
  Views & Reviews 
 

	 1 

What if... 

By Tomaso Poggio June 26, 2015 
 

The background: DCLNs (Deep Convolutional 
Learning Networks) are doing very well 

Over the last 3 years and increasingly so in the last few 
months, I have seen supervised DCLNs — feedforward and 
recurrent — do more and more of everything quite well. 
They seem to learn good representations for a growing 
number of speech and text problems (for a review by the 
pioneers in the field see LeCun, Bengio, Hinton, 2015). 

More interestingly, it is increasingly clear, as I will discuss later, that instead of being 
trained on millions of labeled examples they can be trained in implicitly supervised 
ways. This breakthrough in machine learning triggers a few dreams. What if we have 
now the basic answer to how to develop brain-like intelligence and its basic building 
blocks? 

 
Why it may be true 

There are several reasons to have been skeptical of neural networks old claims. But I 
think that I see now possible answers to all of them. I list the corresponding questions 
here, together with answers (which are, in part, conjectures) ranked in terms of 
increasing (personal) interest. 

• What is the tradeoff of nature vs. nurture (for neural networks)? I think that a 
version of the Baldwin (1896) effect (rediscovered by Hinton and Nowlan, 1987) 
provides a good framework for an answer. If an organism inherits the machinery 
that can learn a task (important for survival) from examples provided by the 
environment, then evolution only needs to discover the machinery and compile 
it into the genes. It does not need to discover and compile the full, detailed 
solution to the task — and never will, because of the lack of sufficient 
evolutionary pressure. This argument suggests that evolution determines the 
architecture of the network, for instance it may determine slightly different 
deep learning architectures for different sensory tasks with respect to number 
of layers, connectivity and pooling parameters — say in visual cortex vs. 
auditory cortex. Thus the tradeoff between nature and nurture, which applies 
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in general, could mean for deep learning networks that weights are learned 
through visual experience, both unsupervised and implicitly supervised (see 
later), whereas the architecture and its parameters are determined by the 
genes. In other words, a provocative conjecture is that evolution may have done 
what neural networks architects are doing these days: choose the problem, and 
thereby the training data set, tinker with the architecture — number of layers, 
which ones are convolutional, how much to downsample at each layer, etc. — 
until a good one is found for the problem at hand (say vision vs. speech). What 
is left for learning during the life of an organism is to set a large number of 
weights, which may require millions of — explicitly or implicitly — supervised 
examples. Of course, there are closely related, more likely scenarios, of which 
a good example are recent versions of Ullman’s visual routines. In this scenario 
a few basic tasks learned early on by appropriate networks are used as building 
blocks for more complex abilities. 

• How powerful are multilayer feedforward architectures such as DCLNs? There 
are several answers, both old and new, but also some important open 
questions. Consider multilayer networks in which each layer performs the 
following operation on the vector input from the earlier layer: 

 

From the computer science point of view, feedforward multilayer networks are 
equivalent to finite state machines running for a finite number of time steps 
(see Shalev- Schwartz, 2014 for a recent account and Poggio and Reichardt, 
1980 for an old one). This result holds for almost any fixed nonlinearity in each 
layer: it holds when the nonlinearity is polynomial, for instance quadratic, in 
which case multiple layers may be needed for each time step. Feedforward 
networks are equivalent to cascades without loops (with a finite number of 
stages) and all other forms of loop free cascades (i.e. McCulloch-Pitts nets 
without loops, perceptrons, analog perceptrons, linear threshold machines). 
Finite state machines, cascades with loops, and difference equation systems, 
which are Turing equivalent, are, thus more powerful than multilayer 
architectures with a finite number of layers. The latter networks, however, are 
practically universal computers, since every machine we can build can be 
approximated as closely as we like by defining sufficiently many stages or a 
sufficiently complex single stage (think about the polynomial example). 
Recurrent networks as differential equations are of course Turing universal. 
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For a brief overview, which includes also analog perceptrons and multilayer 
polynomial machines see Poggio and Reichardt (1980). 

From the function approximation point of view, the choice of the appropriate 
representation for a given computation and thus the associated complexity - in 
terms of number of layers and connectivity (measured by order for perceptrons, 
p-order for polynomial networks) — depends on the type of elementary 
components and connections that are available. This perspective on the 
complexity of networks is related to Hilbert's 13th problem, which concerns the 
possibility of representing functions of several variables as superposition of 
functions of a smaller number of variables. In fact, in 1957 Kolmogorov (1963) 
and Arnold (1963) have shown that exactly 2-hidden layers networks can 
always represent any continuous function of n variables. Thus the Kolmogorov 
result shows that the number of layers cannot be taken as a full measure of 
complexity. In fact, it is well-known that: 

o one-hidden layer networks with appropriate, “universal” nonlinearities 
can represent arbitrarily well any continuous function, possibly using a 
very large number of units; the units in the network have in general order 
(in the perceptron sense) infinity, that is their receptive field includes all 
the inputs (the whole “retina”) 

o with nonlinearities which are linear and quadratic, any continuous 
function can be approximated arbitrarily well, but the number of layers 
must be arbitrarily large 
  

In general, both number of layers and order — that is the maximum number of 
inputs for each unit among all units in a layer — play a role in measuring the 
complexity of a network, depending on the type of nonlinear operations. For 
instance, DCLNs have finite, small order in the first layer(s), whereas fully 
connected DLNs have typically order infinity (in all layers). 

Clearly the class of multilayer networks with specified nonlinearity is no less 
powerful than the class of one-hidden layer networks. With a universal 
nonlinearity one-hidden layer networks can approximate any nonlinear 
mapping (in fact they can approximate all functions of d variables defined at 
points, therefore functions learnable with labeled examples1). A prototypical 
machine that bridges between the computer science and the function 

																																																								
1	Therefore with a certain degree of smoothness, because of Sobolev lemma. 
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approximation point of view is the set of polynomial perceptrons mentioned 
above. 

The open questions concern a precise characterization of the conditions under 
which multilayer networks with universal nonlinearities are “better” than one-
hidden layer networks. Our current conjecture is that, if the d-dimensional 
space of inputs has a “compositional” structure in which low-dimensional 
subspaces can be well represented by a small number of prototypical parts, 
multilayer networks can achieve much better compression (in terms of total 
number of bits required to encode the ensemble of weights). Details of the 
argument can be found in Anselmi et al. (2015). A rigorous solution of this 
question would be a major accomplishment for deep learning. 

• What guarantees that SGD converges to good solutions? SGD is not guaranteed 
to converge to a good solution and it often does not. However large amounts of 
data often lead to impressive solutions that generalize, that is predict, well. 
This has been the greatest surprise for me: the dimensionality of the space over 
which optimization takes place is huge. A large, but not exponentially large, 
number of data seems sufficient to lead in many cases to “predictive” 
solutions. 

• Are DCLN consistent with the metaphor of the brain as an interpolating look- 
up table? I always thought that a zero-order metaphor for thinking about the 
sensory parts of the brain and how it may have evolved from basic synaptic 
plasticity was the “look-up table” metaphor. In this context the sensory brain 
could be characterized in terms of memory-based computation2. This is 
described in an old paper “How the brain might work” and related there to 
radial basis function networks and to the ability to generalize from a set of 
examples (Poggio, 1990). It is not completely obvious that DCLNs can be 
consistent with view but this is indeed the conclusion of Anselmi et al. (2015). 
Under the assumption of normalized inputs, each layer in a DCLN can be 
equivalent with appropriate weights to sets of Gaussian-like radial units. The 
center of each unit represents a memory — either one example (input 
component of the input- output example pair) or a prototype representing a 
cluster of examples in effectively a hierarchical memory (see later). 

• Is the lack of a theory a problem for DCLNs? It is deeply unsatisfactory to have 
a potential explanation for the brain and to be unable to understand it. 

																																																								
2	This is less of a constraint that it may sound: the basic logical operations of our 
computers can be described in terms of look-up tables. 
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However, this is clearly not a good reason for rejecting the engineering use of 
neural networks, especially after demonstrations of their good performance in 
many settings. Of course, theories are desirable for many reasons, including 
the need for a guide to future progress and improvements. I am also more 
optimistic that a satisfactory theoretical framework is developing along the 
lines sketched earlier. The invariance properties of convolutional networks can 
be characterized mathematically and extended beyond the translation group. 
The selectivity properties for each layer also have now mathematical 
foundations (Anselmi et al., 2015 and references there)3. The missing part for a 
full theory is formal proofs for the role of hierarchies in architectures such as 
HMAX and DCLNs (see conjecture mentioned above). 

• Is supervised training with millions of labeled examples biologically plausible? 
As I mentioned earlier, setting weights requires millions of supervised 
examples — at least if one looks at the case of Imagenet4. I claimed for some 
time now that training with millions of labeled examples was biologically 
implausible (“not the way children learn to distinguish a dog from a cat”). While 
strictly speaking I was correct, I think now that there is a relatively simple 
solution. Labels are of course arbitrary. What is clearly important for the 
organism is to be able to group together (with the implicit label “same identity”) 
images of the same object (or for classification, of the same object class). I call 
this implicit labeling: explicit labels are not provided but there is contextual or 
other information that allows implicit labeling. Several plausible ways are 
available to biological organisms, especially during development, to implicitly 
label in this ways images and other sensory stimuli such as sounds and words. 
For images, time continuity is a powerful and primitive cue for implicit labeling. 
In fact time continuity was proposed by i-theory to learn invariance to 
transformations during development (Poggio, 2011) by associating together 
images of different transformations of the same template. The same strategy 
is used by Wang and Gupta (CVPR, 2015) by tracking patches of images in 

																																																								
3 The original i-theory deals with networks such as HMAX in which there is only 
unsupervised learning of templates for invariance. The theory also describes 
convolutional layers in DCLNs. Its recent extension (Anselmi et al., 2015) deals with 
nonlinearities such as linear rectifier units. It can be applied to convolutional and 
non-convolutional layers in DCLNs trained with backpropagation or other supervised 
techniques. 
4	The original Imagenet networks could benefit from additional shift and scale 
invariances (and other invariances), which are relatively easy to learn in a implicitly 
supervised way according to i-theory and related empirical work (see also HMAX). 
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videos. Many other strategies5 also are used: an example among many is 
egomotion information replacing labels in videos (Malik et al., 2015). Simple 
bootstrapping schemes are also effective under rather general conditions. An 
early example, among many others, is provided by Poggio, Fahle and Edelman 
(1992; see also Fahle, M., S. Edelman, and T. Poggio. Vision Research, 1995) for 
perceptual learning (in particular vernier acuity). Perceptual learning takes 
place even in the absence of feedback to the subject, that is without labels 
(Poggio et al, 1992; see also Weiss et al, 1993) showed that networks requiring 
supervised examples could still account for the data if used in a bootstrapping 
mode, in which very few initial examples correctly labeled could be sufficient 
to classify novel examples that are sufficiently similar to them. They used 
HyperBF models (equivalent to neural networks for normalized inputs) in which 
learning takes place in two distinct ways: unsupervised learning is required to 
establish, create or tune the "centers" whereas supervised learning determines 
the appropriate “synaptic" weights for the coefficients. The first type of 
learning does not require labels while the second does. Given this, here are 
some back of the envelope calculations of how many unlabeled images a baby 
could get during the first year of life. Suppose one saccade per second per 8 
hours per 360 days: this gives in the order of ~10M images. Even if only a small 
fraction, like 10%, could be implicitly labeled this would provide a sufficiently 
rich training set as suggested by the empirical results on Imagenet. It is 
interesting to speculate about developments paths for a sensory modality such 
as vision of an organism such as human baby. In a first stage of life, templates 
(corresponding to DCLN weights) could be random images; invariances could 
be learned in this stage according to i-theory by simply storing images of the 
same object during shift and scale transformations. Such a simple approach 
provides invariance and sufficient selectivity, though suboptimal, as shown by 
theory (references in Anselmi et al., 2015) and by empirical studies by Mutch 
and LeCun. In a second stage, implicitly supervised learning may take over, 
interspersed with occasional fully supervised learning6. It must be said that 
several of us do not yet believe that single DLN architectures can deal with 
challenging cognitive tasks. However, it may be possible to build a mind with 
architectures that use as modules DCL networks. The question is then whether 

																																																								
5	In cases of tasks accomplished over time, reinforcement learning can also be 
described as weakly supervised (as suggested by G. Roig). 
6 Only some special form of data augmentation, which was previously called virtual 
examples (see Niyogi, Girosi and Poggio, 1998) can be plausibly used by biological 
organisms. 
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and how the architecture and the single modules may be learned from 
experience and, if yes, how. 

 
What else is left to be done? 

Much of the answers above are just based on plausibility. They are meant to show how 
the main problems that I had could be solved. Thus they require verification and 
modifications. In addition, they suggest quite a bit of further work. Here is a sample 
of work to be done. 

• The field of ISL (implicitly supervised learning) seems important from the 
biological perspective — and eventually for engineering as well. It will probably 
to be more empirical in character than theoretical. It may include different 
forms of bootstrapping. It may yield implications for evolutionary theory via the 
Baldwin effect. 

• As I mentioned, the most surprising empirical finding related to neural 
networks and backpropagation is the effectiveness of stochastic gradient 
descent for large networks and large data. Theoretical insights on the 
underlying mathematical reasons would be highly desirable. 

• On the neuroscience side the question of the learning mechanisms is even 
more interesting. Since backpropagation does not seem biologically plausible, 
it is critical to find alternatives to it that are neurally plausible. As pointed out 
in several papers over the last 3 decades, a number of learning schemes may 
replace backpropagation while being usually more inefficient (see for instance 
the reinforcement-like algorithms described by Seung, 2003). Needless to say, 
a proposal in this direction that receives experimental support would be a 
major step in understanding the brain. There are non- trivial questions. For 
instance, do invariant (e.g. convolutional) layers require an explicit weight-
sharing among synapses or does this happen automatically as described by i- 
theory? If there is weight sharing what could the biophysical mechanism be? 
The difference amounts to whether invariance is coded by the genes and has 
been learned by evolution or is learned during development. I conjecture the 
existence of a specific plasticity mechanism as follows: the single cell model of 
the Hubel and Wiesel module suggested in i-theory and shown in Figure 1 could 
naturally support the type of plasticity required by weight-sharing. The 
hypothetical mechanism for plasticity in cortical pyramidal cells consists of 
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two parts: 
  

o a Foldyak-type Hebbian-like mechanism establishes (and possibly 
maintains) the wiring from LGN inputs to simple-cell-like subunits on 
the complex cell. 

o synapses in all subunits of the complex cell receive the same facilitation 
or depression signal for plastic changes. 

 

Figure 1. A model of a complex cell in which separate dendritic subunits play the role 
of simple cells in i-theory. If the synapses in these subunits represent the same 
template in nearby positions in the visual field similar changes in all of them 
correspond to weight- sharing in a DCLN. 

• The network of face tuned cortical patches may represent the best opportunity 
for solving a problem — face identification and other aspects of face 
perception — that is likely to be a prototype for the problem of object 
recognition. 

• The idea of an autoencoder (see for instance Hinton and Salakhutdinov, 2006) 
as an extension of Principal Component Analysis remains a theoretically 
interesting area in itself and as a way to decrease the number of labeled 
examples. It may also have neural implementations in terms of Hebbian 
mechanisms. It is related to separately trained analysis and synthesis 
networks for video compression and computer graphics (Beymer and Poggio, 
1996). 
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• Because of the success of deep learning we know that Deep Convolutional 
Learning Networks like HMAX can be trained effectively with large numbers of 
labeled examples. This may be biologically plausible if we can show that ILEs 
could be used to the same effect. What needs to be done is to train, with a 
plausible number of ILEs, biologically plausible multilayer architectures 
similar and better than HMAX (Serre et al, 2007). For instance, for visual cortex 
it would be important to take into account known parameters, such as 
receptive field sizes, related range of pooling for known invariance and 
especially eccentricity dependence of RFs — all for each of the known cortical 
areas in the ventral stream. A comparison of behavioral performance and cell 
tuning properties to  human  and primate data for several different visual tasks 
would represent a major Turing++ test for this class of models. 

• In Poggio and Smale (2003) we wrote “A comparison with real brains offers 
another, and probably related, challenge to learning theory. The "learning 
algorithms" we have described in this paper correspond to one-layer 
architectures. Are hierarchical architectures with more layers justifiable in 
terms of learning theory? It seems that the learning theory of the type we have 
outlined does not offer any general argument in favor of hierarchical learning 
machines for regression or classification. This is somewhat of a puzzle since the 
organization of cortex -- for instance visual cortex -- is strongly hierarchical. At 
the same time, hierarchical learning systems show superior performance in 
several engineering applications…”. Twelve years later, a most interesting 
theoretical question that still remains open, both for machine learning and 
neuroscience, is indeed why hierarchies. 
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