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Abstract

In this paper, we address the task of learning novel vi-
sual concepts, and their interactions with other concepts,
from a few images with sentence descriptions. Using lin-
guistic context and visual features, our method is able to
efficiently hypothesize the semantic meaning of new words
and add them to its word dictionary so that they can be
used to describe images which contain these novel con-
cepts. Our method has an image captioning module based
on [38] with several improvements. In particular, we pro-
pose a transposed weight sharing scheme, which not only
improves performance on image captioning, but also makes
the model more suitable for the novel concept learning task.
We propose methods to prevent overfitting the new con-
cepts. In addition, three novel concept datasets are con-
structed for this new task, and are publicly available on the
project page. In the experiments, we show that our method
effectively learns novel visual concepts from a few exam-
ples without disturbing the previously learned concepts.
The project page is: www.stat.ucla.edu/˜junhua.
mao/projects/child_learning.html.

1. Introduction
Recognizing, learning and using novel concepts is one

of the most important cognitive functions of humans. When
we were very young, we learned new concepts by observ-
ing the visual world and listening to the sentence descrip-
tions of our parents. The process was slow at the beginning,
but got much faster after we accumulated enough learned
concepts [4]. In particular, it is known that children can
form quick and rough hypotheses about the meaning of new
words in a sentence based on their knowledge of previous
learned words [5, 21], associate these words to the objects
or their properties, and describe novel concepts using sen-
tences with the new words [4]. This phenomenon has been
researched for over 30 years by the psychologists and lin-
guists who study the process of word learning [52].

For the computer vision field, several methods are pro-
posed [16, 46, 53, 31] to handle the problem of learning new

Model-base a group of people playing a 
game of soccer

Model-NVCS a group of people is playing 
quidditch with a red ball

Train using “quidditch” images with sentence descriptions

...

Figure 1: An illustration of the Novel Visual Concept learn-
ing from Sentences (NVCS) task. We start with a model
(i.e. model-base) trained with images that do not contain
the concept of “quidditch” 1. Using a few “quidditch” im-
ages with sentence descriptions, our method is able to learn
that “quidditch” is played by people with a ball.

categories of objects from a handful of examples. This task
is important in practice because we sometimes do not have
enough data for novel concepts and hence need to transfer
knowledge from previously learned categories. Moreover,
we do not want to retrain the whole model every time we
add a few images with novel concepts, especially when the
amount of data or model parameters is very big.

However, these previous methods concentrate on learn-
ing classifiers, or mappings, between single words (e.g. a
novel object category) and images. We are unaware of any
computer vision studies into the task of learning novel vi-
sual concepts from a few sentences and then using these
concepts to describe new images – a task that children seem
to do effortlessly. We call this the Novel Visual Concept
learning from Sentences (NVCS) task (see Figure 1).

In this paper, we present a novel framework to address
the NVCS task. We start with a model that has already
been trained with a large amount of visual concepts. We
propose a method that allows the model to enlarge its word
dictionary to describe the novel concepts using a few ex-
amples and without extensive retraining. In particular, we
do not need to retrain models from scratch on all of the data
(all the previously learned concepts and the novel concepts).
We propose three datasets for the NVCS task to validate our

1“quidditch” is a sport created in “Harry Potter”. It is played by teams
of people holding brooms with a ball (see Figure 1).
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model, which are available on the project page.
Our method requires a base model for image caption-

ing which will be adapted to perform the NVCS task. We
choose the m-RNN model [38], which performs at the state
of the art, as our base model. Note that we could use most
of the current image captioning models as the base model
in our method. But we make several changes to the model
structure of m-RNN partly motivated by the desire to avoid
overfitting, which is a particular danger for NVCS because
we want to learn from a few new images. We note that these
changes also improve performance on the original image
captioning task, although this improvement is not the main
focus of this paper. In particular, we introduce a transposed
weight sharing (TWS) strategy (motivated by auto-encoders
[3]) which reduces, by a factor of one half, the number of
model parameters that need to be learned. This allows us to
increase the dimension of the word-embedding and multi-
modal layers, without overfitting the data, yielding a richer
word and multimodal dense representation. We train this
image captioning model on a large image dataset with sen-
tence descriptions. This is the base model which we adapt
for the NVCS task.

Now we address the task of learning the new concepts
from a small new set of data that contains these concepts.
There are two main difficulties. Firstly, the weights for
the previously learned concepts may be disturbed by the
new concepts. Although this can be solved by fixing these
weights. Secondly, learning the new concepts from pos-
itive examples can introduce bias. Intuitively, the model
will assign a baseline probability for each word, which is
roughly proportional to the frequency of the words in the
sentences. When we train the model on new data, the base-
line probabilities of the new words will be unreliably high.
We propose a strategy that addresses this problem by fixing
the baseline probability of the new words.

We construct three datasets to validate our method,
which involves new concepts of man-made objects, ani-
mals, and activities. The first two datasets are derived from
the MS-COCO dataset [34]. The third new dataset is con-
structed by adding three uncommon concepts which do not
occur in MS-COCO or other standard datasets. These con-
cepts are: quidditch, t-rex and samisen (see section 5)2. The
experiments show that training our method on only a few
examples of the new concepts gives us as good performance
as retraining the entire model on all the examples.

2. Related Work
Deep neural network Recently there have been dramatic
progress in deep neural networks for natural language and

2The dataset is available at www.stat.ucla.edu/˜junhua.
mao/projects/child_learning.html. We are adding more
novel concepts in this dataset. The latest version of the dataset contains
8 additional novel concepts: tai-ji, huangmei opera, kiss, rocket gun, tem-
pura, waterfall, wedding dress, and windmill.

computer vision. For natural language, Recurrent Neural
Networks (RNNs [14, 40]) and Long-Short Term Memories
(LSTMs [22]) achieve the state-of-the-art performance for
many NLP tasks such as machine translation [23, 8, 51] and
speech recognition [40]. For computer vision, deep Convo-
lutional Neural Networks (CNN [33]) outperform previous
methods by a large margin for the tasks of object classifi-
cation [27, 48] and detection [19, 43, 59]. The success of
these methods for language and vision motivate their use
for multimodal learning tasks (e.g. image captioning and
sentence-image retrieval).
Multimodal learning of language and vision The meth-
ods of image-sentence retrieval [17, 50], image descrip-
tion generation [28, 42, 20] and visual question-answering
[18, 36, 1] have developed very fast in recent years. Very re-
cent works of image captioning includes [39, 25, 24, 55, 10,
15, 7, 32, 37, 26, 57, 35]. Many of them (e.g. [38, 55]) adopt
an RNN-CNN framework that optimizes the log-likelihood
of the caption given the image, and train the networks in an
end-to-end way. An exception is [15], which incorporates
visual detectors, language models, and multimodal simi-
larity models in a high-performing pipeline. The evalua-
tion metrics of the image captioning task is also discussed
[13, 54]. All of these image captioning methods use a pre-
specified and fixed word dictionary, and train their model
on a large dataset. Our method can be directly applied to
any captioning models that adopt an RNN-CNN framework,
and our strategy to avoid overfitting is useful for most of the
models in the novel visual concept learning task.
Zero-shot and one-shot learning For zero-shot learning,
the task is to associate dense word vectors or attributes with
image features [49, 17, 12, 2, 31]. The dense word vec-
tors in these papers are pre-trained from a large amount of
text corpus and the word semantic representation is captured
from co-occurrence with other words [41]. [31] developed
this idea by only showing the novel words a few times. In
addition, [47] adopted auto-encoders with attribute repre-
sentations to learn new class labels and [56] proposed a
method that scales to large datasets using label embeddings.

Another related task is one-shot learning task of new cat-
egories [16, 29, 53]. They learn new objects from only a few
examples. However, these work only consider words or at-
tributes instead of sentences and so their learning target is
different from that of the task in this paper.

3. The Image Captioning Model
We need an image captioning as the base model which

will be adapted in the NVCS task. The base model is based
on the m-RNN model [38]. Its architecture is shown in Fig-
ure 2(a). We make two main modifications of the archi-
tecture to make it more suitable for the NVCS task which,
as a side effect, also improves performance on the origi-
nal image captioning task. Firstly and most importantly,
we propose a transposed weight sharing strategy which sig-
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Figure 2: (a). Our image captioning model. For each word in a sentence, the model takes the current word index and the
image as inputs, and outputs the next word index. The weights are shared across the sub-models for the words in a sentence.
The number on the top right of each layer denotes its dimension. As in the m-RNN model [38], we add a start sign wstart

and an end sign wend to each training sentence. (b). The transposed weight sharing of UD and UM. (Best viewed in color)

nificantly reduces the number of parameters in the model
(see section 3.2). Secondly, we replace the recurrent layer
in [38] by a Long-Short Term Memory (LSTM) layer [22].
LSTM is a recurrent neural network which is designed to
solve the gradient explosion and vanishing problems. We
briefly introduce the framework of the model in section 3.1
and describe the details of the transposed weight sharing
strategy in section 3.2.

3.1. The Model Architecture
As shown in Figure 2(a), the input of our model for each

word in a sentence is the index of the current word in the
word dictionary as well as the image. We represent this in-
dex as a one-hot vector (a binary vector with only one non-
zero element indicating the index). The output is the index
of the next word. The model has three components: the
language component, the vision component and the multi-
modal component. The language component contains two
word embedding layers and a LSTM layer. It maps the
index of the word in the dictionary into a semantic dense
word embedding space and stores the word context infor-
mation in the LSTM layer. The vision component contains
a 16-layer deep convolutional neural network (CNN [48])
pre-trained on the ImageNet classification task [45]. We re-
move the final SoftMax layer of the deep CNN and connect
the top fully connected layer (a 4096 dimensional layer) to
our model. The activation of this 4096 dimensional layer
can be treated as image features that contain rich visual at-
tributes for objects and scenes. The multimodal component
contains a one-layer representation where the information
from the language part and the vision part merge together.
We build a SoftMax layer after the multimodal layer to pre-
dict the index of the next word. The weights are shared
across the sub-models of the words in a sentence. As in
the m-RNN model [38], we add a start sign wstart and an
end sign wend to each training sentence. In the testing stage
for image captioning, we input the start sign wstart into the

model and pick the K best words with maximum probabil-
ities according to the SoftMax layer. We repeat the process
until the model generates the end sign wend.

3.2. The Transposed Weight Sharing (TWS)
For the original m-RNN model [38], most of the weights

(i.e. 98.49%) are contained in the following two weight
matrices: UD ∈ R512×N and UM ∈ RN×1024 where N
represents the size of the word dictionary.

The weight matrix UD between the one-hot layer and
first word embedding layer is used to compute the input of
the first word embedding layer w(t):

w(t) = f(UDh(t)) (1)

where f(.) is an element-wise non-linear function, h(t) ∈
R

N×1 is the one-hot vector of the current word. Note that
it is fast to calculate Equation 1 because there is only one
non-zero element in h(t). In practice, we do not need to
calculate the full matrix multiplication operation since only
one column of UD is used for each word in the forward and
backward propagation.

The weight matrix UM between the multimodal layer
and the SoftMax layer is used to compute the activation of
the SoftMax layer y(t):

y(t) = g(UMm(t) + b) (2)

where m(t) is the activation of the multimodal layer and
g(.) is the SoftMax non-linear function.

Intuitively, the role of the weight matrix UD in Equation
1 is to encode the one-hot vector h(t) into a dense semantic
vector w(t). The role of the weight matrix UM in Equa-
tion 2 is to decode the dense semantic vector m(t) back
to a pseudo one-hot vector y(t) with the help of the Soft-
Max function, which is very similar to the inverse operation
of Equation 1. The difference is that m(t) is in the dense
multimodal semantic space while w(t) is in the dense word
semantic space.
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Figure 3: Illustration of training novel concepts. We only
update the sub-matrix UDn (the green parts in the figure)
in UD that is connected to the node of new words in the
One-Hot layer and the SoftMax layer during the training
for novel concepts. (Best viewed in color)

To reduce the number of the parameters, we decompose
UM into two parts. The first part maps the multimodal layer
activation vector to an intermediate vector in the word se-
mantic space. The second part maps the intermediate vector
to the pseudo one-hot word vector, which is the inverse op-
eration of Equation 1. The sub-matrix of the second part
is able to share parameters with UD in a transposed man-
ner, which is motivated by the tied weights strategy in auto-
encoders for unsupervised learning tasks [3]. Here is an
example of linear decomposition: UM = UT

DUI, where
UI ∈ R512×1024. Equation 2 is accordingly changed to:

y(t) = g[UT
D f(UIm(t)) + b] (3)

where f(.) is a element-wise function. If f(.) is an identity
mapping function, it is equivalent to linearly decomposing
UM into UT

D and UI. In our experiments, we find that set-
ting f(.) as the scaled hyperbolic tangent function leads to a
slightly better performance than linear decomposition. This
strategy can be viewed as adding an intermediate layer with
dimension 512 between the multimodal and SoftMax lay-
ers as shown in Figure 2(b). The weight matrix between
the intermediate and the SoftMax layer is shared with UD

in a transposed manner. This Transposed Weight Sharing
(TWS) strategy enables us to use a much larger dimensional
word-embedding layer than the m-RNN model [38] with-
out increasing the number of parameters. We also benefit
from this strategy when addressing the novel concept learn-
ing task.

4. The Novel Concept Learning (NVCS) Task
Suppose we have trained a model based on a large

amount of images and sentences. Then we meet with im-
ages of novel concepts whose sentence annotations con-
tain words not in our dictionary, what should we do? It
is time-consuming and unnecessary to re-train the whole
model from scratch using all the data. In many cases, we
cannot even access the original training data of the model.
But fine-tuning the whole model using only the new data
causes severe overfitting on the new concepts and decrease
the performance of the model for the originally trained ones.

To solve these problems, we propose the following
strategies that learn the new concepts with a few images
without losing the accuracy on the original concepts.

4.1. Fixing the originally learned weights
Under the assumption that we have learned the weights

of the original words from a large amount of data and that
the amount of the data for new concepts is relatively small,
it is straightforward to fix the originally learned weights of
the model during the incremental training. More specifi-
cally, the weight matrix UD can be separated into two parts:
UD = [UDo

,UDn
], where UDo

and UDn
associate with

the original words and the new words respectively. E.g., as
shown in Figure 3, for the novel visual concept “cat”, UDn

is associated with 29 new words, such as cat, kitten and
pawing. We fix the sub-matrix UDo and update the sub-
matrix UDn as illustrated in Figure 3.

4.2. Fixing the baseline probability
In Equation 3, there is a bias term b. Intuitively, each

element in b represents the tendency of the model to output
the corresponding word. We can think of this term as the
baseline probability of each word. Similar to UD, b can
be separated into two parts: b = [bo,bn], where bo and
bn associate with the original words and the new words re-
spectively. If we only present the new data to the network,
the estimation of bn is unreliable. The network will tend to
increase the value of bn which causes overfitting to the new
data.

The easiest way to solve this problem is to fix bn dur-
ing the training for novel concepts. But this is not enough.
Because the average activation x̄ of the intermediate layer
across all the training samples is not 0, the weight matrix
UD plays a similar role to b in changing the baseline prob-
ability. To avoid this problem, we centralize the activation
of the intermediate layer x and turn the original bias term b
into b′ as follows:

y(t) = g[UT
D(x− x̄) + b′]; b′o = bo + UT

Do
x̄ (4)

After that, we set every element in b′n to be the average
value of the elements in b′o and fix b′n when we train on
the new images. We call this strategy Baseline Probability
Fixation (BPF).

In the experiments, we adopt a stochastic gradient de-
scent algorithm with an initial learning rate of 0.01 and use
AdaDelta [58] as the adaptive learning rate algorithm for
both the base model and the novel concept model.

4.3. The Role of Language and Vision
In the novel concept learning (NVCS) task, the sentences

serve as a weak labeling of the image. The language part of
the model (the word embedding layers and the LSTM layer)
hypothesizes the basic properties (e.g. the parts of speech)
of the new words and whether the new words are closely
related to the content of the image. It also hypothesizes
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Figure 4: Organization of the novel concept datasets

which words in the original dictionary are semantically and
syntactically close to the new words. For example, suppose
the model meets a new image with the sentence description
“A woman is playing with a cat”. Also suppose there are
images in the original data containing sentence description
such as “A man is playing with a dog”. Then although the
model has not seen the word “cat” before, it will hypothe-
size that the word “cat” and “dog” are close to each other.

The vision part is pre-trained on the ImageNet classifica-
tion task [45] with 1.2 million images and 1,000 categories.
It provides rich visual attributes of the objects and scenes
that are useful not only for the 1,000 classification task it-
self, but also for other vision tasks [11].

Combining cues from both language and vision, our
model can effectively learn the new concepts using only a
few examples as demonstrated in the experiments.

5. Datasets
5.1. Strategies to Construct Datasets

We use the annotations and images from the MS COCO
[34] to construct our Novel Concept (NC) learning datasets.
The current release of COCO contains 82,783 training im-
ages and 40,504 validation images, with object instance an-
notations and 5 sentence descriptions for each image. To
construct the NC dataset with a specific new concept (e.g.
“cat”), we remove all images containing the object “cat”
according to the object annotations. We also check whether
there are some images left with sentences descriptions con-
taining cat related words. The remaining images are treated
as the Base Set where we will train, validate and test our
base model. The removed images are used to construct the
Novel Concept set (NC set), which is used to train, validate
and test our model for the task of novel concept learning.

5.2. The Novel Visual Concepts Datasets
We construct three datasets involving five different novel

visual concepts:
NewObj-Cat and NewObj-Motor The corresponding

new concepts of these two datasets are “cat” and “motor-
cycle” respectively. The model need to learn all the related

Train NC Test Validation
NewObj-Cat 2840 1000 490
NewObj-Motor 1854 600 349
NC-3 150 (50× 3) 120 (40× 3) 30 (10× 3)

Table 1: The number of images for the three datasets.

a quidditch player kneeling 
with ball and broom while 
looking at players running 
at him

a woman wearing a light 
pink kimono kneels on a 
cushion while playing the 
samisen

a close up of a black 
statue of a t-rex faces 
right and roars as it holds 
up a valentine's day sign

Figure 5: Sample images and annotations from Novel
Concept-3 (NC-3) dataset (see more on the project page).

words that describe these concepts and their activities.
NC-3 dataset3 The two datasets mentioned above are

all derived from the MS COCO dataset. To further ver-
ify the effectiveness of our method, we construct a new
dataset contains three novel concepts: “quidditch” (a re-
cently created sport derived from “Harry Potter”), “t-rex”
(a dinosaur), and “samisen” (an instrument). It contains
not only object concepts (e.g. t-rex and samisen), but also
activity concepts (e.g. quidditch). We labeled 100 images
for each concept with 5 sentence annotations for each im-
age. To diversify the labeled sentences for different images
in the same category, the annotators are instructed to label
the images with different sentences by describing the details
in each image. It leads to a different style of annotation
from that of the MS COCO dataset. The average length
of the sentences is also 26% longer than that of the MS
COCO (13.5 v.s. 10.7). We construct this dataset for two
reasons. Firstly, the three concepts are not included in the
1,000 categories of the ImageNet Classification task [45]
where we pre-trained the vision component of our model.
Secondly, this dataset has richer and more diversified sen-
tence descriptions compared to NewObj-Cat and NewObj-
Motor. We denote this dataset as Novel Concept-3 dataset
(NC-3). Some samples images and annotations are shown
in Figure 5.

We randomly separate the above three datasets into train-
ing, testing and validation sets. The number of images for
the three datasets are shown in Table 1. To investigate the
possible overfitting issues on these datasets, in the testing
stage, we randomly picked images from the testing set of
the Base Set and treated them as a separate set of testing im-
ages. The number of added images is equal to the size of the
original test set (e.g. 1000 images are picked for NewObj-
Cat testing set). We denote the original new concept testing
images as Novel Concept (NC) test set and the added base
testing images as Base test set. A good novel visual con-
cept learning method should perform better than the base
model on NC test set and comparable on Base test set. The
organization of NC datasets is illustrated in Figure 4.

3The dataset is publicly available at www.stat.ucla.edu/

˜junhua.mao/projects/child_learning.html. We are ac-
tively expanding the dataset. The latest version contains 11 novel concepts.
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B-1 B-2 B-3 B-4 METEOR CIDEr ROUGE L
m-RNN [38] 0.680 0.506 0.369 0.272 0.225 0.791 0.499
ours-TWS 0.685 0.512 0.376 0.279 0.229 0.819 0.504

Table 2: The performance comparisons of our model and
m-RNN [38] for the standard image captioning task.

6. Experiments
6.1. Evaluation Metrics

To evaluate the output sentence descriptions for novel
visual concepts, we adopt two evaluation metrics that are
widely used in recent image captioning work: BLEU scores
[44] (BLEU score for n-gram is denoted as as B-n in the
paper) and METEOR [30].

Both BLEU scores and METEOR target on evaluating
the overall quality of the generated sentences. In the NVCS
task, however, we focus more on the accuracy for the new
words than the previously learned words in the sentences.
Therefore, to conduct a comprehensive evaluation, we also
calculate the f score for the words that describe the new
concepts. E.g. for the cat dataset, there are 29 new words
such as cat, cats, kitten, and pawing. The precision p and
recall r for each new word in the dictionary (wd

n) are calcu-
lated as follows:

p =
N(wd

n ∈ Sgen ∧ wd
n ∈ Sref )

N(wd
n ∈ Sgen)

; r =
N(wd

n ∈ Sgen ∧ wd
n ∈ Sref )

N(wd
n ∈ Sref )

where Sgen denotes generated sentence, Sref denotes refer-
ence sentences, N(condition) represents number of testing
images that conform to the condition. Note that p and r are
calculated on the combined testing set of the NC test set and
the base test set (i.e. All test).

A high r with a low p indicates that the model overfits
the new data (We can always get r = 1 if we output the
new word every time) while a high p with a low r indicates
underfiting. We use the f = 2

p−1+r−1 as a balanced mea-
surement between p and r. Best f score is 1. Note that
f = 0 if either p = 0 or r = 0. Compared to METEOR and
BLEU, the f score show the effectiveness of the model to
learn new concepts more explicitly.

6.2. Effectiveness of TWS and BPF
We test our base model with the Transposed Weight

Sharing (TWS) strategy in the original image captaining
task on the MS COCO [6] and compare to m-RNN [38],
which does not use TWS. Our model performs better than
m-RNN in this task as shown in Table 2. We choose the
layer dimensions of our model so that the number of pa-
rameters matches that of [38]. Models with different hyper-
parameters, features or pipelines might lead to better per-
formance, which is beyond the scope of this paper. E.g.
[38, 55, 15] further improve their results after the submis-
sion of this draft and achieve a B-4 score of 0.302, 0.309 and
0.308 respectively using, e.g., fine-tuned image features on
COCO or consensus reranking [9, 38], which are comple-
mentary with TWS.

BiasFix Centralize TWS f

Deep-NVCS-UnfixedBias × ×
√

0.851
Deep-NVCS-FixedBias

√
×

√
0.860

Deep-NVCS-NoBPF-NoTWS × × × 0.839
Deep-NVCS-BPF-NoTWS

√ √
× 0.850

Deep-NVCS-BPF-TWS
√ √ √

0.875

Table 3: Performance of Deep-NVCS models with different
novel concept learning strategies on NewObj-Cat. TWS and
BPF improve the performance.

We also validate the effectiveness of our Transposed
Weight Sharing (TWS) and Baseline Probability Fixation
(BPF) strategies for the novel concept learning task on the
NewObj-Cat dataset. We compare the performance of five
Deep-NVCS models. Their properties and performance in
terms of f score for the word “cat” are summarized in Table
3. “BiasFix” means that we fix the bias term bn in Equa-
tion 3. “Centralize” means that we centralize the intermedi-
ate layer activation x (see Equation 4) so that UD will not
affect the baseline probability.

We achieve 2.5% increase of performance in terms of
f using TWS (Deep-NVCS-BPF-TWS v.s. Deep-NVCS-
BPF-noTWS4), and achieves 2.4% increase using BPF
(Deep-NVCS-BPF-TWS v.s. Deep-NVCS-UnfixedBias).
We use Deep-NVCS to represent Deep-NVCS-BPF-TWS
in short for the rest of the paper.

6.3. Results on NewObj-Motor and NewObj-Cat
6.3.1 Using all training samples
We show the performance of our Deep-NVCS models com-
pared to strong baselines on the NewObj-Cat and NewObj-
Motor datasets in Table 4. For Deep-NVCS, we only use the
training data from the novel concept set. For Deep-NVCS-
Inc1:1, we add training data randomly sampled from the
training set of the base set. The number of added training
images is the same as that of the training images for novel
concepts. Model-base stands for the model trained only on
the base set (no novel concept images). We implement a
baseline model, Model-word2vec, where the weights of new
words (UDn

) are calculated using a weighted sum of the
weights of 10 similar concepts measured by the unsuper-
vised learned word-embeddings from word2vec [41]. We
also implement a strong baseline, Model-retrain, by retrain-
ing the whole model from scratch on the combined training
set (training images from both the base set and the NC set).

The results show that compared to the Model-base which
is only trained on base set, the Deep-NVCS models perform
much better on the novel concept test set while reaching
comparable performance on the base test set. Deep-NVCS
also performs better than the Model-word2vec model. The

4We tried two versions of the model without TWS: (I). the model with
multimodal layer directly connected to softmax layer like [38], (II). the
model with an additional intermediate layer like TWS but does not share
the weights. In our experiments, (I) performs slightly better than (II) so we
report the performance of (I) here.



All test NC test Base test
Evaluation Metrics f B-1 B-2 B-3 B-4 METEOR B-1 B-2 B-3 B-4 METEOR B-1 B-2 B-3 B-4 METEOR

NewObj-Cat
Model-retrain 0.866 0.689 0.531 0.391 0.291 0.228 0.696 0.549 0.403 0.305 0.227 0.683 0.513 0.379 0.277 0.229
Model-base 0.000 0.645 0.474 0.339 0.247 0.201 0.607 0.436 0.303 0.217 0.175 0.683 0.511 0.375 0.277 0.227
Model-word2vec 0.183 0.642 0.471 0.341 0.245 0.200 0.610 0.432 0.307 0.217 0.176 0.674 0.510 0.375 0.273 0.224
Deep-NVCS 0.875 0.682 0.521 0.382 0.286 0.224 0.684 0.534 0.392 0.299 0.224 0.680 0.508 0.372 0.274 0.225
Deep-NVCS-1:1Inc 0.881 0.683 0.523 0.385 0.288 0.226 0.686 0.538 0.398 0.303 0.226 0.679 0.507 0.371 0.273 0.225

NewObj-Motor
Model-retrain 0.797 0.697 0.526 0.386 0.284 0.240 0.687 0.512 0.368 0.263 0.244 0.707 0.539 0.404 0.305 0.236
Model-base 0.000 0.646 0.460 0.327 0.235 0.218 0.586 0.380 0.245 0.160 0.203 0.705 0.536 0.401 0.301 0.235
Model-word2vec 0.279 0.663 0.476 0.338 0.243 0.226 0.624 0.423 0.279 0.183 0.223 0.701 0.530 0.397 0.303 0.229
Deep-NVCS 0.784 0.688 0.512 0.373 0.276 0.236 0.677 0.494 0.349 0.252 0.241 0.698 0.530 0.398 0.299 0.231
Deep-NVCS-1:1Inc 0.790 0.687 0.512 0.374 0.280 0.235 0.672 0.492 0.347 0.256 0.237 0.702 0.532 0.401 0.303 0.234

Table 4: Results on the NewObj-Cat and NewObj-Motor dataset using all the training samples. The Deep NVCS models
outperform the simple baselines. They achieve comparable performance with the strong baseline (i.e. Model-retrain) but
only need ≤2% of the time. Model-base and Model-retrain stand for the model trained on base set (no novel concepts) and
the model retrained on the combined data (all the images of base set and novel concept set) respectively. Model-word2vec
is a baseline model based on word2vec [41]. Deep-NVCS stands for the model trained only with the new concept data.
Deep-NVCS-1:1Inc stands for the Deep-NVCS model trained by adding equal number of training images from the base set.
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Figure 6: Performance comparison of our model with different number of training images on NewObj-cat and NewObj-Motor
datasets. The red, blue, and magenta dashed line indicates the performance of Deep-NVCS using all the training images on
the base test set, the NC test set and the all test set respectively. The green dashed line indicates the performance of Model-
base. The black dots stand for the performance of Model-retrain for NC test. We show that our model trained with 10 to 50
images achieves comparable performance with the model trained on the full training set. (Best viewed in color)

performance of our Deep-NVCS models is very close to that
of the strong baseline Model-retrain but needs only less than
2% of the time. This demonstrates the effectiveness of our
novel concept learning strategies. The model learns the new
words for the novel concepts without disturbing the previ-
ous learned words.

The performance of Deep-NVCS is also comparable
with, though slightly lower than Deep-NVCS-1:1Inc. In-
tuitively, if the image features can successfully capture the
difference between the new concepts and the existing ones,
it is sufficient to learn the new concept only from the new
data. However, if the new concepts are very similar to some
previously learned concepts, such as cat and dog, it is help-
ful to present the data of both novel and existing concepts
to make it easier for the model to find the difference.

6.3.2 Using a few training samples

We also test our model under the one or few-shot scenarios.
Specifically, we randomly sampled k images from the train-

ing set of NewObj-Cat and NewObj-Motor, and trained our
Deep-NVCS model only on these images (k ranges from 1
to 1000). We conduct the experiments 10 times and average
the results to avoid the randomness of the sampling.

We show the performance of our model with different
number of training images in Figure 6. We only show the
results in terms of f score, METEOR, B-3 and B-4 because
of space limitation. The results of B-1 and B-2 and consis-
tent with the shown metrics. The performance of the model
trained with the full NC training set in the last section is
indicated by the blue (Base test), red (NC test) or magenta
(All test) dashed lines in Figure 6. These lines represent the
experimental upper bounds of our model under the one or
few-shot scenario. The performance of the Model-base is
shown by a green dashed line. It serves as an experimental
lower bound. We also show the results of Model-retrain for
NC test with black dots in Figure 6 trained with 10 and 500
novel concepts images.

The results show that using about 10 to 50 training im-



a street with a lot of cars and a 
bus
a motorcycle  parked in a parking 
lot with a car in the background

a window with a 
window
a cat  standing in 
front of a window

a group of quidditch  players 
playing quidditch  on a field

a group of people playing 
frisbee in a park

a man in a blue shirt is riding 
a horse
a t-rex  is standing in a room 
with a man

a woman is holding a 
samisen  in her hand

a woman is holding 
a childModel-base:

Deep-NVCS:

Figure 7: The generated sentences for the test images from novel concept datasets. In these examples, cat, motorcycle,
quidditch, t-rex and samisen are the novel concepts respectively. We show more in the supplementary material.

ages, the model achieves comparable performance with the
Deep-NVCS model trained on the full novel concept train-
ing set. In addition, using about 5 training images, we ob-
serve a nontrivial increase of performance compared to the
base model. Our deep-NVCS also better handles the case
for a few images and runs much faster than Model-retrain.

6.4. Results on NC-3
The NC-3 dataset has three main difficulties. Firstly, the

concepts have very similar counterparts in the original im-
age set, such as Samisen v.s. Guitar, Quidditch v.s. foot-
ball. Secondly, the three concepts rarely appear in daily
life. They are not included in the ImageNet 1,000 cate-
gories where we pre-trained our vision deep CNN. Thirdly,
the way we describe the three novel concepts is somewhat
different from that of the common objects included in the
base set. The requirement to diversify the annotated sen-
tences makes the difference of the style for the annotated
sentences between NC-3 and MS COCO even larger. The
effect of the difference in sentence style leads to decreased
performance of the base model compared to that on the
NewObj-Cat and NewObj-Motor dataset (see Model-base
in Table 5 compared to that in Table 4 on NC test). Further-
more, it makes it harder for the model to hypothesize the
meanings of new words from a few sentences.

Faced with these difficulties, our model still learns the
semantic meaning of the new concepts quite well. The f
scores of the model shown in Table 5 indicate that the model
successfully learns the new concepts with a high accuracy
from only 50 examples.

It is interesting that Model-retrain performs very badly

Evaluation Metrics f B-3 B-4 MET. f B-3 B-4 MET.
quidditch t-rex

Model-retrain 0.000 0.196 0.138 0.120 0.213 0.224 0.141 0.105
Model-base 0.000 0.193 0.139 0.122 0.000 0.166 0.102 0.088
Deep-NVCC 0.854 0.237 0.167 0.168 0.861 0.247 0.144 0.187
Deep-NVCC-1:1Inc 0.863 0.244 0.170 0.170 0.856 0.242 0.132 0.186

samisen Base Test
Model-retrain 0.000 0.209 0.133 0.122 - 0.412 0.328 0.234
Model-base 0.000 0.177 0.105 0.122 - 0.414 0.325 0.240
Deep-NVCC 0.630 0.229 0.140 0.161 - 0.414 0.326 0.239
Deep-NVCC-1:1Inc 0.642 0.233 0.144 0.164 - 0.414 0.327 0.239

Table 5: Results of our model on the NC-3 Datasets.

New Word Five nearest neighbours
cat kitten; tabby; puppy; calico; doll;
motorcycle motorbike; moped; vehicle; motor; motorbikes;
quidditch soccer; football; softball; basketball; frisbees;
t-rex giraffe’s; bull; pony; goat; burger;
samisen guitar; wii; toothbrushes; purse; contents;

Table 6: The five nearest neighbors of the new words as
measured by the activation of the word-embedding layer.

on this dataset. It does not output the word “quidditch” and
“samisen” in the generated sentences. The BLEU scores
and METEOR are also very low. This is not surprising since
there are only a few training examples (i.e. 50) for these
three novel concepts and so it is easy to be overwhelmed by
other concepts from the original MS COCO dataset.

6.5. Qualitative Results
In Table 6, we show the five nearest neighbors of the new

concepts using the activation of the word-embedding layer
learned by our Deep-NVCS model. It shows that the learned
novel word embedding vectors captures the semantic infor-
mation from both language and vision. We also show some
sample generated sentence descriptions of the base model
and our Deep-NVCS model in Figure 7.

7. Conclusion
In this paper, we propose the Novel Visual Concept

learning from Sentences (NVCS) task. In this task, methods
need to learn novel concepts from sentence descriptions of
a few images. We describe a method that allows us to train
our model on a small number of images containing novel
concepts. This performs comparably with the model re-
trained from scratch on all of the data if the number of novel
concept images is large, and performs better when there are
only a few training images of novel concepts available. We
construct three novel concept datasets where we validate the
effectiveness of our method. These datasets have been re-
leased to encourage future research in this area.
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