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Abstract

Scenes filled with moving objects are often hierarchically organized: the motion of a mi-

grating goose is nested within the flight pattern of its flock, the motion of a car is nested

within the traffic pattern of other cars on the road, the motion of body parts are nested in

the motion of the body. Humans perceive hierarchical structure even in stimuli with two or

three moving dots. An influential theory of hierarchical motion perception holds that the

visual system performs a “vector analysis” of moving objects, decomposing them into com-

mon and relative motions. However, this theory does not specify how to resolve ambiguity

when a scene admits more than one vector analysis. We describe a Bayesian theory of vector

analysis and show that it can account for classic results from dot motion experiments, as

well as new experimental data. Our theory takes a step towards understanding how moving

scenes are parsed into objects.
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Preprint submitted to Elsevier March 2, 2015



1. Introduction

Motion is a powerful cue for understanding the organization of a visual scene. Infants use

motion to individuate objects, even when it contradicts property/kind information (Kellman

and Spelke, 1983; Xu and Carey, 1996; Xu et al., 1999). The primacy of motion information

is also evident in adult object perception (Burke, 1952; Flombaum and Scholl, 2006; Mitroff

and Alvarez, 2007) and non-human primates (Flombaum et al., 2004). For example, in the

tunnel effect (Burke, 1952; Flombaum et al., 2004; Flombaum and Scholl, 2006), an object

passing behind an occluder is perceived as the same object when it reappears despite changes

in surface features (e.g., color), as long as it reappears in the time and place stipulated by a

spatiotemporally continuous trajectory.

In addition to individuating and tracking objects, motion is used by the visual system to

decompose objects into parts. In biological motion, for example, the motion of body parts

are nested in the motion of the body. Object motion may be hierarchically organized into

multiple layers: an arm’s motion may be further decomposed into jointed segments, including

the hand, which can itself be decomposed into fingers, and so on (Johansson, 1973).

The hierarchical organization of motion presents a formidable challenge to current models

of motion processing. It is widely accepted that the visual system balances motion integration

over space and time (necessary for solving the aperture problem) and motion segmentation

in order to perceive multiple objects simultaneously (Braddick, 1993). However, it is un-

clear how simple segmentation mechanisms can be used to build a hierarchically structured

representation of a moving scene. Segmentation lacks a notion of nesting : when an object

moves, its parts should move with it. To understand nesting, it is crucial to represent the

underlying dependencies between objects and their parts.

The experimental and theoretical foundations of hierarchical motion perception were laid

by the pioneering work of Johansson (1950), who demonstrated that surprisingly complex

percepts could arise from simple dot motions. Johansson proposed that the visual system

performs a “vector analysis” of moving scenes into common and relative motions between

objects (see also Shum and Wolford, 1983). In the example of biological motion (Johansson,
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1973), the global motion of the body is subtracted from the image, revealing the relative

motions of body parts; these parts are further decomposed by the same subtraction operation.

While the vector analysis theory provides a compelling explanation of numerous mo-

tion phenomena (we describe several below), it is incomplete from a computational point

of view, since it relies on the theorist to provide the underlying motion components and

their organization; it lacks a mechanism for discovering a hierarchical decomposition from

sensory data. This is especially important in complex scenes where many different vector

analyses are consistent with the scene. Various principles have been proposed for how the

visual system resolves this ambiguity. For example, Restle (1979) proposed a “minimum

principle,” according to which simpler motion interpretations (i.e., those with a shorter de-

scription length) are preferred over more complex ones (see also Attneave, 1954; Hochberg

and McAlister, 1953). While such description length approaches are formally related to the

Bayesian approach described below, Restle only developed his model to explain a small set

of parametrized motions under noiseless conditions. Gogel (1974) argued for an “adjacency

principle,” according to which the motion interpretation is determined by relative motion

cues between nearby points. The “belongingness principle” (DiVita and Rock, 1997) holds

that relative motion is determined by the perceived coplanarity of objects and their potential

reference frames. However, there is still no unified computational theory that can encompass

all these ideas.

In this paper, we recast Johansson’s vector analysis theory in terms of a Bayesian model

of motion perception—Bayesian vector analysis. The model discovers the hierarchical struc-

ture of a moving scene, resolving the ambiguity of multiple vector analyses using a set of

probabilistic constraints. We show that this model can account qualitatively for several clas-

sic phenomena in the motion perception literature that are challenging for existing models.

We then report a new experiment to demonstrate that the model can also provide a good

quantitative fit to human data.
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Figure 1: Illustration of how a moving scene is decomposed into a motion tree. Each node in the

tree corresponds to a motion component. Each object in the scene traces a path through the tree, and the

observed motion of the object is modeled as the superposition of motion components along its path.

2. Bayesian vector analysis

In this section, we describe our computational model formally.1 We start by describing a

probabilistic generative model of motion—a set of assumptions about the environment that

we impute to the observer. The generative model can be thought of as stochastic “recipe”

for generating moving images, consisting of two parts: a probability distribution over trees,

and a probability distribution over data (image sequences) given a particular tree. We then

describe how Bayesian inference can be used to invert this generative model and recover the

underlying hierarchical structure from observations of moving images. Specifically, the goal

of inference is to find the motion tree with highest posterior probability. According to Bayes’

rule, the posterior P (tree|data) is proportional to the product of the likelihood P (data|tree)

and the prior P (tree). The likelihood encodes the fit between the data and a hypothetical

tree, while the prior encodes the “goodness” (in Gestalt terms) of the tree.

1Matlab code implementing the model is available at https://github.com/sjgershm/hierarchical_

motion.
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2.1. Generative model

The generative model describes the process by which a sequence of two-dimensional

visual element positions {sn(t)}Nn=1 is generated, where sn(t) = [sxn(t), syn(t)] encodes the x

and y position of element n at time step t. Most experimental demonstrations of vector

analysis have used moving dot displays. A good example are point-light walkers. For these

demonstrations each moving dot is naturally represented by its 2-d position on the screen at

each time point. This representation, of course, assumes that basic perceptual preprocessing

has taken place and the correspondence problem has been solved. Although we will only

model moving dot displays in this paper, and hence sn(t) is usually the position of the nth

dot at time t, sn(t) could also be the position of an object, a visual part, or a feature. In

the following, we will simply refer to the elements whose movement we want to analyze as

either dots or objects.

The object positions are modeled as arising from a tree-structured configuration of motion

components; we refer to this representation as the motion tree. Each motion component is a

transformation that maps the current object position to a new position. An illustration of a

motion tree is shown in Figure 1. Each node in the tree corresponds to a motion component.

The motion of the train relative to the background is represented by the top-level node. The

motions of Spiderman and Dr. Octopus relative to the train are represented at the second-

level nodes. Finally, the motions of each body part relative to the body are represented at

the third-level nodes. The observed motion of Spiderman’s hand can then be modeled as

the superposition of the motions along the path that runs from the top node to the hand-

specific node. The aim for our model is to get as inputs the retinal motion of pre-segmented

objects—in this example, the motion of hands, feet, torsos, windows, etc.—and output a

hierarchical grouping that reflects the composition of the moving scene.

The motion tree can capture the underlying motion structure of many real-world scenes,

but inferring which motion tree generated a particular scene is challenging because different

trees may be consistent with the same scene. To address this problem, we need to introduce

a prior distribution over motion trees that expresses our inductive biases about what kinds of
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trees are likely to occur in the world. This prior should be flexible enough to accommodate

many different structures while also preferring simpler structures (i.e., parsimonious expla-

nations of the sensory data). These desiderata are satisfied by a nonparametric distribution

over trees known as the nested Chinese restaurant process (nCRP; Blei et al., 2010). The

nCRP is a generalization of the Chinese restaurant process (Aldous, 1985; Pitman, 2002),

a distribution over partitions of objects. A tree can be understood as a nested partition of

objects, where each layer of the tree defines a partition of objects, and thus a distribution

over trees can be constructed by recursively sampling from a distribution over partitions.

This is the logic underlying the nCRP construction.

The nCRP generates a motion tree by drawing, for each object n, a sequence of mo-

tion components, denoted by cn = [cn1, . . . , cnD], where D is the maximal tree depth.2 The

probability of assigning object n to component j at depth d is proportional to the number

of previous objects assigned to component j (Mj). This induces a simplicity bias, whereby

most objects tend to be assigned to a small number of motion components. With prob-

ability proportional to γ, an object can always be assigned to a new (previously unused)

motion component. Thus, the model has “infinite capacity” in the sense that it can gener-

ate arbitrarily complex motion structures, but will probabilistically favor simpler structures.

Mathematically, we can write the component assignment process as:

P (cnd = j|c1:n−1) =


Mj

n−1+γ if j ≤ J

γ
n−1+γ if j = J + 1

(1)

where J is the number of components currently in use (i.e., those for which Mj > 0).

Importantly, the assignment at depth d is restricted to a unique set of components specific

to the component assigned at depth d−1. In this way, the components form a tree structure,

and cn is a path through the tree. The parameter γ ≥ 0 controls the branching factor

of the motion tree. As γ decreases, different objects will tend to share the same motion

components. Thus, the nCRP exhibits a preference for trees that use a small number of

2As described in Blei et al. (2010), trees drawn from the nCRP can be infinitely deep, but we impose a

maximal depth for simplicity.
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Figure 2: Illustration of the tree-generating process. (Top) Objects are successively added, going from

left to right. Orange shading indicates the component assignments for each object. (Bottom) Alternative

visualization showing which objects are assigned to each component.

motion components.

Figure 2 (top panel) shows how a tree is generated by successively adding objects. Start-

ing from the left, a single object follows a path (indicated by orange shading) through 3

layers of the motion tree. Note that the initial object always follows a chain since no other

branches have yet been created. The second object creates a new branch at layer 2. The

third object creates a new branch at layer 3. The fourth object follows the same trajectory

as the second object. Once all objects have been assigned paths through the tree, each layer

of the tree defines a partition of objects, as shown in the bottom panel of 2.

Thus far we have generated a path through a potentially very deep tree for each object.

Each path has the same length D. Remember that each node in the tree will represent a

motion component. We want each object n to be associated with a node in the tree, not

necessarily at depth D, and its overall motion to be the sum of all the motion components

above it (including itself). Hence, for each object we need to sample an additional parameter

dn ∈ {1, . . . , D} that determines to which level on the tree the object will be assigned. This
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depth specifies a truncation of cn, thereby determining which components along the path

contribute to the observations. The depth assignments d = [d1, . . . , dN ] are drawn from a

Markov random field:

P (d) ∝ exp

{
α

N∑
m=1

N∑
n>m

I[dm = dn]− ρ
N∑
n=1

dn

}
, (2)

where the indicator function I[·] = 1 if its argument is true and 0 otherwise. The parameter

α > 0 controls the penalty for assigning objects to different depths, and the parameter ρ > 0

controls a penalty for deeper level assignments. With this Markov random field objects tend

to be placed high up in the tree and on the same level as other objects.

Each motion component (i.e. each node j in the motion tree) is associated with a time-

varying flow field, fj(s, t) = [fxj (s, t), f yj (s, t)]. We place a prior on flow fields that enforces

spatial smoothness but otherwise makes no assumptions about functional form. In particular,

we assume that fxj and f yj are spatial functions drawn independently at each discrete time

step t from a Gaussian process (see Rasmussen and Williams, 2006, for a comprehensive

introduction):

P (f) = GP(f ;m, k), (3)

where m(s) is the mean function and k(s, s′) is the covariance function. The mean func-

tion specifies the average flow field, while the covariance function specifies the dependency

between motion at different spatial locations: the stronger the covariance between spatial

locations, the smoother flow fields become. We assumed m(s) = 0 for all s, and a squared

exponential covariance function:

k(s, s′) = τ exp

{
−||s− s′||2

2λ

}
, (4)

where τ > 0 is a global scaling parameter and λ > 0 is a length-scale parameter controlling

the smoothness of the flow field. When λ is large, the flow field becomes rigid. Smoothness is

only enforced between objects sharing the same motion component. Examples of flow fields

sampled from the prior are shown in Figure 3.
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λ = 0.1 λ = 1 λ = 100

Figure 3: Flow fields sampled from a Gaussian process. Each panel shows a random flow field sampled

with a different length-scale parameter (λ). As the length-scale parameter gets larger, the flow fields become

increasingly rigid.

To complete the generative model, we need to specify how the motion tree gives rise to

observations, which in our case are the positions of the N objects over time. The position

of object n at the next time step is set by sampling a displacement from a Gaussian whose

mean is the sum of the flow fields along path cn truncated at dn. The function node(n, d)

picks out the index of the node of the tree that lies at depth d on path cn and therefore

sn(t+ 1) = sn(t) +
dn∑
d=1

fnode(n,d)(sn(t), t) + εn(t), (5)

where εn(t) ∼ N (0, σ2I) represents sensory noise with variance σ2 and I is the identity

matrix. This is equivalent to sampling displacements for each motion component separately

and then adding up the displacements to form the next object position.

The additive form in Eq. 5 allows us to analytically marginalize the latent functions to

compute the conditional distribution over image sequences given the component and depth

assignments (see Rasmussen and Williams, 2006):

P (s|c,d) =

∫
f

P (s|c,d, f)P (f)df

=
∏
t

∏
z∈{x,y}

N (sz(t+ 1); sz(t),K(t) + σ2I) (6)
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where K(t) is the Gram matrix of covariances between objects:

Kmn(t) = k(sm(t), sn(t))φmn. (7)

where the function φmn is the number of components shared by m and n (implicitly a function

of cm and cn). Intuitively, the covariance between two points counts the number of motion

components shared between their paths, weighted by their proximity in space. Thus, the

model captures two important Gestalt principles: grouping by proximity and common fate

(Wertheimer, 1923).

The generative model described here contains a number of important special cases under

particular parameter settings. When γ = 0 and D = 1, only one motion component will be

generated; in this case, the prior on flow-fields—favoring local velocities close to 0 that vary

smoothly over the image—resembles the “slow and smooth” model proposed by Weiss and

Adelson (1998). When γ = 0, D = 1 and λ → ∞, we obtain the “slow and rigid” model

of Weiss et al. (2002). When D = 1 and γ > 0, the model will generate multiple motion

components, but these will all exist at the same level of the hierarchy (i.e., the motion tree

is flat, with no nesting), resulting in a form of transparent layered motion, also known as

“smoothness in layers” (Wang and Adelson, 1993; Weiss, 1997).

2.2. Inference

The goal of inference is to compute the maximum a posteriori motion tree given a set

of observations. Recall that the motion tree is completely described by the component

assignments c = {c1, . . . , cN} and depths d = {d1, . . . , dN}. The posterior is given by Bayes’

rule:

P (c,d|s) ∝ P (s|c,d)P (c)P (d), (8)

where s denotes the observed trajectory of object positions. As described above, the latent

motion components can be marginalized analytically using properties of Gaussian processes.

We use annealed Gibbs sampling to search for the posterior mode. The algorithm al-

ternates between holding the depth assignments fixed while sampling from the conditional
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distribution over component assignments, and holding the component assignments fixed

while sampling from the conditional distribution over depth assignments. By raising the

conditional probabilities to a power β > 1, the posterior becomes peaked around the mode.

We gradually increase β, so that the algorithm eventually settles on a high probability tree.

We repeat this procedure 10 times (with 500 sampling iterations on each run) and pick the

tree with the highest posterior probability. Below, we derive the conditional distributions

used by the sampler.

The conditional distribution over component assignments cn is given by:

P (cn|c−n, s,d) ∝ P (cn|c−n)P (s|c,d), (9)

where c−n denotes the set of all paths excluding cn. The first factor in Eq. 9 is the nCRP

prior (Eq. 1). The second factor in Eq. 9 is the likelihood of the data, given by Eq. 6.

The conditional distribution over depth dn is given by:

P (dn|c, s,d−n) ∝ P (dn|d−n)P (s|c,d), (10)

where d−n denotes the level assignments excluding dn and

P (dn|d−n) ∝ exp

{
α
∑
m6=n

I[dm = dn]− ρdn

}
. (11)

This completes the Gibbs sampler.

To visualize the motion components that are given by a grouping through dn and cn, we

can calculate the posterior predictive mean for object n at each component j (shown here

for the x dimension):

E[fxj (sn(t), t)] = k>nj(K(t) + σ2I)−1(sx(t+ 1)− sx(t)), (12)

where knj is the N -dimensional vector of covariances between sn(t) and the locations of all

the objects whose paths pass through node j (if an object does not pass through node j then

its corresponding entry in knj is 0).
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Figure 4: Johansson (1950) two dot experiment. (A) Veridical motion vectors. (B) Perceived motion.

(C ) Inferred motion vectors. Each color corresponds to a different component in the motion tree (D), but

note that a component will predict different vectors depending on spatial location.

3. Simulations

In this section, we show how Bayesian vector analysis can account for several classic

experimental phenomena. These experiments all involve stimuli consisting of moving dots, so

for present purposes sn(t) corresponds to the position of dot n at time t. In these simulations

we use the following parameters: D = 3, σ2 = 0.01, τ = 1, λ = 100, α = 1, ρ = 0.1, γ = 1.

The interpretation of σ2 and λ depend on the spatial scale of the data; in general, we

found that changing these parameters (within the appropriate order of magnitude) had little

influence on the posterior. We set λ to be large enough so that objects assigned to the same

layer moved near-rigidly.

Johansson (1950) demonstrated that a hierarchical motion percept can be achieved with

as few as two dots. Figure 4A shows the stimulus used by Johansson, consisting of two

dots translating orthogonally to meet at a single point. Observers, however, do not perceive

the orthogonal translation. Instead, they perceive the two dots translating along a diagonal

axis towards each other, which itself translates towards the meeting point (Figure 4B).
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Figure 5: Johansson (1973) three dot experiment. (A) Veridical motion vectors. (B) Perceived motion.

(C ) Inferred motion vectors. (D) Inferred motion tree.

Thus, observers perceive the stimulus as organized into common and relative motions. This

percept is reproduced by Bayesian vector analysis (Figure 4C); the inferred motion tree

(shown in Figure 4D) represents the common motion as the top level component and the

relative motions as subordinate components. The subordinate components are not perfectly

orthogonal to the diagonal motion, consistent with the findings of Wallach et al. (1985); this

arises in our model because there is uncertainty about the decomposition, leading to partial

sharing of structure across components.

Another example studied by Johansson (1973) is shown in Figure 5A (see also Hochberg

and Fallon, 1976). Here the bottom and top dot translate horizontally while the middle dot

translates diagonally such that all three dots are always collinear. The middle dot is perceived

as translating vertically as all three dots translate horizontally (Figure 5B). Consistent with

this percept, Bayesian vector analysis assigns all three dots to a common horizontal motion

component, and additionally assigns the middle dot to a vertical motion component (Figure

5C-D).

Duncker (1929) showed that if a light is placed on the rim of a rolling wheel in a dark
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Figure 6: Duncker wheel. (A) A light on the rim of a rolling wheel, viewed in darkness, produces cycloidal

motion. (B) Adding a light on the hub produces rolling motion (translation + rotation).

room, cycloidal motion is perceived (Figure 6A), but if another light is placed on the hub then

rolling motion is perceived (Figure 6B). Simulations of these experiments are shown in Figure

7. When a light is placed only on the rim, there is strong evidence for a single cycloidal motion

component, whereas stronger evidence for a two-level hierarchy (translation + rotation) is

provided by the hub light.3 It has also been observed that placing a light in between the rim

and the hub produces weaker rolling motion (i.e., the translational component is no longer

perfectly horizontal; Proffitt et al., 1979), a phenomenon that is reproduced by Bayesian

vector analysis (Figure 7, bottom).

Bayesian vector analysis can also illuminate the computations underlying motion trans-

parency (Snowden and Verstraten, 1999). When two groups of randomly moving dots are

superimposed, observers may see either transparent motion (two planes of motion sliding

past each other) or non-transparent motion (all dots moving in the direction of the average

motion of the two groups). Which percept prevails depends on the relative direction of the

two groups (Braddick et al., 2002): as the direction difference increases, transparent motion

becomes more perceptible. We computed the probability of transparent motion (i.e., two

layers in our model) for a range of relative directions using 20 dots. As the relative direc-

3Note that the model does not explicitly represent rotation but instead represents the tangential motion

component in each time step.
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Stimulus Model

Figure 7: Simulations of the Duncker wheel. (Top) A single light on the rim produces one vector

following a cycloidal path. (Middle) Adding a light on the hub produces two vectors: translation + rotation,

giving rise to the percept of rolling motion. (Bottom) Placing the light on the interior of the wheel produces

weaker rolling motion: the translational component is no longer perfectly horizontal.

tion increases, the statistical evidence in favor of two separate layers increases, resulting in

a smoothly changing probability (Figure 8). Our simulations are in qualitative agreement

with the results of (Braddick et al., 2002).

Inferences about the motion hierarchy may interact with the spatial structure of the

scene. The phenomenon of motion contrast, originally described by Loomis and Nakayama

(1973), provides an illustration: The perceived motion of a dot depends on the motion of

surrounding “background dots” (the black dots in Figure 9A). If a set of dots moves on a

screen such that the dots on the left move more slowly than dots on the right, they form a

velocity gradient. Two “target” dots that move with the same velocity and keep a constant

distance (the red dots in Figure 9A) can still be perceived as moving with radically different

speeds, depending on the speed of the dots close by. In our model, most of the motion of the

velocity gradient is captured by the Gaussian process on the top-level motion component.
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Figure 8: Simulations of transparent motion. (A) Transparency—the probability of a motion tree with

two independent components, each corresponding to a motion layer—increases as a function of direction

difference between two superimposed groups of dots. (B) Maximum a posteriori motion trees for two

different motion displays: 45 degree (left) and 90 degree (right) direction difference.

However, this top-level component does not capture all of the motion of each dot. The target

dots (in red), in particular, are each endowed with their own motion component and move

relative to the top-level node. This relative motion differs depending on where along the

gradient the target dot is located, resulting in motion contrast (Figure 9B).

How does our model scale up to more complex displays? An interesting test case is

biological motion perception: Johansson (1973) showed that observers can recognize human

motions like walking and running from lights attached to the joints. Later work has revealed

that a rich variety of information can be discriminated by observers from point light displays,

including gender, weight and even individual identity (Blake and Shiffrar, 2007). We trained

our model (with the same parameters) on point light displays derived from the CMU human

motion capture database.4 These displays consisted of the 3-dimensional positions of 31 dots,

including walking, jogging and sitting motions. The resulting motion parse is illustrated

in Figure 10: the first layer of motion (not shown) captures the overall trajectory of the

4http://mocap.cs.cmu.edu/
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Figure 9: Motion contrast. (A) The velocity of the background (black) dots increases along the horizontal

axis. Although A and B have the same velocity, A is perceived as moving faster than B. (B) Model simulation.

body, while the second and third layers capture more fine-grained structure, such as the

division into limbs and smaller jointed body parts. Note that the model knows nothing

about the underlying skeletal structure; it infers body parts directly from the dot positions.

This demonstrates that Bayesian vector analysis can scale up to more complex and realistic

motion patterns.

Overall, and without much tweaking of the parameters, our model is able to qualitatively

capture a wide range of the phenomena that have been observed in hierarchical motion orga-

nization. There are two components that are central to the model. The first is Johansson’s

idea of vector analysis. The representation of the motions is given by a tree-structure where

the observed motions are the sum of the motion components of all nodes on the path from

the root to the respective object node. The second is that the motion on each node of the

tree is represented as a flow field that imposes spatiotemporal smoothness and a preference

for slow motions (Weiss and Adelson, 1998; Weiss et al., 2002). The idea of using flow-fields

on different motion layers without a hierarchical structure is well established (Koechlin et al.,

1999; Nowlan and Sejnowski, 1994; Wang and Adelson, 1993; Weiss, 1997). Our model com-

bines these two ideas in a Bayesian framework and treats the problem as inference over the

hierarchical structure. Together with the prior over trees, the model can capture the quali-
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A B

Figure 10: Analysis of human motion capture data. Each color represents the assignment of a node to

a motion component. All nodes are trivially assigned to the first layer (not shown). In addition, all nodes

were assigned to the second layer (A). A subset of the nodes were also assigned components in the third layer

(B). Unfilled nodes indicate that no motion component was assigned at that layer. The skeleton is shown

here for display purposes; the model was trained only on the dot positions.

tative effects of the all the phenomena discussed above. In the following we will present an

experiment to test whether the model can also provide quantitative fits to human data.

4. Experiment

In this section, we report a new psychophysical experiment aimed at testing the descrip-

tive adequacy of Bayesian vector analysis. The stimuli were generated using more compli-

cated motion trees than stimuli used in previous research (e.g., Johansson, 1950), and thus

provided a more complex challenge for our model.5

5Demos can be viewed at https://sites.google.com/site/hierarchicalmotionperception/

quintets-iii.
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4.1. Subjects

Four naive, young adult subjects participated in the experiment. All had normal or

corrected-to-normal acuity. All subjects gave informed consent. The work was carried out

in accordance with the Code of Ethics of the World Medical Association (Declaration of

Helsinki).

4.2. Stimuli and Procedure

Participants, seated approximately 60 cm from the computer screen (resolution: 1600×

900; frame rate: 60 Hz), viewed oscillating dot quintets, as schematized in Figure 11. Each

dot was circular, subtending a visual angle of 0.43◦. An oscillating stimulus was chosen

because this is a convenient way to present a single motion structure for a prolonged period

of time, and is in keeping with traditional displays (e.g., Johansson, 1950). The quintets

were synthesized by combining three different motion components, whose parameters are

shown in the bottom panel of Figure 11. The quintets varied in their underlying motion tree

structure, while always keeping the underlying motion components the same. In particular,

we explored a simple 2-layer tree (Quintet 1), a 2-layer chain plus an independent motion

(Quintet 2), and a 3-layer chain (Quintet 3). This allowed us to explore the model predictions

for several qualitatively different structures.

On each trial, subjects viewed a single quintet presented on a gray background, with one

dot colored red, one dot colored blue, and the rest colored white. The dots are numbered as

follows:

1. Top

2. Bottom

3. Center

4. Left

5. Right

Irrespective of the condition (i.e. of the three differing motion trees) the five dots formed a

cross at the beginning of each trial. The motion on each component of the motion tree was

sinusoidal so that after one cycle the original cross shape would reappear.
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Quintet 1 Quintet 2 Quintet 3

Frequency	  (deg/sec)	   Amplitude	  (deg)	  

Component	  1	   [0.012,	  0.012]	   [1.17,	  1.17]	  

Component	  2	   [0.012,	  0]	   [2.13,	  0]	  

Component	  3	   [0,	  0.024]	   [0,	  0.90]	  

Figure 11: Schematic of dot quintet stimuli. Motion trees are shown using the same convention as

in earlier figures, alongside the spatial arrangement of the quintet. Dots assigned to each component are

highlighted in black. For example, the motion of the top dot in Quintet 1 is the sum of the diagonal component

(root node, blue vector) and the horizontal component (red vector). Parameters of each component are shown

in the table.

The task was to make one of three responses: (1) red moving relative to blue; (2) blue

moving relative to red; (3) neither. Subjects were instructed that “red moving relative to

blue” should be taken to mean that the blue dot’s motion forms a reference frame for the

red dot’s motion, and hence the red dot is “nested” in the blue dot motion. Subjects were

asked to make their response as quickly as possible, but there was no response deadline and

the stimulus kept moving on the screen until the subject had responded. Each quintet was

shown 32 times, with 8 different dot comparisons.

4.3. Results

To model our data, we used the same parameters as in our simulations reported above,

except that we selected τ (the scaling parameter for the Gaussian process prior) to fit the

data. Small values of τ diminish the strength of the prior on smooth flow fields, allowing

more complex motion patterns. In addition, to more flexibly capture the response patterns,

we raised the model’s choice probability (i.e., the probability of choosing one of the 3 response
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Figure 12: Cross-validation results. Pearson correlation between model predictions and experimental data

for different values of the scaling parameter τ and the inverse temperature parameter β. The correlation

values are computed on held-out (split-half) data and averaged across splits.

options given to subjects) to a power specified by a free parameter, β, and renormalized:

P̃ (T = t|s) =
P (T = t|s)β∑
t′ P (T = t′|s)β

, (13)

where T denotes the chosen tree. The consequence of this distortion is to disperse the

probability distribution when β < 1, thus allowing us to model the effect of stochasticity

in responding. This kind of response scaling is a common way to map model predictions

to subjects’ responses in mathematical psychology and Bayesian modeling, in particular

(Acerbi et al., 2014; Navarro, 2007). Note that this distortion of probability does not affect

ordinal preferences. In practice, when computing the probabilities we did not evaluate all

possible motion trees, but instead evaluated the three trees shown in Figure 11, since the

data-generating trees are likely to possess most of the posterior probability mass.

To select τ and β, we conducted a coarse grid search, splitting our data into two halves

and using one half of the data to select the parameters which maximized the Pearson cor-

relation between model predictions and average choice probabilities. We then computed the

correlation on the held-out data as a cross-validated assessment of model fit. The correla-
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Figure 13: Experimental data and model predictions. Each bar represents one dot motion comparison,

as denoted in the legend (e.g., “1−3” means “dot 1 nested in dot 3”). The y-axis shows the average probability

of reporting that one dot motion is nested in the other dot’s motion. Error bars represent standard error of

the mean.

tions for the entire parameter range are shown in Figure 12. The optimal parameter setting

was found to be τ = 0.01 and β = 0.01, but the correlations are high for parameters that

vary over several orders of magnitude.

Our behavioral data and model predictions are shown in Figure 13 for all 8 comparisons

in each quintet. Generally speaking, subjects are able to extract the underlying hierarchical

structure, but there is substantial uncertainty; some comparisons are more difficult than

others. The entire pattern of response probabilities is very well-captured by our model

(r = 0.98, p < 0.0001). As a further test of the model, we reasoned that greater uncertainty

(measured as the entropy of the choice probability distribution) would require more evidence

and hence longer response times. Consistent with this hypothesis, we found that entropy

was significantly correlated with response time (r = 0.73, p < 0.0001; Figure 14).
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Figure 14: Response times increase with the entropy of the predicted probability distribution

over choices.

5. Discussion

How does the visual system parse the hierarchical structure of moving scenes? In this

paper, we have developed a Bayesian framework for modeling hierarchical motion perception,

building upon the seminal work of Johansson (1950). The key idea of our theory is that a

moving scene can be interpreted in terms of an abstract graph—the motion tree—encoding

the dependencies between moving objects. Bayesian vector analysis is the process of inferring

the motion tree from a sequence of images. Our simulations demonstrated that this formalism

is capable of capturing a number of classic phenomena in the literature on hierarchical

motion perception. Furthermore, we showed that our model could quantitatively predict

complex motion percepts in new experiments. Importantly, the probabilistic representation

of uncertainty furnished by our model allowed it to capture variability in choices and response

times that we observed in our experimental data.

Two limitations of our theory need to be addressed. First, the generative model assumes

that motion components combine through summation, but this is not adequate in general.

For example, a better treatment of the Duncker wheel would entail modeling the composition

of rotation and translation. In its current form, the model approximates rotation by inferring

motion components that are tangent to the curve traced by the rotation. We are currently
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investigating a version of the generative model in which motion transformation compose with

one another, which would allow for nonlinear interactions.

Second, although we described an algorithm for finding the optimal motion tree, Bayesian

vector analysis is really specified at the computational level; our simulations are not illumi-

nating about the mechanisms by which the vector analysis is carried out. Stochastic search

algorithms similar to the one we proposed have been used to model various aspects of visual

perception, such as multistability of ambiguous figures (Sundareswara and Schrater, 2008;

Gershman et al., 2012). The observation that hierarchically structured motions can also

produce multistability (Vanrie et al., 2004) suggests that stochastic search may be a viable

algorithmic description, but more work is needed to explore this hypothesis. Our theory

also does not commit to any particular neural implementation. Grossberg et al. (2011) have

described a detailed theory of how vector analysis could be performed by the visual cortex,

and their efforts offer a possible starting point. Alternatively, neural implementations of

stochastic search algorithms (Buesing et al., 2011; Moreno-Bote et al., 2011) would allow us

to connect the algorithmic and neural levels.

We view hierarchical motion as a model system for studying more general questions about

structured representations in mind and brain (Austerweil et al., 2015; Gershman and Niv,

2010). The simplicity of the stimuli makes them amenable to rigorous psychophysical and

neurophysiological experimentation, offering hope that future work can isolate the neural

computations underlying structured representations like motion trees.
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