
Distribution of Classification Margins:
Are All Data Equal?

Andrzej Banburski * 1 Fernanda De La Torre * 1 Nishka Pant † 1 2 Ishana Shastri † 1 Tomaso Poggio 1

Abstract

Recent theoretical results show that gradient de-
scent on deep neural networks under exponential
loss functions locally maximizes classification
margin, which is equivalent to minimizing the
norm of the weight matrices under margin con-
straints. This property of the solution however
does not fully characterize the generalization per-
formance. We motivate theoretically and show
empirically that the area under the curve of the
margin distribution on the training set is in fact
a good measure of generalization. We then show
that, after data separation is achieved, it is pos-
sible to dynamically reduce the training set by
more than 99% without significant loss of perfor-
mance. Interestingly, the resulting subset of “high
capacity” features is not consistent across differ-
ent training runs, which is consistent with the
theoretical claim that all training points should
converge to the same asymptotic margin under
SGD and in the presence of both batch normaliza-
tion and weight decay.

1. Introduction
The key to good predictive performance in machine learn-
ing is controlling the complexity of the learning algorithm.
Until recently, there was a puzzle surrounding deep neu-
ral networks (DNNs): there is no obvious control of com-
plexity – such as an explicit regularization term – in the
training of DNNs. Recent theoretical results (????), how-
ever, suggest that a classical form of norm control is present
in DNNs trained with gradient descent (GD) techniques on
exponential-type losses. In particular, GD induces dynamics
of the normalized weights which converge for t → ∞ to-
wards an infimum of the loss that corresponds to a maximum
margin solution.

*, †Equal contributions 1Center for Brains, Minds + Machines,
MIT, MA, USA, 2Brown University, RI, USA. Correspondence to:
Andrzej Banburski <kappa666@mit.edu>.

What remains unclear, however, is the link between the min-
imum norm solutions and expected error. In this paper, we
numerically study the behavior of the distribution of mar-
gins on the training dataset as a function of time. Inspired by
work on generalization bounds (?), we provide evidence that
the the area under the distribution of properly normalized
classification margins is a a good approximate measure to
rank different minima of a given network architecture.

The intuition is that deep minima should have a margin
distribution with a relatively small number of points with
small margins. This in turn suggests a training algorithm
that focuses only on the training points that contribute to
the stability of the algorithm – that is, on data points close
to the separation boundary (once it has been established in
the terminal phase of training, i.e. after hitting 0% classifi-
cation error during training). We show, in fact, that, once
separation is achieved, good test performance depends on
improving the margin of a small number of datapoints, while
the majority can be dropped (keeping only 200 from the ini-
tial 50k in CIFAR10, for example). These results suggest
that certain points in the training set may be more important
to classification performance than others. It is then natural
to pose the following question: can we, in principle, predict
which data are more important? However, we show that the
points that mostly support the dynamics are not consistent
between different training runs due to the initial randomness.
Moreover, it turns out that before data separation, there is
no clear pattern to discern which datapoints will contribute
the most. Quite interestingly, this result is consistent with a
recent theoretical prediction(?): under stochastic gradient
descent and in the presence of Batch Normalization and
weight decay, all training points should asymptotically con-
verge to the same margin and be effectively equivalent to
each other. The randomness of which datapoints contribute
the most to classification performance is consistent with
the prediction. It also suggests the conjecture that in over-
parametrized models, we should expect the most important
features learned by the network to be dependent on random
factors such as initialization.



Distribution of Classification Margins

1.1. Related Work

Following the work of (?), which showed that over-
parametrized networks trained on randomized labels can
achieve zero training error and expected error at chance
level, recent papers analyze the dynamics of gradient de-
scent methods. (?????) showed convergence of gradient
descent on overparametrized non-linear neural networks.
Empirical work shows that sharp minima generalize better
than flat minima, that the optimization process converges to
those with better generalization, (??) and that better noise
stability (stability of the output with respect to the noise
injected at the nodes of the network) correlate with lower
generalization error (???). Several lines of research propose
low complexity measures of the learned network to derive
generalization bounds. Spectrally-normalized margin-based
generalization bounds are derived in (?), which we test here.
Bounds obtained through a compression framework that
reduces the effective number of parameters in the networks
based on noise stability properties are described in (?) who
more recently provided a sample complexity bound that is
completely independent of the network size (?). Our algo-
rithms for dataset compression are indirectly related to the
data-distillation approach introduced in (?) and to the noise
stability described in (?). In preparing to put this version
on arXiv, another paper dealing with reduction of training
examples appeared (?).

2. Theoretical motivations
We start with a short review of the recent theoretical findings
that inspire our numerical investigations.

2.1. Notation and Background

In this paper we assume the standard framework of super-
vised learning via Empirical Risk Minimization (ERM) al-
gorithms for classification problems. For details see Supple-
mentary Material or papers such as (?).

Deep Networks We define a deep network with K layers
with the usual coordinate-wise scalar activation functions
σ(z) : R → R as the set of functions f(W ;x) =
σ(WKσ(WK−1 · · ·σ(W 1x))), where the input is x ∈ Rd,
the weights are given by the matrices W k, one per layer,
with matching dimensions. For simplicity we consider
homogenous functions, i.e. without bias terms. In the
case of binary classification, the labels are y ∈ {−1, 1}.
The activation function is the ReLU activation. For the
network, homogeneity of the ReLU implies f(W ;x) =∏K
k=1 ρkf(V1, · · · , VK ;x), where Wk = ρkVk with the

matrix norm ||Vk||p = 1 and ||Wk|| = ρk. In the binary
case, when ynf(xn) > 0 ∀n = 1, · · · , N we say that the
data are separable wrt f ∈ F, that is they can all be correctly
classified. We define the margin of xn as ηn = ynf(xn)

and the margin of the whole dataset as the smallest of all
margins η = minnηn, corresponding to a support vec-
tor x∗. For the multi-class case, if the prediction score is
a vector {f1(x), . . . , fC(x)} for C classes, with fyn(xn)
the prediction for the true class, then the margin for xn is
ηn = fyn(xn)−max

j 6=yn
fj(xn).

Dynamics & margin maximization It has been known for
some time now that the norm ρ =

∏
k ρk diverges to infinity

as we run GD (???). This means that the weights Wk do not
converge in any meaningful sense, and it is only sensible to
study the convergence of the normalized weights Vk.

When we minimize exponential-type losses (like the ex-
ponential loss, logistic, or cross-entropy), we expect that,
asymptotically, the convergence to a data-separating solu-
tion only depends on data with the least negative exponents,
i.e. the points with the smallest classification margin (the
equivalent of support vectors in SVMs). Minimization of
exponential-type losses then corresponds to the problem of
maximizing the classification margin. Recent body of work
has been showing that SGD biases highly over-parametrized
deep networks towards solutions that locally maximize mar-
gin (???) in presence of normalization techniques (such as
batch normalization).

Neural Collapse Given the margin maximization results,
the natural question one might ask is which data are the
ones that contribute the most to the solution. As in the
case of linear systems, the answer clearly depends on the
amount of overparametrization. Recent empirical observa-
tions suggest that with overparametrization, SGD leads to
the phenomenon of Neural Collapse (?) after data separation
is achieved. One of the Neural Collapse properties (NC1)
says that within-class activations all collapse to their class
means, implying that the margins of all the training points
converge to the same value. While this might seem unin-
tuitive, embedding N points in D-dimensional space with
D � N allows for many hyperplanes equidistant from all
the points. A recent theoretical analysis predicts that NC1(?)
depends on both the use of normalization algorithms (such
as batch normalization) and L2 regularization during SGD.
The prediction is consistent with our results in Figure ??.

The theory thus suggests that effectively only one example
per class is needed to describe the decision boundaries of
the learned model – and that any of the training points could
be used. We explore in this work whether this prediction is
correct.

2.2. Margins, ρ and expected error

Assuming that weight decay, small initialization, and batch
normalization provide a bias towards a solution with “large”
margin, the obvious question is whether we can obtain any
guarantees of good test performance. While predicting test



Distribution of Classification Margins

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.0010

0.001

0.0005

N
or

m
al

iz
ed

 M
ar

gi
n

Normalized Margin

Co
un

t

Bin Number

1K            10K           20K             30K           40K          50K   

Figure 1. Natural and Random Labels - Margins The top figure
shows the margin of the 50k datapoints in CIFAR10 ranked by
their individual margin size for 2 convolutional networks trained
on either natural or randomized labels pass data separation and
margin convergence. The circle enlarges the numerical values
of the five datapoints with the smallest margins. In the bottom
figure, the range of the margin of the first 100 datapoints (those
with the smallest margin) was equally divided into 10 bins with
the count of data points in each bin shown. The first two bins of
the network trained with random labels have significantly more
datapoints, while the network trained with natural labels ends with
less support vectors closer to each other.

performance purely from training behavior is challenging,
we use simple bounds (?) to predict relative performance
between different minima for the same network architecture.

A typical generalization bound that holds with probability
of at least (1− δ), ∀g ∈ G has the form (?):

|L(g)− L̂(g)| ≤ c1RN (G) + c2

√
ln( 1δ )

2N
, (1)

where L(g) = E[`γ(g(x), y)] is the expected loss, L̂(g)
is the empirical loss, RN (G) is the empirical Rademacher
average of the class of functions G measuring its complexity,

and c1, c2 are constants that reflect the Lipschitz constant of
the loss function and the architecture of the network. The
loss function here is the ramp loss `γ(g(x), y) defined in (?)
as discounting predictions with margin below some arbitrary
cutoff γ (with `0 being the 0-1 error, see Sup. Mat.).

We now consider two solutions with the same small training
loss obtained with the same ReLU deep network and corre-
sponding to two different minima with two different ρs and
different margins. Let us call them ga(x) = ρaf

a(x) and
gb(x) = ρbf

b(x) and let us assume that ρa < ρb. Using the
notation of this paper, the functions fa and fb correspond to
networks with normalized weight matrices at each layer.

We now use the observation that, because of homogeneity of
the networks, the empirical Rademacher complexity satisfies
the property RN (G) = ρRN (F), where G is the space
of functions of our unnormalized networks and F denotes
the corresponding normalized networks. This observation
allows us to use the bound in Equation ?? and the fact that
the empirical L̂γ for both functions is the same to write

L0(f
a) = L0(F

a) ≤ L̂γ + c1ρaRN (F̃) + c2

√
ln( 1

δ )

2N and

L0(f
b) = L0(F

b) ≤ L̂γ + c1ρbRN (F̃) + c2

√
ln( 1

δ )

2N . The
bounds have the form

L0(f
a) ≤ Aρa + ε and L0(f

b) ≤ Aρb + ε (2)

Thus the bound for the expected error L0(f
a) is better than

the bound for L0(f
b). Similar results can be obtained taking

into account different L̂(f) for the normalized fa and f b

under different γ in Equation ??.

Can these bounds be meaningful in practice? The solutions
a and b achieve the same training loss, which means that
they must both have different norms ρ and different dis-
tributions of classification margins. In what follows, we
show empirically that indeed we can effectively predict the
relative generalization performance using the information
of the distribution of classification margins on the training
set.

3. Experimental methods
In most of the numerical experiments, we used a 5-layer
neural network implemented in PyTorch and trained on
the CIFAR10 or CIFAR2 (cars and birds from CIFAR10)
datasets using either SGD or full GD with cross-entropy
loss. The network has 4 convolutional layers (filter size 3 ×
3, stride 2) and one fully-connected layer. All convolutional
layers are followed by a ReLU activation, and for some
experiments, batch normalization. The number of channels
in hidden layers are 16, 32, 64, 128 respectively. In total,
the network has 273, 546 parameters. The dataset was not
shuffled. The learning rate was constant and set to 0.01, with
momentum set to 0.9 unless otherwise stated. Our test per-



Distribution of Classification Margins

formance is not state of the art, since we wanted to perform
neither data augmentation nor any explicit regularization to
match the theoretical setting. These results however extend
to networks with state of the art performance, see Table ??
for results on DenseNet-BC and more in Sup. Mat.

In the absence of batch normalization, the margin distri-
bution of each network is normalized by ρ, the product
of convolutional layer norms. For networks with batch-
normalization, the margin distribution was normalized by
the product of the batch-normalization layer norms and the
norm of the last fully-connected layer.

4. Margin distribution
The recent Neural Collapse (?) results would suggest that
at convergence the margin distribution should be flat. Con-
vergence in the margin however is known to be very slow
(?). In this section we experimentally study the shape of the
distribution of margins on the whole training dataset and
then go onto using it to predict generalization performance.

4.1. Natural vs random labels

We ran numerical experiments to find the relation between
the margin, stability and generalization gap for two convolu-
tional neural networks. One was trained with natural labels
and the second one trained with randomized labels, an idea
explored in (??).

In Figure ??, we took both networks after data separation
and close to margin convergence and extracted the margins
for each data point, which allowed us to sort them according
to the margin. The margins for all datapoints are larger
for natural labels than for randomized labels. Theory sug-
gests that the datapoints important for margin maximization
should be closer to each other in the feature space for ran-
domized labels than for natural labels, consistent with lower
algorithmic stability (?) and chance performance. To test
this, we took the 100 datapoints with the smallest margin
for both networks, divided the margin range into ten bins
and counted the number of datapoints in each bin. The first
five bins for the network trained with natural labels had less
datapoints than for randomized labels, with the first bin only
having one datapoint for natural labels while for randomized
labels there were 14. This experiment supports the idea that
having a smaller set of datapoints with small margin (the
equivalent of support vectors in SVMs) leads to both better
stability and test performance. This should be contrasted
with Neural Collapse – we find that the margin distribution
after 200 epochs of SGD is far from flat, but rather has a
few small margin datapoints and a similar number of high
margin points, with a flatter middle range.

Margin Distributions – Different Initializations

2.65
3.45
3.65
4.1
4.65
5.0
5.95

Test Error

0                    2000               4000 6000 8000 10000

Datapoints

40-70                    70-100             100-130               130-160             160-190    

Small-Margin Data-points Range

Av
er

ag
e 

Te
st

 E
rr

or

5 %

4%

3%

2%

1%

0%

22 nets
54 nets
18 nets
4 nets
2 nets

Av
er

ag
e 

Te
st

 E
rr

or

Average Margin AUC

2.65 %
3.45 %
3.65 %
4.1 %
4.65 %
5.0 %
5.95 %

0.08

0.06

0.04

0.02

0.00

N
or

m
al

iz
ed

 M
ar

gi
n

Figure 2. Different Minima - Margin Distributions 100 conv nets
(as in Section ??) were initialized with varying standard deviation
(from 0.01 - 0.05) so that they converge to different test errors.
The top figure shows the margin distribution of 7 representative
networks for each test performance. The middle image shows
all 100 networks divided into bins given their number of small
margin data and the average test error of these ranges. The bottom
provides evidence that the AUC of the margin distribution is a
predictor of generalization performance. Here we plotted the
result with a cutoff of γ = 0.1.

4.2. Margin distribution and generalization
performance

How can we use the information about the margin distribu-
tion to predict generalization performance? In (?), it was
shown that the training loss evaluated on the normalized
deep network allows for a reasonable prediction of test loss,
which conforms to arguments from Section ??. It is natu-
ral to ask then whether the smallest normalized margin or
a simple function of all the margins is a potentially finer
measure.

To probe several metrics, we ran 100 networks on a CIFAR2
classification task, where architecture and hyperparame-
ters stayed constant across all networks but the standard
deviation for random initialization was varied. This was
motivated by (?), since we wanted to obtain networks that



Distribution of Classification Margins

converge to different minima and analyze their resulting
margin distributions. We found that the area under the curve
(AUC) of the margin distribution is a good predictor of
generalization performance as seen in the bottom of Figure
??. Moreover, the shape of the margin distribution is also a
predictor: the initial curvature of the distribution indicates
how many datapoints have small margins. Our experiments
show that the number of small margin data can predict the
range of test error.

These results are shown in Figure ??: on the top we can see
the sorted margin distributions of 7 representative networks
for each minima (there are 10,000 datapoints in CIFAR2).
For smaller test errors, the normalized margin distribution
contains higher values, higher curvature, and starts off with a
higher slope relative to the margin distributions of large test
error (larger initialization). In the middle, we counted the
number of datapoints with small margins for each network
(using a margin cutoff of 0.01 above the smallest margin,
which corresponds to setting γ = 0.01 in the ramp loss) and
calculated the average test error for networks with different
ranges of small margin points. As shown, we find that larger
proportion of small margin data results in higher averages
of test error. On the bottom, we divided the 100 networks
into sorted bins of 10 and calculated the average AUC and
average test error for γ = 0.1. We see that the larger the
margin AUC, the better the test performance.

In Section ?? we derived bounds for two different minima
and asked if these bounds could be meaningful in practice.
These experiments suggests that the shape of the margin
distributions and area under it can indeed effectively predict
relative generalization performance.

4.3. Time evolution of the margin distribution

Do these results mean that we are finding no NC1? On the
left of Figure ??, we find that in the presence of both regular-
ization and batch normalization, the distribution of margins
does indeed get flatter with time. In further experiments we
found however that without either L2 regularization or batch
normalization, such flattening is not apparent, see Sup. Mat.
This is in line with all the experiments in (?) using both of
these techniques, and suggests that Neural Collapse relies
on both regularization and normalization in agreement with
the theoretical predictions of (?).

To further explore the relationship of margin distribution in
the context of Neural Collapse, we visualize and analyze the
margin distribution for individual classes. On the top-right
of Figure ??, we observe that for some classes, the margin
distribution shifts and flattens more than for other classes.
For class-label 9, the margin distribution shifts and flattens
more over time (going from blue at epoch 0 to green at
epoch 200) than for class-label 3. This effect is absent if we
do not use batch normalization, as shown in the bottom right.

Thus, although margin distributions of individual classes
are potentially shifting the margin distribution at different
scales, this is dependent on batch-normalization and regu-
larization (see Sup. Mat. for regularization experiments), as
suggested in (?).

5. Compressing the training set dynamically
As suggested by the notion of stability (?), datapoints close
to the separation boundary are crucial for good test perfor-
mance. Data with large margin, however, do not contribute
to stability. It has been long observed that training long past
the time of achieving the separation of the data (i.e. 0%
training error) leads to improved test performance. This has
been understood (?) to result from the fact that while the
training classification accuracy converges fast, the margin
converges much slower. As we keep training the network
past separability, the margin keeps improving (???) (see
also the Sup. Mat.), with the largest contributions to this
improvement coming from the datapoints with the current
smallest margin.

These theoretical considerations suggest that after we have
separated the data, we should be able to safely drop training
datapoints with large margin. The question now is: how
much can we compress, without spoiling the generalization
performance? We can see in Figure ?? that gradually re-
moving all but 200 datapoints with the smallest margin has
no impact on the test performance for a well performing
network (solid red line), if we start removing the data after
separation has been achieved. More interestingly, we get a
very minimal drop in performance (∼ 2%) when we keep
only 20 datapoints in the training set. We find that minima
that perform better can be compressed more. Figure ??
compares two minimizers with different test performance:
we can readily see that further removal of datapoints leads
to more degradation of performance for the network with
worse test error, as compared to the better performing net-
work. We thus have a demonstration that, at finite times,
larger number of small margin data leads to worse test per-
formance.

This approach is indirectly related to data distillation that
has been studied in (?). There, the authors noticed that it is
possible to train a CIFAR10 classifier on just 10 synthetic
datapoints and achieve 54% accuracy on the test set. Unlike
in the case of data distillation however, here we first train the
network to the point of separability and by gradually remov-
ing datapoints achieve no significant drop in performance up
to keeping∼ 200 datapoints. These results strongly suggest
a novel training scheme for speeding up convergence, in
which we remove most of the training data (those with large
margin) right after reaching separation. Rapid compression
of the dataset down to 100 examples hurts performance,
but keeping 200 points only leads to ∼ 2.89% reduction



Distribution of Classification Margins
N

or
m

al
iz

ed
 M

ar
gi

n

Figure 3. Margin Distribution over Time A convolutional network (using the architecture and parameters in Section ??) was trained
on CIFAR10, the margin distribution was recorded and sorted at every epoch. On the left, we see the margin distribution of all 50,000
datapoints from epoch 1 (dark-blue) to epoch 200 (light-green) as indicated by the color bar on the far-right. To explore the results in
neural collapse, we visualize the margin distribution of individual classes for networks trained with batch normalization and without.
Some class-labels seem to have more of an effect on the distribution for that label than others but this is dependent on batch normalization.

Table 1. Drop (in %) of test performance after compression.
CONVOLUTIONAL NETWORK (CIFAR10) WITH SGD

BATCH SIZE
LEARNING RATE

10−1 10−2 10−3

200 18.29 25.15 X
100 2.55 22.18 11.810
50 1.68 4.84 11.55
20 0.45 4.21 8.99
10 1.75 0.86 6.48
1 0.18 0.46 1.91

DENSE NETWORK (CIFAR10)
OPTIMIZER ADAM SGD

BATCH SIZE
LEARNING RATE

10−1 10−2 10−3 10−1 10−2 10−3

200 7.25 2.78 4.11 1.54 5.99 33.31
100 1.88 0.95 2.70 0.72 3.94 3.60
50 0.12 0.85 1.72 0.11 2.38 4.08

of accuracy for our CNN architecture trained with SGD,
a batch-size of 50 and a learning rate of 0.01, see Figure
??. A more thorough search of the hyperparameter space
reveals that with large learning rates and small batch size,
compression of CIFAR10 down to 200 data can lead to drop
in performance as low as 0.18% for our CNN and 0.11% for
DenseNet-BC, as seen in Table ??. For more details on the
experiments, see Sup. Mat.

5.1. Similar Initialization Leads to Different Important
Data

It might be tempting to try to understand why certain dat-
apoints seem to drive the dynamics in the terminal phase

of training (post data separation). After all, we can see in
Figure ?? that minima of different levels of test performance
have a totally different set of small margin data. The con-
verse does not seem to be however true, as can be seen in
Figure ??, where we initialized the network several times
from the same statistical distribution (normal with std 0.01).
We find that the initial randomness propagates through the
training procedure, leaving us with similarly performing
minima (3.54% and 4.65% test errors) with different small-
est margin data.

On the top of Figure ??, we can see the training and test
error of two networks trained on CIFAR2. The vertically
vectorized images at each epoch represent the overlapping
set of the 20 datapoints with thee smallest margins (”support
vectors”) between the two networks. Visually, we can see
there are not many overlapping datapoints. The bottom plot
shows the percentage of overlapping datapoints in the 200
smallest margin datapoints of the networks. Although over
time the percentage of overlapping data increases, only 63
percent of the same datapoints in this bin of 200 are present
in both networks at margin convergence (last epoch).

Not only does the randomness at initialization play a role,
but even more importantly, we find that for a given training
run, we cannot reasonably predict which data are going to
support the dynamics the most until just before data sep-
aration takes place, since only 40 percent of the support
vectors at margin convergence are present at data separa-



Distribution of Classification Margins

Figure 4. Data Points Removal Algorithm Networks (A) and (B) were randomly initialized from a normal distribution with std of 0.01
and 0.09, respectively. This leads the networks to converge to different minima with different test errors (∼ 13%). After data separation
and full convergence, the algorithm ranks the datapoints based on their margin size and starts removing datapoints during further training,
removing those with highest margins at every point. At every blue and green point, a set of points were removed, with the numbers
displaying the amount of datapoints left in the training set. The right side zooms in to show that the test error does not significantly
change until 100 datapoints are left (by 0.68% for (A) and 1.43 % for (B)). The test error changes more when there are only 20 datapoints
left for both (A) and (B). The figure inserts show these 20 datapoints for both networks. The two sets are different, showing that the
networks converged to infima with different support.

Figure 5. Compression After Data Separation During training,
right after data separation, datapoints with the large margins were
removed, leaving either 100 or 200 datapoints with the smallest
margins. When the dataset is compressed to 200 datapoints the test
error increases slightly but plateaus to a good test performance
for the network architecture (2.89 % change).

tion, see Sup. Mat. Figure ?? shows the margins of 600
datapoints (200 smallest, 200 in the middle and the largest
ones) throughout training. We see from this that before data
separation happens, it seems impossible to discover using
only the margin information which datapoints will end up
having the smallest margin.

6. Discussion and Conclusions
Recent theoretical results (???) have shown that gradient
descent techniques on exponential-type loss functions con-
verge to solutions of locally maximum classification margin
for overparametrized deep networks. In this paper we stud-
ied the distribution of margins on the entire training dataset
and demonstrated that the area under the distribution is a
good approximate measure for ranking different minima of
the same network.

Inspired by the recent theory(?) predicting various proper-
ties of Neural Collapse (?), we investigated the prediction



Distribution of Classification Margins

Figure 6. Same Initialization - Different small margin data-
points Two networks were initialized from the same margin dis-
tribution (standard deviation 0.01) and trained on CIFAR2. Both
networks converge to similar minima but the exact datapoints with
the smallest margins differ. On the top, the errors are depicted and
the vectorized images (cars and birds) represent the overlapped
datapoints in the smallest 20 – there are only a few overlapping
points. The percentage of overlapping datapoints for the smallest
200 margins are depicted at the bottom (60 % of them overlap).

that none of the training data contribute more towards good
generalization performance than others, at least asymptoti-
cally. We found that while on long timescales the distribu-
tion does get flatter, the dynamics effectively depends only
on a few datapoints. Once separation sets in, we can success-
fully compress most of the training datapoints (removing
those {xn, yn} with largest margins from the training set),
going down from 50k examples to less than 200, without
compromising on performance. In fact, since the property
NC1 implies that we could in principle compress the train-
ing dataset down to one datapoint per class, very much in
line with the distillation results of (?). Thus, in the presence
of SGD and both batch normalization and L2 regularization
(all three seem important for Neural Collapse to happen), we
expect that all data are equally important to classification.

In practice, we find that the compressed dataset we can ob-
tain is highly dependent on the randomness of initialization.
An obstacle to effectively predicting a good compressed set
is the fact that the relevant datapoints only emerge around
the time of data separation. This means that the algorithm
for compressing the training dataset does not provide a mas-
sive speed boost, as one could hope. More importantly
however, these results cast doubt on the endeavour of inter-
preting the features that a network learns – we can expect
that the randomness of which training points contribute the
most to the solution of the optimization problem implies that

Figure 7. Visualization of the 200 smallest, middle and largest
margins over time. Data separation occurs at epoch 40. This
network was trained with a batch size of 1 using SGD with a
learning rate of 0.01. There is no clear way of predicting which
datapoints will have smallest margin before data separation.

the ”high capacity” features most relevant to classification
are also random and inconsistent between different training
runs.

The results in this article motivate potential more fine-
grained investigations into the early pre-separation dynam-
ics – if we could earlier predict the compressed dataset, we
would have a way to drastically speed up training. Addi-
tionally, it would be interesting to understand why dataset
compression is so successful with small batch size and large
learning rate – is it connected to the suggestion in (?) that
small batch SGD is more likely to find global minima of the
loss?

Acknowledgments This material is based upon work sup-
ported by the Center for Minds, Brains and Machines
(CBMM), funded by NSF STC award CCF-1231216.



Distribution of Classification Margins

A. Empirical Risk Minimization
We recall a few basic definitions from (?) about Empirical
Risk Minimization as a class of algorithms for supervised
learning.

We assume there exists an unknown probability distribution
µ(x, y) on the product space Z = X × Y . We assume X
to be a compact domain in Euclidean space and Y to be a
closed subset of Rk. The measure µ defines an unknown
true function T (x) =

∫
Y
ydµ(y|x) mappingX into Y , with

µ(y|x) the conditional probability measure on Y .

We are given a training set S consisting of n samples (thus
|S| = n) drawn i.i.d. from the probability distribution on
Zn, with S = (xi, yi)

n
i=1 = (zi)

n
i=1.

The basic goal of supervised learning is to use the train-
ing set S to “learn” a function fS that evaluates at a new
value xnew and (hopefully) predicts the associated value
of ypred = fS(xnew). In this paper we consider the bi-
nary pattern classification case in which y takes values from
{−1, 1}e.

In order to measure goodness of our function, we need a
loss function `(f, z).

Given a function f , a loss function `, and a probability
distribution µ over X , we define the expected error of f as:

I[f ] = IEz`(f, z)

In the following we denote by Si the training set with the
point zi removed and Si,z the training set with the point
zi replaced with z. For Empirical Risk Minimization, the
functions fS , fSi , and fSi,z are almost minimizers (see
Definition ??) of IS [f ], ISi [f ], and ISi,z [f ] respectively.

In the following, we will use the notation IPS and IES to
denote respectively the probability and the expectation with
respect to a random draw of the training set S of size |S| =
n, drawn i.i.d from the probability distribution on Zn.

Given a function f and a training set S consisting of n data
points, we can measure the empirical error (or risk) of f as:

IS [f ] =
1

n

n∑
i=1

`(f, zi).

Definition A.1 Given a training set S and a function space
H, we define almost-ERM (Empirical Risk Minimization)
to be a symmetric procedure1 that selects a function fε

E

S

1

Definition A.2 An algorithm is defined as symmetric if over train-
ing sets S

IES`(fS , z) = IES,π`(fS(π), z),

for any z and S(π) = {zπ(1), ..., zπ(n)} for every permutation π

that almost minimizes the empirical risk over all functions
f ∈ H, that is for any given εE > 0:

IS [f
εE

S ] ≤ inf
f∈H

IS [f ] + εE . (3)

In the following, we will drop the dependence on εE in
fε

E

S . Notice that the term “Empirical Risk Minimization”
(see Vapnik (?)) is somewhat misleading: in general the
minimum need not exist. In fact, it is precisely for this
reason that we use the notion of almost minimize given in
equation (??) since the infimum of the empirical risk always
exists.

We will use the following notation for the loss class L
of functions induced by ` and H. For every f ∈ H, let
`(z) = `(f, z), where z corresponds to x, y. Thus `(z) :
X × Y → R and we define L = {`(f) : f ∈ H, L}.

Remark:In the learning problem, uniqueness of the solution
of ERM is always meant in terms of uniqueness of ` and
therefore uniqueness of the equivalence class induced in
H by the loss function L. In other words, multiple f ∈ H
may provide the same `. Even in this sense, ERM on a
uGC class is not guaranteed to provide a unique “almost
minimizer”. Uniqueness of an almost minimizer therefore is
a rather weak concept since uniqueness is valid modulo the
equivalence classes induced by the loss function and by ε-
minimization.

A.1. Ramp loss

In the main part of the paper, we use the ramp loss, defined
in (?) as

`γ(y, y
′) =


1, if yy′ ≤ 0,

1− yy′

γ , if 0 ≤ yy′ ≤ γ,
0, if yy′ ≥ γ.

We define `γ=0(y, y
′) as the standard 0 − 1 classification

error and observe that `γ=0(y, y
′) < `γ>0(y, y

′).

B. Invariance of data-fitting under deletion of
datapoints

In the paper we study stability by removing datapoints from
the training set. One obvious question is whether the critical
points of the network trained on the whole dataset are also
critical points for the network trained on the smaller set.
The answer is to this is affirmative for the solutions that fit
the data, as can be seen below.

Let us start with the simpler case of regression, i.e. the
square loss L = 1/N

∑
n (f(W ;xn)− yn)2. The inter-

from {1, ..., n} onto itself.



Distribution of Classification Margins

polating solution W ∗ is the global minimum satisfying
f(W ∗;xn) = yn ∀n. It is straightforward to see that if
f(W ∗; ·) fits {{x1, y1}, . . . , {xn, yn}}, it will also fit all
the data sans {xi, yi} for any i. For non-interpolating min-
ima, however, we need to satisfy∑

n

(f(W ;xn)− yn)∇wf(W,xn) = 0, (4)

with En ≡ (f(W ;xn)− yn) 6= 0. Notice that this leaves
us two possible situations – either ∇W f(W ;xn) = 0
or the linear combination vanishes. In the first case, for
ReLU networks, it follows by the structural property that
f(W ;xn) = 0, which is a trivial solution. The linear com-
bination on the other hand is immediately seen to be unsta-
ble to removing a datapoint – you cannot remove a single
nonzero term from a vanishing sum and have it still be zero.
Hence, in the case of regression, interpolating minima are
invariant to removing datapoints from the training set.

In the case of classification, the story is a bit more involved,
since strictly speaking global minima are at infinity. We can
consider however the dynamics of normalized weights V ,
in which case we have the condition (for exponential loss)∑

n

e−ρynf(V ;xn)yn

(
∂f(V ;xn)

∂Vk
− Vkf(V ;xn)

)
= 0.

(5)
For ρ large enough, the main contributions to this sum come
from the datapoints for which ynfV (xn) is the smallest
positive value. We see immediately that removing one of the
other points will have a miniscule influence, but removing
a datapoint with the smallest margin could lead to large
changes, as none of the exponential coefficients e−ρynfV (xn)

are zero. Thus removing datapoints for which VkfV (xn) 6=
∂fV (xn)
∂Vk

does not leave us with the same critical point. What
does, however, get preserved in this case is the notion of
separability – if ynf(V ∗;xn) > 0 ∀n, then the smaller
dataset is also immediately separable at the point V ∗, even
if that point is not necessarily a critical point.

C. Further experiments
We provide here further experiments exploring the relation
between margin maximization, the margin distribution and
generalization performance.

C.1. Landscape of Smallest-Margin Datapoints

In Figure 3 of the main text, we presented an algorithm
that allows the removal of datapoints with large margins
after data-separation and convergence with little effect on
the test performance. This algorithm requires the network
to converge to a set a datapoints with the smallest margins,
which usually happens much after data-separation but it
results in a very small test performance decrease (0.6%).

Here, we present experiments that guided the results in Fig
4 of main text, where we showed that in the epoch right after
data separation 99.6% of the datapoints can be removed
with a test performance decrease of only 2.9%.

The question we ask in the following experiments is what
percentage of the set of smallest-margin datapoints to which
the network converges to can be predicted right after data
separation. We take networks with the same architecture as
those in the main text, trained on the full CIFAR10 dataset
with SGD on cross-entropy loss and extract the datapoints
with the smallest margins at every epoch. We take the con-
verged set of datapoints (last epoch on each figure) and
check how many of them were present at each epoch and
display those datapoints on Fig ?? and Fig ??. The ac-
tual images are shown, the datapoints are ordered from
the smallest margin starting at the top to the largest at the
bottom for every preceding epoch. The empty squares indi-
cate that none of the datapoints from the set of converged
small margin datapoints is present. The ordering of the
datapoints continues to change after data-separation but a
large number of them are present at data-separation. In Fig
??, data-separation occurs at epoch 25. After taking the
twenty datapoints with the smallest margin to which the
network initially converges to (at epoch 60), we observe that
55%(11/20) of those datapoints are present at the epoch of
data separation and the first four datapoints change order
only slightly throughout. Fig ?? shows a network initialized
slightly different (through PyTorch’s random initialization),
where we train the network for longer and instead of only
extracting 20 of the datapoints with the smallest margins,
we extract 100. Here, we take the set of datapoints to which
the network converged to at epoch 100 and indicate how
many of these are present at every preceding epoch. At data-
separation, 85% of the 20 datapoints with smallest margins
and 40% of the first 100 are present.

These results suggest that more experiments like these could
provide bounds for how early and how many datapoints
can be removed during training without significantly af-
fecting test performance. Interestingly, the datapoints with
the smallest margins for both experiments mostly include
classes that are visually similar to the human eye (due to the
backgrounds and CIFAR10 resolution), such as airplanes,
birds and boats. Further experiments can also give more in-
sights on the dataset-dependence of the margin distribution.

Since many of the datapoints with smallest margins at con-
vergence are present at data-separation, in Fig 4 of main text,
we removed 49,9800 of the datapoints and observed a de-
crease of test performance of 2.9%. To explore whether the
same holds for architectures with higher test performance ,
we ran the same experiment but with a DenseNet that per-
forms with around 90.2% accuracy with data-augmentation
and other optimizers. In this experiment, we only use SGD



Distribution of Classification Margins

Figure 8. Datapoints with Smallest Margin (20) A 6-layer neural network implemented in PyTorch was trained on the full CIFAR-10
dataset with Stochastic Gradient Descent (SGD) on cross-entropy loss. The figure shows the test and training error as well as the 20
datapoints with the smallest margin if those datapoints are in the set of datapoints in the last epoch (set of datapoints the network
converges to), otherwise the datapoints are not displayed. At data separation, 55 percent of the first 20 datapoints in the last epoch are
already present, suggesting that data compression can be performed right after data separation.

and perform no data-augmentation, which results in lower
test performance (82.7%) but still higher than the simple
convolutional network presented in the main text. Fig ??
shows that removing down to 200 datapoints with the small-
est margins results in a decrease of test performance of
4.49%. This is a higher drop than for the convolutional
network, but still results in higher performance than the net-
work used in the main text. In the future, we plan to explore
this algorithm with different architectures and batch-sizes.
Currently, after the removal of datapoints, we use GD but it
would be interesting to explore the test error with SGD on
different batch sizes.

C.2. Replace-one stability experiment

Here, we empirically explore the stability of a network with
respect to the input data. We take a network trained with the
full dataset and after data-separation we replace one of the
datapoints from the training set with one from the testing
set and remove this datapoint from the testing set. We are in-
terested in the differences caused by replacing the datapoint
with the smallest margin or any other random datapoint.
We repeated this experiment on 1000 trials and obtained
an average difference in test loss, test error, norm ρ of the

network, normalized output and the margin of the network
for both the replacement of the smallest-margin datapoint
and a random datapoint. Fig ?? shows that removing the
former results in a significantly higher difference on the test
loss and ρ than replacing the latter.

C.3. True vs. random labels

In the main part of the article we discussed the distributions
of margins for the network trained both on natural labels,
as well as on randomized labels. As observed in (?), the
network trained on random labels still has sufficient capacity
to separate the data fully, but it takes longer to converge to
0% training error.

This slower convergence to data separation can be also seen
in the plot of the smallest margin for the two networks
in Figure ??. As observed in the main part of the article,
the margin of the normalized network f(V ;x) trained on
randomly labeled data is much smaller than the true labels
case. It’s interesting to note that the two networks can reach
similar value of loss, but in the case of true labels this is
done by maximizing the separability of data, and hence
margin, while in the randomly labeled case the only way
to reach small cross-entropy loss is through increasing the



Distribution of Classification Margins

Figure 9. Datapoints with Smallest Margin (100) A 6-layer neural network implemented in PyTorch was trained on the full CIFAR-10
dataset with Stochastic Gradient Descent on cross-entropy loss. The figure shows the test and training error as well as the 100 datapoints
with the smallest margin if those datapoints are in the set of datapoints in the last epoch, otherwise the datapoints are not displayed. At
data separation, 40 percent of the first 100 datapoints and 85 percent of the 20 datapoints in the last epoch are already present, suggesting
that data compression can be performed right after data separation.



Distribution of Classification Margins

Figure 10. Compression After Data Separation (DenseNet) During the training of a DenseNet, right after data separation, datapoints
with the large margins were removed, leaving either 100 or 200 datapoints with the smallest margins. When the dataset is compressed to
200 datapoints the test error goes slightly higher but plateus to a test performance accuracy only 4.49% lower than the network trained
on the full dataset on the same number of epochs.

norm ρ, see (?).

C.4. Neural Collapse - Margin Distribution for Each
Class

In the main text, we showed the change of the margin dis-
tribution over time. When networks are trained with batch
normalization and regularization, the margin distribution
shifts and flattens as the network converges. This is the case
for some classes more than others. In the main text, we
showed class 6 and 9 as examples. Here we show all classes
for both a network trained with batch normalization (Fig ??)
and without batch normalization (Fig ??).

There are several potential future questions these results
raise with respect to Neural Collapse. A question we are
exploring is why batch normalization is required for Neural
Collapse and the flattening of the margin distribution over
time. Another question to explore is why this behavior is
true for some classes more than others; Is class-specific
behavior dependent on initialization and hyper-parameters,
or is it independent?

C.5. More Details on Compression Experiments

The continuous downsizing experiments implemented a
continuous dataset downsizing regime. From the original
50,000 datapoints, we started by removing the 5,000 training
samples with the largest margin until only 10,000 datapoints
remained in the dataset. Then, we removed 1,000 at a time
until 1,000 datapoints remained, followed by removing 100
at a time then by 10, and finally 1 at a time. After removing
each chunk of datapoints, the network was retrained until
reaching perfect separation again.

The immediate downsizing experiments implemented a one-
time removal of datapoints. A model was trained to 100%
training accuracy on the original 50,000 datapoints. After
convergence, the margins of the data points were calculated,
and all except the 200 with the smallest margin size were
removed.

Both sets of experiments were run with the CIFAR-10
dataset using PyTorch. We used a 5-layer CNN with 4
convolutional layers and one fully connected layer, with
each of the former followed with a batch normalization
layer and a ReLU nonlinearity layer.



Distribution of Classification Margins

Figure 11. Replace-one Stability We trained a network to full convergence and use the replace-one algorithm to investigate the average
difference caused by replacing the smallest-margin datapoint vs. replacing a random datapoint. The results show the average difference
from the same network being trained continously on the full data-set vs. trained on Si, the dataset with one of the data points randomly
replaced by one in the test set (and removed from the test set). Removing the smallest-margin datapoint has a significant higher influence
on the test loss and ρ.

In the continuous removal experiments, along with standard
SGD and the Adam optimizer, we used a learning rate of
0.01 and batch sizes of 254 until datapoint removal, at which
point we performed full gradient descent. No data augmen-
tation was performed for these networks. We additionally
experimented with a DenseNet-BC implementation with 6,
12, 12, and 16 blocks.

In the immediate downsizing experiments, we used learning
rates of 0.1, 0.01, and 0.001 with SGD, and batch sizes of 1,
10, 20, 50, 100, and 200.

C.6. Visualization of Margin Distributions

Figure ?? shows the margins of 600 datapoints (200 small-
est, 200 in the middle, and the 200 largest ones) throughout
training. We note that prior to data separation, it is not
feasible to predict which datapoints will have the smallest
margins, as there is no indication of future margin perfor-
mance from the margin information solely. Figures ??, ??,
and ?? show the individual distributions of the smallest,
middle, and largest 200 margins respectively, further rein-
forcing this observation. For all of these figures, we trained

our 5-layer CNN on CIFAR10 with a batch size of 1, stan-
dard SGD, and a learning rate of 0.01. We note that data
separation occurs around epoch 60.



Distribution of Classification Margins

Figure 12. Natural and Random Labels - margin Two 6-layer neural networks implemented in PyTorch were trained on the full CIFAR-10
dataset with Gradient Descent (GD) on cross-entropy loss, one with natural labels and the other with randomized labels. The figure
shows the margin argmin(fyi −max

j 6=i
fyj ) of the network, after data separation and full convergence.



Distribution of Classification Margins
N

or
m

al
iz

ed
 M

ar
gi

n

Datapoints

Figure 13. Margins for All Classes - With Batch Normalization The network architecture described in the main text was trained with
batch normalization until data separation and margin convergence (for 200 epochs - blue to green). The margin distribution over time
is shown for each class label. For some classes, the margin distribution seems to shift and flatten over time but not for all. This shows
evidence that specific datapoints are important for the overall distribution of a class, although which determining which points are
important is not possible. This effect is increased with regularization.



Distribution of Classification Margins
N

or
m

al
iz

ed
 M

ar
gi

n

Figure 14. Margins for All Classes - With No Batch Normalization The network architecture described in the main text was trained
without batch normalization until data separation and margin convergence (for 200 epochs - blue to green). Unlike the network trained
with batch normalization, the margin distribution does not seem to flatten.



Distribution of Classification Margins

Figure 15. Visualization of the datapoint margins during training.
Data separation occurs at epoch 60. This network was trained with
a batch size of 1 using standard SGD with a learning rate of 0.01.

Figure 16. Visualization of the largest 200 datapoint margins dur-
ing training.

Figure 17. Visualization of the middle 200 datapoint margins dur-
ing training.

Figure 18. Visualization of the smallest 200 datapoint margins
during training.


