead, we believe that strong priors speci-
fied at a more general level are what give rise to rapid learn-
ing. This includes priors about objects as spatiotemporally
contiguous entities whose properties can be learned from ex-
perience; an imperative to explore these objects and to ob-
serve available evidence to rapidly build theory-like mod-
els of the Atari worlds they encounter; and an ability to use
these models to simulate possible future worlds and generate
effective plans.

In this paper we present some of the first systematic data
on human Atari gameplay. Going beyond simply observing
gameplay, we experimentally manipulate (1) prior knowl-
edge about specific objects, (2) prior knowledge about the
game environment and rules, and (3) observational learning
experience. These manipulations allow us to test different
hypotheses about the nature of human learning in Atari.

Human Atari Gameplay
Part I - Gameplay
Methods We selected two games in which humans outper-
form the asymptotic

Double Deep Q-Network (DDQN) (Frostbite and Ven-
ture), and two games in which the DDQN outperforms hu-
mans (Amidar and Stargunner). Participants found through
Amazon Mechanical Turk were assigned to one game that
they had not previously played, and were told that they
should play for a minimum of 15 minutes. All participants
were paid $2.00 and were promised bonus pay of up to
$2.00 extra depending on their cumulative score perfor-
mance. Prior to playing the game, participants were told
only that they could use the arrow keys and the spacebar,
and that, beyond that, they should try to figure out how the
game worked in order to play well. Participant numbers are
as follows: (Frostbite: 71, Venture: 18, Amidar: 19, Stargun-
ner: 19).
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Figure 1: Human learning curves for four Atari games. Black horizontal line: random play. Blue horizontal line: ‘expert’
play. Red horizontal lines: DDQN after 10, 25, and 200 million frames of game-play experience (46, 115, and 920 hours,
respectively).

Learning Curves Figure 1 shows learning curves for the
four games. Each points represents a (human, time, score)
tuple; the score reported at each point is the highest score ob-
tained by that particular subject after that amount of cumu-
lative gameplay experience. For comparison, we have also
plotted random performance (black horizontal), human ‘ex-
pert’1 play (blue horizontal line), and DDQN performance
after 10, 25, and 200 million frames of game-play experi-
ence (46, 115, and 920 hours, respectively), in red (bottom
to top)2. We highlight a few qualitative observations: hu-
man performance is above random performance within the
first minute of play; in three out of the four games, humans
reach ‘expert’ performance within the allotted 15 minutes
(on Amidar they are well on their way); in all of the games,
humans exceed the DDQN’s 10- and 25-million-frame score
within just a few minutes; in Frostbite and Venture, as men-
tioned earlier, humans exceed even the DDQN’s asymptotic
performance.

Of course, the 10-million (46-hr) and 25-million-frame
(115-hr) comparisons are unfair – after all, in addition
to having potential cognitive advantages, humans come to
these tasks with a working visual system, while the DDQN
has to learn a visual system from scratch. With this in mind,
we can also look at the DDQN’s rate of improvement and
compare it to human rates of improvement at score-matched
points – including points at which the DDQN is doing rel-
atively well. Figure 2 shows such a comparison for three of
our four games; a comparison for Venture is missing because
humans immediately exceeded the DDQNs performance in
the 10-40 million frame range. Note that the rate of improve-
ment is measured in log units.

1‘Expert’ refers to the human game tester employed by Deep-
Mind and used as the human benchmark in the original DQN paper.
After the tester trained on each game for two hours, their scores
over the 20 subsequent game episodes that lasted over 5 minutes
were averaged and reported.

2Data taken from Schaul (2015). As of this writing, this was
the highest-performing Deep RL model for which we could ob-
tain learning-curve-like data for a large range of games. The model
significantly outperforms the original DQN, as well as several sub-
sequent variants.

Figure 2: Learning rate comparison. X-axis: DDQN experi-
ence, in millions of frames. Y-axis: Rate of improvement in
log (points per minute), estimated using finite differences.
Human rate of improvement is taken from score-matched
points (shown as numbers annotating the curves). A compar-
ison for Venture is missing because humans immediately ex-
ceeded the DDQN’s performance in the 10-40 million range.
DDQN estimates are made from Figure 7 in Schaul et al.
(2015).

Part II - Experimental Manipulations

The game of Frostbite is one of several games worth analyz-
ing closely, as humans exhibit particularly impressive per-
formance relative to the DDQN. In what follows we present
several experimental manipulations. Our hope is that by un-
derstanding the representations that facilitate human perfor-
mance in this game (and eventually in other games), we can
help pave the way toward designing more human-like AI
agents.
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Figure 3: Screenshot of a blurred version of Frostbite. The
light blue items are birds; the green items are fish.

Obscuring Object Identity One specific hypothesis as to
why humans rapidly learn to perform well at Frostbite is that
they come equipped with strong priors about the objects they
encounter. Parsing the game screen into platforms, igloos,
birds, and fish must clearly make the task easier for humans,
as humans know things about the properties of each of these
objects: platforms provide support; igloos provide shelter;
fish and birds can be eaten. To test whether such knowledge
is in fact a benefit to humans, we created a blurred version
of the game, in which objects could be only be identified as
generic objects – that is, we masked the semantic identity of
the objects.3 Figure 3 shows an example game screen. We
present data from this condition after describing the other
experimental manipulations.

Reading the Instruction Manual If people’s rapid learn-
ing is due to the formation of a model-like representation,
then anything that would enable them to learn this represen-
tation should result in an increase in early performance. To
test this hypothesis, we provided participants with the oppor-
tunity to read the game’s original instruction manual prior to
playing. The intent was to provide players with a short de-
scription of critical aspects of gameplay, which was mostly
informative about objects and their roles in the game, as well
as the goal of the game. Subjects read the manual, answered
a short questionnaire intended to check that they understood
the rules, and then played for 15 minutes.

Learning from Observation Humans’ ability to form a
theory-like representation of the game should also be aided
by observing others play. We randomly selected an episode
in the 75-85th percentiles of episodes from the first round of
experiments, and had all participants in this condition watch
a video of that episode prior to playing. The episode corre-
sponded to the 79th percentile of all Frostbite episodes, and
lasted 1 minute, 26 seconds.

Results Figure 4 shows means and 95% CIs of first-
episode scores for normal, ‘blur’, ‘instructions’, and ‘obser-
vation’ conditions (participant Ns are 71, 63, 72, 72, respec-
tively). The difference in first-episode performance between

3This resulted in blurred birds, fish, crabs, and clams, but
clearly-identifiable water, ice floes, and igloos.

Figure 4: First-episode mean scores and 95% confidence
interval for normal, ‘blurred’, ‘instructions’, and ‘observa-
tion’ condition. Note that blurring the screen has no effect,
whereas the instructions and observing another player al-
low humans to capture approximately 1000 points in their
first episode – this corresponds to human performance after
about 5 minutes of play under normal conditions.

normal and blurred conditions is not significant (p=0.663.
Mean, CIs: Normal: 356, [167, 545]. Blur: 417, [216, 618]).
This is unsurprising: a bird, a priori, could be useful (it can
be hunted and eaten) or it could be harmful (it can attack
you). In the actual game the interaction between the agent
and the bird is, in fact, quite implausible a priori – real-life
birds are much lighter than humans and are generally not
capable of pushing them, and yet, in the game they do so.
While priors about object identity and the resulting behav-
iors of objects may be minimally useful to a novice player,
most of the important properties of objects in these games
come from their role in the particular game. It is after ob-
serving objects’ movements and interactions that humans
rapidly form theories of the game dynamics.

As we expected, reading the instruction manual and ob-
serving competent players provided participants with a sig-
nificant first-episode advantage over normal play (Instruc-
tions vs. Normal: p=.0001. Observation vs. Normal: p=.002.
Mean, CIs: Normal: 356, [167, 545]. Instructions: 1848,
[1144, 2552]. Observation: 1144, [683, 1605]). Had play-
ers only learned from observation, one might posit that they
simply copied a successful policy. However, the fact that the
instruction manual was helpful suggests that this is not the
case, and hints at the possibility that humans used this infor-
mation to build a model of the game dynamics, which they
then used to play successfully.

Discussion
The real power of human intuitive theories is that they enable
humans to explain the world, generalize from few examples,
think counterfactually, and generate effective plans. The ex-
periments above show that humans are capable of learning
complex Atari tasks from just a few minutes of gameplay,
and that their behavior is aided by information that would
be helpful in theory-building. Future efforts will address the
nature of this theory-building.
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