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Summary 

It is becoming increasingly clear that there is an infinite number of definitions of 

intelligence. Machines that are intelligent in different narrow ways have been built 

since the 50s. We are entering now a golden age for the engineering of intelligence 

and the development of many different kinds of intelligent machines. At the same 

time there is a widespread interest among scientists in understanding a specific and 

well defined form of intelligence, that is human intelligence. For this reason we 

propose a stronger version of the original Turing test. In particular, we describe here 

an open-ended set of Turing++ Questions that we are developing at the Center for 

Brains, Minds and Machines at MIT — that is questions about an image. Questions 

may range from what is there to who is there, what is this person doing, what is this 

girl thinking about this boy and so on.  The plural in questions is to emphasize that 

there are many different intelligent abilities in humans that have to be characterized, 

and possibly replicated in a machine, from basic visual recognition of objects, to the 

identification of faces, to gauge emotions, to social intelligence, to language and much 



 

 

more. Recent advances in cognitive neuroscience has shown that even in the more 

limited domain of visual intelligence, answering these questions requires different 

competences and abilities, often rather independent from each other, often 

corresponding to separate modules in the brain. The term Turing++ is to emphasize 

that our goal is understanding human intelligence at all Marr’s levels — from the level 

of the computations to the level of the underlying circuits. Answers to the Turing++ 

Questions should thus be given in terms of models that match human behavior and 

human physiology — the mind and the brain. These requirements are thus well beyond 

the original Turing test. A whole scientific field that we call the science of (human) 

intelligence is required to make progress in answering our Turing++ Questions. It is 

connected to neuroscience and to the engineering of intelligence but also separate 

from both of them.  

 

Definitions of Intelligence  

We may call a “person” intelligent and even agree among us. But what about a colony 

of ants and their complex behavior? Is this intelligence? Were the mechanical 

computers built by Turing to decode the encrypted messages of the German U-boats, 

actually intelligent? Is Siri intelligent? The truth is that the question of What is 

intelligence is kind of ill-posed as there are many different answers, an infinite 

numbers of different kinds of intelligence. This is fine for engineers who may be happy 

to build many different types of intelligent machines. The scientists among us may 

instead prefer to focus on a question that is well defined and can be posed in a 

scientific way, on the question of human intelligence. In the rest of the paper we use 

the term intelligence to mean human intelligence. 

 

  



 

 

Understanding Human Intelligence  

Consider the problem of visual intelligence. Understanding such a complex system 

requires understanding it at different levels (in the Marr sense, see Poggio 2012), from 

the computations to the underlying circuits. Thus we need to develop algorithms that 

provide answers of the type humans do. But we really need to achieve more than just 

simulate the brain’s output, more than what Turing asked. We need to understand 

what understanding an image by a human brain means. We need to understand the 

algorithms used by the brain, but we also need to understand the circuits that run 

these algorithms. This may also be useful if we want to be sure that our model is not 

just faking the output of a human brain by using a giant look-up table of what people 

usually do in similar situations, as hinted at the end of the movie Ex Machina. 

Understanding a computer means understanding the level of the software and the 

level of the hardware. Scientific understanding of human intelligence requires 

something similar — understanding of the mind as well as of the brain. 

 

Using behavior and physiology as a guide 

In order to constrain our search for intelligent algorithms, we are focusing on creating 

computational models that match human behavior and neural physiology. There are 

several reasons why we are taking this approach. The first reason, as hinted above, is 

to avoid superficial solutions that mimic intelligent behavior under very limited 

circumstances, but that do that do not capture the true essence of the problem. Such 

superficial solutions have been a prominent approach to the traditional Turing Test 

going back to the ELIZA program written in the 1960’s, (Weizenbaum 1966). While 

these approaches might occasionally fool humans, they do not address many of the 

fundamental issues and thus this approaches will fail to match many aspects of human 

behavior. A second related reason is that algorithms might appear to be perform well 

when tested under limited circumstances, but when compared to the full range of 

human abilities they might not do nearly as well. For example, deep neural networks 

very well on object recognition tasks, but also fail in simple ways that would never 



 

 

been seen in human behavior (Szegedy, et al, 2006). By directly comparing computer 

systems’ results to human behavioral results we should be able to assess whether a 

system that is displaying intelligent behavior is truly robust (Sinha et al, 2006). A final 

reason is that studying primate physiology can give us guidance about how to 

approach the problem. For example, to recognize people based on their faces appears 

to occur in discrete face patches in the primate brain (see Freiwald and Tsao 2010, 

and section below). By understanding the computational roles of these patches we 

aim to understand the algorithms that are used by primates to solve these tasks 

(Meyers et al, 2015).  

 

Human Intelligence is one word but many problems 

Recent advances in cognitive neuroscience have shown that different competencies 

and abilities are needed to solve visual tasks, and that they seem to correspond to 

separate modules in the brain. For instance, the apparently similar questions of object 

and face recognition (what is there vs who is there) involve rather distinct parts of 

visual cortex (e.g., the lateral occipital cortex vs. a section of the fusiform gyrus). The 

word intelligence can be misleading in this context, like the word life was during the 

first half of the last century when popular scientific journals routinely wrote about the 

problem of life, as if there was a single substratum of life waiting to be discovered to 

completely unveil the mystery. Of course, speaking today about the problem of life 

sounds amusing: biology is a science dealing with many different great problems, not 

just one. Thus I think that intelligence is one word but many problems, not one but 

many Nobel prizes. This is related to Marvin Minsky’s view of the problem of thinking, 

well captured by the slogan Society of Minds. In the same way, a real Turing test is a 

broad set of questions probing the main aspects of human thinking. Because 

“Intelligence” encompasses a large set of topics, we have chosen Visual Intelligence in 

human and non-human primates as a primary focus. Our approach at the Center for 

Brains, Minds and Machines (CBMM) to Visual Intelligence includes connections to 

some developmental, spatial, linguistic, and social questions. To further sharpen our 



 

 

focus, we are emphasizing measuring our progress using questions, described in more 

detail below, that might be viewed as extensions of the Turing test. We have dubbed 

these Turing++ Questions. Computational models we develop will be capable of 

responding to queries about visual scenes and movies – who, what, why, where, how, 

with what motives, with what purpose, and with what expectations. Unlike a 

conventional engineering enterprise that tests only absolute (computational) 

performance, we will require that our models exhibit consistency with human 

performance/behavior, with human and primate physiology, and with human 

development. The term Turing++ refers to these additional levels of understanding that 

our models and explanations must satisfy. 

 

The Turing++ Questions 

Our choice of Questions follows in part from our understanding of human intelligence 

grounded in the neuroscience of the brain. Each question roughly corresponds to a 

distinct neural module in the brain. We have begun defining an initial set of such 

problems/questions about visual intelligence, since vision is our entry point into the 

problem of intelligence. We call such questions Turing++ Questions because they are 

inspired by the classical Turing test but go well beyond it. Traditional Turing Tests 

permit counterfeiting and require matching only a narrowly defined level of human 

performance. Successfully answering Turing++ Questions will require us not only to 

build systems that emulate human performance, but also to ensure that such systems 

are consistent with our data on human behavior, brains, neural systems, and 

development. An open-ended set of Turing++ Questions can be effectively used to 

measure progress in studying the brain-based intelligence needed to understand 

images and video.   

 

As an example consider the image shown below. A deep learning network might locate 

faces and people. One could not interrogate such a network, however, with a list of 

Turing++ Questions such as these: 



 

 

• What is there? 

• Who is there?    

• What are they doing? 

• How, in detail, are they performing actions? 

• Are they friends or enemies or strangers? 

• Why are they there? What will they do next? 

• Have you seen anything like this before?  

 

 

 
 

 

 

 

We effortlessly recognize objects, agents, and events in this scene. We, but not a 

computer program, could recognize that this is an amusement park; several people 

are walking; there is a stroller in front of the fence; two women are carrying bags; very 

few people, if any, are riding the carousel. We, but not a computer program, could 

generate a narrative about the scene. It’s a fairly warm, sunny day at the amusement 

park. A blonde young mother or caregiver in rolled-up blue jeans is waiting, 

presumably with a baby, by the carousel. One or two friends may be walking up to 

meet her.  

Figure 1 

Courtesy of Boris Katz, CBMM, from the LableMe data base.  



 

 

We would assess the performance of a model built to answer questions like these by 

evaluating a) how similarly to humans our neural models of the brain answer the 

questions, and b) how well their implied physiology correlates with human and primate 

data obtained by using the same stimuli. 

Our Turing++ Questions require more than a good imitation of human behavior; our 

computer models should also be human-like at the level of the implied physiology 

and development. Thus the CBMM test of models uses Turing-like questions to check 

for human-like performance/behavior, human-like physiology, and human-like 

development. 

 

Because we aim to understand the brain and the mind and to replicate human 

intelligence, the challenge intrinsic to the testing is not to achieve best absolute 

performance, but performance that correlates strongly with human intelligence 

measured in terms of behavior and physiology. We will compare models and theories 

with fMRI and MEG recordings, and will use data from the latter to inform our models. 

Physiological recordings in human patients and monkeys will allow us to probe neural 

circuitry during some of the tests at the level of individual neurons. We will carry out 

some of the tests in babies to study the development of intelligence. 

 

The series of tests is open-ended. The initial ones, e.g. face identification, are tasks 

that computers are beginning to do and where we can begin to develop models and 

theories of how the brain performs the task. The later ones, e.g. generating stories 

explaining what may have been going on in the videos and answering questions about 

previous answers, are goals for the next few years of the Center and beyond. 

 

The modeling and algorithm development will be guided by scientific concerns, 

incorporating constraints and findings from our work in cognitive development, 

human cognitive neuroscience, and systems neuroscience. These efforts likely would 

not produce the most effective AI programs today (measuring success against 

objectively correct performance); the core assumption behind this challenge is that by 



 

 

developing such programs and letting them learn and interact, we will get systems 

that are ultimately intelligent at the human level. 

 

 

An example of a Turing++ Question: whois there, e.g. face identification 

 

The Turing++ Question which is most ripe, in the sense of possibility to answer it at all 

the required levels, is face identification. We have data about human performance in 

face identification — from a field which is called psychophysics of face recognition. 

We know which patches of visual cortex in humans are involved in face perception by 

using fMRI techniques as shown in Figure 2. 

 

 

 

 
 

Figure 2 

Courtesy of Nancy Kanwisher, CBMM.  Modified from: Tsao DY, Moeller S, Freiwald 

WA. Comparing face patch systems in macaques and humans. Proceedings of the 

National Academy of Sciences of the United States of America. 2008;105(49):19514–9. 

 



 

 

We can identify the homologue areas in the visual cortex of the macaque where there 

is a similar network of interconnected patches shown in Figure 4. In the monkey it is 

possible to record from individual neurons in the various patches and characterize 

their properties. Neurons in patch ML are view and identity tuned, neurons in AM are 

identity specific but more view invariant. Neurons in the intermediate patch AL tend 

to be mirror symmetric: if they are tuned to a view they are also likely to be tuned to 

the symmetric one. 

 

We begin to have models that perform face identification well and are consistent with 

the architecture and the properties of face patches (i.e., we can make a 

correspondence between stages in the algorithm and properties of different face 

patches). The challenge is to have performance that correlates highly with human 

performance on the same data sets of face images and that predict the behavior of 

neurons in the face patches for the same stimuli. 

 

 

 

 

 

Figure 3 

Courtesy of Winrich Freiwald, CBMM. Modified from: Tsao DY, Moeller S, 

Freiwald WA. Comparing face patch systems in macaques and humans. 

Proceedings of the National Academy of Sciences of the United States of America. 

2008;105(49):19514–9. 

 

 



 

 

 

CBMM is organizing in September 2015 the first Turing++ Questions workshop, 

focused on face identification. The title of the workshop is A Turing++ Question: Who 

is there?. The workshop will introduce databases and review the states of existing 

model to answer the question who is there at the levels of performance and neural 

circuits.  

 

 

The Science of Intelligence 

 

For the Center for Brains Minds and Machines the main research goal is the science 

of intelligence rather than the engineering of intelligence — the hardware and 

software of the brain rather than just absolute performance in face identification. Our 

Turing++ Questions reflect fully these research priorities.  

 

The emphasis on answers at the different levels of behaviour and neural circuits 

reflects the levels of understanding paradigm (Marr 2010). The argument is that a 

complex system -- like a computer and like the brain/mind -- must be understood at 

several different levels, such as hardware and algorithms/computations. Though Marr 

emphasizes that explanations at different levels are largely independent of each other, 

it has been argued (Poggio, 2012) that it is now important to re-emphasize the 

connections between levels, which was described in the original paper about levels of 

understanding (Marr and Poggio, 1977). In that paper we argued that one ought to 

study the brain at different levels of organization, from the behavior of a whole 

organism to the signal flow, i.e. the algorithms, to circuits and single cells. In particular, 

we expressed our belief that (a) insights gained on higher levels help to ask the right 

questions and to do experiments in the right way on lower levels and (b) it is necessary 

to study nervous systems at all levels simultaneously. Otherwise there are not enough 

constraints for a unique solution to the problem of human intelligence. 

 



 

 

REFERENCES 

Freiwald, W. A., and Tsao, D. Y. 2010. Functional Compartmentalization and 

Viewpoint Generalization Within the Macaque Face-Processing System. Science 330: 

845– 851.  

Marr, D. 2010. Vision. Cambridge, MA: The MIT Press.  

Marr, D., and Poggio, T. 1977. From Understanding Computation to Understanding 

Neural Circuitry. In Neuronal Mechanisms in Visual Perception, ed. E. Poppel, R. Held, 

and J. E. Dowling. Neurosciences Research Program Bulletin 15: 470–488. 

Meyers, E.; Borzello, M.; Freiwald, W.; Tsao, D. 2015. Intelligent Information Loss: The 

Coding of Facial Identity, Head Pose, and Non-Face Information in the Macaque 

Face Patch System. Journal of Neuroscience 35(18): 7069–81.  

Poggio, T. 1981. Marr’s Computational Approach to Vision. Trends in Neurosciences 

10(6): 258–262.  

Poggio, T. 2012. The Levels of Understanding Framework, Revised. Perception 41(9): 

1017–1023.  

Reichardt, W., and Poggio, T. 1976. Visual Control of Orientation Behavior in the Fly: 

A Quantitative Analysis. Quarterly Review of Biophysics 9(3): 311–375.  

Sinha, P.; Balas, B.; Ostrovsky, Y.; and Russell, R. 2006. Face Recognition by Humans: 

19 Results All Computer Vision Researchers Should Know About. Proceedings of the 

IEEE 94(11): 1948–1962.  

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I. J.; and 

Fergus, R. 2013. Intriguing Properties of Neural Networks. CoRR (Computing 

Research Repository), abs/1312.6199. Association for Computing Machinery. 

Weizenbaum, J. 1966. ELIZA—A Computer Program for the Study of Natural 

Language Communication Between Man and Machine. Communications of the ACM 

9(1): 36–45.  



 

 

AUTHOR BIOGRAPHIES 

Tomaso A. Poggio, is the Eugene McDermott Professor in the Dept. of Brain & 

Cognitive Sciences at MIT and the director of the new NSF Center for Brains, Minds 

and Machines at MIT of which MIT and Harvard are the main member Institutions. 

He is a member of both the Computer Science and Artificial Intelligence Laboratory 

and of the McGovern Brain Institute. He is an honorary member of the 

Neuroscience Research Program, a member of the American Academy of Arts and 

Sciences, a Founding Fellow of AAAI and a founding member of the McGovern 

Institute for Brain Research. Among other honors he  received  the Laurea Honoris 

Causa from the University of Pavia for the Volta Bicentennial, the 2003 Gabor 

Award, the Okawa Prize 2009, the AAAS Fellowship and the 2014 Swartz Prize for 

Theoretical and Computational Neuroscience. He is one of the most cited 

computational scientists with contributions ranging from the biophysical and 

behavioral studies of the visual system to the computational analyses of vision and 

learning in humans and machines. With W. Reichardt he characterized 

quantitatively the visuo-motor control system in the fly.  With D. Marr, he 

introduced the seminal idea of levels of analysis in computational neuroscience. 

He introduced regularization as a mathematical framework to approach the ill-

posed problems of vision and the key problem of learning from data.  In the last 

decade he has developed an influential hierarchical model of visual recognition in 

the visual cortex. The citation for the recent 2009 Okawa prize mentions his  

“…outstanding contributions to the establishment of computational 

neuroscience, and pioneering researches ranging from the biophysical and 

behavioral studies of the visual system to the computational analysis of vision and 

learning in humans and machines.”  His research has always been 

interdisciplinary, between brains and computers. It is now focused on the 

mathematics of learning theory, the applications of learning techniques to 

computer vision and especially on computational neuroscience of the visual 

cortex. A former Corporate Fellow of Thinking Machines Corporation and a former 

director of PHZ Capital Partners, Inc., is a director of Mobileye and was involved in 



 

 

starting, or investing in, several other high tech companies including Arris 

Pharmaceutical, nFX, Imagen, Digital Persona and Deep Mind.  

 

 

Ethan Meyers is an Assistant Professor of Statistics and Hampshire College. He 

received his BA from Oberlin College in Computer Science, and his PhD in 

Computational Neuroscience from MIT. His research examines how information is 

coded in neural activity, with a particular emphasis on understanding the 

processing that occurs in high level visual and cognitive brain regions. To address 

these questions, he develops computational tools that can analyze high 

dimensional neural recordings. 

 

 


