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Abstract

Primates constantly explore their surroundings via saccadic eye movements that bring dif-

ferent parts of an image into high resolution. In addition to exploring new regions in the visual

field, primates also make frequent return fixations, revisiting previously foveated locations.

We systematically studied a total of 44,328 return fixations out of 217,440 fixations. Return

fixations were ubiquitous across different behavioral tasks, in monkeys and humans, both

when subjects viewed static images and when subjects performed natural behaviors. Return

fixations locations were consistent across subjects, tended to occur within short temporal

offsets, and typically followed a 180-degree turn in saccadic direction. To understand the ori-

gin of return fixations, we propose a proof-of-principle, biologically-inspired and image-com-

putable neural network model. The model combines five key modules: an image feature

extractor, bottom-up saliency cues, task-relevant visual features, finite inhibition-of-return,

and saccade size constraints. Even though there are no free parameters that are fine-tuned

for each specific task, species, or condition, the model produces fixation sequences resem-

bling the universal properties of return fixations. These results provide initial steps towards a

mechanistic understanding of the trade-off between rapid foveal recognition and the need to

scrutinize previous fixation locations.

Author summary

We move our eyes several times a second, bringing the center of gaze into focus and high

resolution. While we typically assume that we can rapidly recognize the contents at each

fixation, it turns out that we often move our eyes back to previously visited locations.

These return fixations are ubiquitous across different tasks, conditions, and across species.

A computational model captures these eye movements and return fixations by using four

key mechanisms: extraction of salient parts of an image, incorporation of task goals such
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as the target during visual search, a constraint to avoid making large eye movements, and

forgetful memory of previous locations. Neither the extreme of getting stuck at a single

location or the extreme of never revisiting previous locations seems adequate for visual

processing. Instead, the combination of these four mechanisms allows the visual system to

achieve a happy medium during scene understanding.

Introduction

Primates and other animals move their eyes several times a second through ballistic excursions

called saccades, bringing different parts of a scene into high resolution at the center of fixation.

Saccades are critical to visual processing and are orchestrated by multiple brain areas involved

in determining the location of the next fixation and programming the corresponding motor

commands [1–6]. Certain locations in an image are more salient in the sense that they draw

more fixations; for example, subjects rarely make saccades to the middle of a white wall, but

they will saccade to a moving yellow car.

Models that aim to predict eye movements generally postulate an attention map that speci-

fies how saliency differs across an image (e.g., [7–16]) A winner-take-all mechanism selects the

maximum of the attention map as the location for the next fixation. Thereafter, some change

must occur in the attention map to allow the eyes to explore other locations and prevent the

system from repeatedly selecting the same maximum. An inhibition-of-return (IOR) mecha-

nism is typically imposed to ensure that the model can choose the next maximum [17]. A bal-

ance must be struck between an IOR mechanism that is too strong, which would prevent the

system from scrutinizing the areas of maximum interest in the attention map, and a weak IOR,

which would prevent image exploration.

A finite IOR mechanism would allow subjects to return to previously visited locations.

Indeed, behavioral studies have shown that return fixations often take place during normal

gaze behaviors including reading [18], pattern copying or block sorting [19, 20], portrait paint-

ing [21], solving arithmetic and geometry problems [22], visual search [17, 23–28], and free

viewing [24, 29–31]. Return fixations have been used in neurophysiological studies of target

detection [32], to study working memory during visual search in change detection tasks [17,

27, 28, 33], in object and location recall tasks [31], to study the effects of memory load [25, 31,

34–38], in rejection of distractors [24], and the comparison between IOR and memory-less

models [39].

The neural mechanisms driving return fixations remain poorly understood and likely

involve multiple factors including the content of the visual field, contextual relations among

objects, goal-relevance and task instructions, eccentricity-dependent sampling, object familiar-

ity, visual working memory, and eye muscle constraints [33, 39–43]. These different factors

could change across different experimental conditions. Several studies examined the trade-offs

between scrutinizing information at a given scene location and the drive to examine new

salient locations during eye movements, e.g., [7, 12, 44–47]. For example, the Bayesian models

proposed in [7, 12, 46] generate saccades for scene viewing and fit human eye movement data.

Recent work has also characterized strategies of deploying eye movements within image

regions for exploitation or other regions for exploration during free-viewing of natural images

by humans [43].

While previous studies focused only on a single task performed by one species under spe-

cific conditions, here we set out to quantify and model the universal properties of return fixa-

tions across a wide variety of naturalistic tasks, conditions, and across two species. We assessed
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the general principles underlying return fixations, as opposed to only capturing how locations

are revisited under a single experiment. We studied eight experiments that included different

species (humans and monkeys), different types of images (isolated object arrays, natural

images, and Waldo images), different tasks (free viewing and visual search), and different stim-

ulus dynamics (static images and egocentric videos). We show that both monkeys and humans

make frequent return fixations across all the tasks and conditions studied. These return fixa-

tions have few intervening saccades, often follow a 180-degree turn in saccadic direction, and

are more prevalent in areas of high saliency and areas of high similarity to the target during

visual search. To gain insight into the potential neural mechanisms that drive return fixations,

we propose a proof-of-principle, image-computable, and biologically-inspired neural network

model of eye movements. Without fine-tuning parameters for specific image types, tasks, spe-

cies or condition, the model provides a first-order approximation to the spatiotemporal

dynamics underlying revisiting of previous fixation locations. The key ingredients of the

model leading to the universal properties of return fixations include an image feature extrac-

tor, bottom-up saliency, target similarity for visual search tasks, a finite inhibition-of-return

memory, and a constraint on the saccade sizes. The ubiquitous and frequent nature of return

fixations suggests that these model components can also provide important building blocks to

build better neural network models of object recognition and visual search.

Results

A typical eye movement sequence is shown in Fig 1A. The subject fixated at location 3 (red tri-

angle), then made a saccade to location 4 (yellow circle), and quickly returned to location 5

(red circle), which overlaps with location 3. We refer to location 3 as a to-be-revisited fixation,

location 5 as a return fixation, and to all other locations as non-return fixations. We used a

threshold of one degree of visual angle (dva, approximately the resolution of our eye tracking

system, Methods) to determine whether two fixations overlapped. Other examples of return

fixations are shown in Fig 1B–1D. We evaluated the pattern of return fixations in eight experi-

ments schematically illustrated in Fig 2 (see Methods for experiment details). These eight

experiments encompassed different primate species (humans, Fig 2A–2D and 2G–2H, and

non-human primates, Fig 2E–2F), different tasks (free viewing, Fig 2D–2G, and visual search,

Fig 2A–2C and 2H), and different stimulus presentation formats (static images, Fig 2A–2F,

and free-moving recorded in egocentric videos, Fig 2G–2H). We characterized the prevalence

of return fixations and their properties, and propose a biologically-inspired computational

model that captures the main properties of return fixations.

Return fixations are ubiquitous

We started by re-examining the fixation patterns of human subjects during three progressively

more challenging visual search tasks in a dataset that we had studied previously [8], which

included object array images (Fig 2A), natural images (Fig 2B), and “Where is Waldo?” images

(Fig 2C). Even though many computational models of visual search assume infinite inhibition

of return (IOR)—that is, without possibility of returning to a previously visited location, we

observed that humans made a large number of return fixations in all three cases: 11.8 ± 0.7%

(Fig 3A, here and throughout, mean ± SEM across subjects), 18.8 ± 0.6% (Fig 3B), and 15.6

± 0.9% (Fig 3C), respectively. In all cases, the proportion of return fixations was higher than

expected by a null model implementing random eye movements while respecting the distribu-

tion of saccade sizes (p< 10−5, two-tailed t-test, df = 14, Methods); this was consistent with

previous studies [17, 27, 28, 33]. Moreover, subjects returned to the same location not just
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Fig 1. Primates make return fixations during natural vision. Example fixation sequences (yellow circles) of humans

(A-C) and monkeys (D) during visual search (A), free viewing of static images (B, D), and a cooking task with a head-

mounted eye tracker (C) (see Fig 2 for task definitions). The numbers denote the fixation order. A fixation (yellow circles)

is referred to as a “return fixation” (red triangle) if the Euclidean distance to any of the previous fixations is less than 1

degree of visual angle (dva). The previous fixation overlapping with the return fixation is referred to as a “to-be-revisited”

fixation (red circle). There are two return fixations in B and one in A, C, and D. E-F Return fixations are consistent across

subjects. E and F show example images of consistent return fixations across subjects in free viewing tasks. Color bar on

the right shows the scales of between- subject consistency (see S5 Fig for more examples). Photo sources: (A, B, E) were

modified from a public dataset [8]. (C) was modified from a public dataset [48]. (D, F) Reproduced with permission from

BPRC and pexels.com.

https://doi.org/10.1371/journal.pcbi.1010654.g001
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Fig 2. Schematic description of the eight experimental paradigms. (A-C) Visual search tasks with object arrays (A), natural images

(B), and “Waldo” images (C) (see [8] for details). (D-F) Free viewing experiments with static natural images in humans (D) and

monkeys (E, F). (G) Egocentric video dataset where subjects had to follow various recipes to make breakfast (see [48] for details). (H)

Egocentric video dataset where subjects had to search for 22 items (see reference [49] for details). The numbers in the top right corner

of each subplot denote the total number of fixations (top) and the total number of return fixations (bottom). Photo sources: (A, B, C, D)

were modified from a public dataset [8]. (G) was modified from a public dataset [48]. (H) was modified from a public dataset [49]. (EF)

Reproduced with permission from BPRC and pexels.com.

https://doi.org/10.1371/journal.pcbi.1010654.g002
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Fig 3. Human and non-human primates make frequent return fixations. (A-H) Proportion of return fixations, i.e.,

total number of return fixations normalized by total number of fixations, for each of the 8 experiments (Fig 2). Each

dot indicates an individual subject (horizontal spread is only for visualization). The horizontal solid line shows the

average across subjects. The chance level (dashed lines) was computed by generating sequences of random fixations

(Methods). Asterisks indicate significant differences from chance (p< 0.05, one-sample t-test). We did not conduct a

statistical test in the monkey free viewing 2 experiment as there were only 2 subjects. (I) Example sequence of 8

fixations on an image, including return fixations (6, 7), to-be-revisited fixations (3, 5), and non-return fixations (1, 2, 4,

8). The return offset is the number of intervening fixations for a given return location. (J) Distribution of the return

offset for the 8 experiments. The light grey line shows each subject and the black lines show averages. In the visual

search experiments, the solid and dashed lines show return fixations to non-targets and targets, respectively. Photo

sources: (I) was modified from a public dataset [8].

https://doi.org/10.1371/journal.pcbi.1010654.g003
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once, but often multiple times. S1 Fig shows the proportion of cases where subjects made two

return fixations.

We reasoned that return fixations could be particularly relevant during visual search, espe-

cially in difficult tasks, where it is easy to miss the target and it may therefore be advantageous

to revisit previous locations [8]. To assess whether return fixations constitute a unique prop-

erty of visual search tasks, we conducted a free-viewing experiment where there was no obvi-

ous incentive to revisit previous locations (Fig 2D). Under free-viewing conditions, subjects

still made multiple return fixations (Fig 3D), 9.9 ± 0.8%, above the proportion expected by

chance (p< 10−5, two-tailed t-test, df = 9). The free-viewing experiment in Fig 2D used the

same images as the visual search experiment in Fig 2B and we can therefore directly compare

the fraction of return fixations. There were nearly twice as many return fixations during visual

search compared to free-viewing conditions.

To evaluate whether return fixations are unique to humans, we analyzed data from two

additional free-viewing experiments in macaque monkeys (Fig 2E–2F). Monkeys also demon-

strated extensive return fixations: 20.7 ± 1.8% and 7.8 ± 1.0% (Fig 3E–3F). In the free-viewing

experiment 1, the proportion of return fixations was higher than expected by chance

(p< 10−4, two-tailed t-test, df = 5). Consistently, the proportion of return fixations was also

higher than chance for the two monkeys that participated in the free-viewing experiment 2

(we cannot report accurate statistics across individuals for this experiment with N = 2). The

proportion of return fixations made by free-viewing monkeys was comparable or higher than

the proportion by humans during visual search. It should be noted that image content, image

sizes, and stimulus presentation times differed between the monkey and human experiments.

Therefore, the different proportions of return fixations between humans and monkeys may

reflect differences in stimulus conditions, rather than a true difference between species.

A large fraction of eye movement studies have focused on behavioral responses to flashed

static images. Intrigued by the consistency of return fixations across visual search and free

viewing of static images, we asked whether subjects also revisit fixation locations during more

naturalistic conditions. To address this question, we extended the analyses to two egocentric

video datasets where eye movements were tracked in free-moving subjects during a cooking

task (Fig 2G, reference [48]), or a real-world visual search task (Fig 2H, reference [49]). In the

cooking egocentric video dataset, subjects were asked to follow a sequence of steps on recipes

to prepare a meal (Methods). In the visual search egocentric video dataset, subjects were asked

to navigate an indoor home, search for a list of commonly used items, such as a thumb drive,

and put those items on a designated table (Methods). To avoid the complexities of head move-

ments and also to account for fixation locations that may disappear from the field of view, we

focused on stable five-second segments (S2 Fig, Methods). Under these conditions, subjects

still made repeated return fixations: 30.3 ± 1.8% (cooking) and 8.1 ± 0.5% (visual search task)

(Fig 3G–3H). In both egocentric video datasets, the proportion of return fixations was higher

than expected by chance (p< 10−13, df = 31, for video dataset 1 and p = 0.02, df = 43, for video

dataset 2). During the cooking task, subjects manipulated kitchenware, foods, and the recipe

in front of them and tended to make a large number of return fixations. In sum, return fixa-

tions were ubiquitous across tasks, species, and static images or free-moving conditions.

The total number of fixations varied across tasks and the proportion of return fixations

depends on the total number of fixations in a non-linear way. We therefore evaluated the prev-

alence of return fixations during the first six fixations S3 Fig. We chose to examine the first six

fixations because this number allowed us to incorporate most of the data, including those

experiments that had few fixations per trial. Except for the visual search 3 experiment, the pro-

portion of return fixations was above chance in all the experiments, even when considering

exclusively the first six fixations in each trial.
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In sum, return fixations are ubiquitous and are not restricted to visual search tasks. Subjects

revisit certain locations within an image and during free movement, even multiple times,

across a large variety of experimental conditions, tasks, and species.

Return fixations are consistent across subjects

We asked whether the locations of return fixations were consistent across subjects in the first

six experiments with static images (Fig 1E–1F and S4 Fig). We omitted this analysis in the ego-

centric video datasets because the field of view in each frame could be different across subjects,

making comparisons between subjects difficult to interpret. S5 Fig shows examples that illus-

trate consistent return fixation locations across subjects for the same image. For example,

seven out of ten subjects made a return fixation to the location at “9 o’clock” in S5(A) Fig and

five out of seven subjects made return fixations to the framed picture on the upper left in S5

(D) Fig. To quantify the degree of consistency across subjects for a given image, we divided the

image into a grid and calculated the probability of observing return fixations at each location

(Methods, S4(B) Fig). We summarized these probability distributions of return fixation loca-

tions by computing their entropy. An extreme case of perfect consistency would lead to a prob-

ability of 1 at a given location and 0 elsewhere, resulting in minimal entropy. In contrast, a

complete lack of consistency would lead to an approximately uniform probability distribution,

except for random overlaps, resulting in high entropy. The chance level was computed by con-

sidering the same total number of return fixations and distributing them at random locations

in the image (Methods). The entropy was lower than expected by chance in four of the six

experiments, the exceptions being the visual search 3 experiment and the Free Viewing 2

experiment in monkeys, both of which showed the same trend but did not reach statistical sig-

nificance (S4(C) Fig). In sum, in most experiments, different subjects tended to revisit the

same locations.

Subjects revisited return-fixation locations and lingered at those locations

We divided all fixation locations into the following three non-overlapping categories: to-

be-revisited fixations, non-return fixations, and return fixations (Fig 3I). We calculated

the offset between to-be-revisited and return fixations. In the two examples in Fig 3I, the

return offset between fixations 5 and 7 was 1 (intervening location 6) and the return offset

between fixations 3 and 6 was 2 (intervening fixations 4 and 5). A strong inhibition-of-

return would imply that there should be a large return offset between to-be-revisited and

return fixations. In stark contrast, in all the experiments, the distribution of return offsets

showed a rapid decay (Fig 3J). The percentage of all return fixations with an offset of 1 ran-

ged from 29.2% (humans, Free Viewing) to 84.4% (monkeys, Free Viewing 2) and the per-

centage of return fixations with a return offset less than or equal to 3 ranged from 56.8%

(humans, Free Viewing) to 100% (monkeys, Free Viewing 2). Regardless of the species,

experimental task or stimulus mode, subjects tended to move their eyes back to previously

visited locations after a very short delay, often the minimum possible delay of one interven-

ing fixation.

After returning their gaze to a given location, subjects tended to fixate longer at the return

location, especially during visual search (Fig 4A). The difference between the return fixation

durations and non-return fixation durations ranged from 36.8 ± 7 ms (Human Visual Search

1) to 79.6 ± 6 ms (Human Visual Search 2). The duration of return fixations was significantly

longer than non-return fixations for all the visual search experiments and two of the free-view-

ing experiments. Intriguingly, in the egocentric video visual search experiment, fixation dura-

tions were longer for the non-return fixations (see Discussion).
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Fig 4. Return fixations tended to last longer and follow smaller saccades. (A) Duration of fixations in non-return fixation

locations (dark gray), to-be-revisited locations (black), and return fixation locations (light gray). Dots show individual subjects. Error

bars denote SEM. � denotes p< 0.05, two-tailed t-test. The durations of return fixations tended to be longer for return fixation

locations in visual search tasks (see S24 Fig for fixation duration analysis separating target and non-target locations during visual

search. (B) Saccade size (same format as A). Return fixations tended to follow smaller saccades.

https://doi.org/10.1371/journal.pcbi.1010654.g004
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Return fixation durations were also longer than to-be-revisited fixation durations, espe-

cially during visual search. The difference between return fixation durations and to-be-revis-

ited fixation durations ranged from 23.8 ± 15 ms (Monkeys Free Viewing 1) to 70.7 ± 7 ms

(Human Visual Search 2). The duration of return fixations was significantly longer than to-be-

revisited fixations for all the visual search experiments and the first two free-viewing experi-

ments. There was no consistent relationship between the duration of to-be-revisited fixations

and non-return fixations. Therefore, the increased lingering at return locations could not be

simply ascribed to a specific content property of the image (by definition, the image content at

to-be-revisited and return locations is very similar).

We further categorized return fixations depending on whether they were at target or non-

target locations during visual search. The return fixation durations were longer at target loca-

tions compared to non-target locations (S24 Fig, p = 0.01 in the Visual Search 1 experiment;

and p< 0.001 in the Visual Search 2 and 3 experiments). This observation further suggests

that return fixations may be associated with the requirements for object recognition during

visual search.

Saccade sizes preceding return fixations were generally smaller than those preceding non-

return fixations. The difference in saccade sizes ranged from 0.7 ± 0.2 dva (Monkey Free View-

ing 1) to 4.3 ± 0.6 dva (Human Videos 2) (Fig 4B and S6(A) Fig). The visual search on object

arrays experiment did not show this effect, perhaps because subjects tended to fixate on the

objects, which were isolated with no background, and thus there was only a limited repertoire

of possible saccade sizes given the geometry of the display. There was also no difference in sac-

cade sizes in the Monkey Free Viewing 2 experiment.

Another important aspect to assess return fixations was the turning angle across three con-

secutive fixations. We computed two distributions of turning angles based on whether the

third fixation was a return fixation or a non-return fixation (Fig 5 and S7 Fig). If subjects

looked at location A, continued to look at B and then immediately returned to look at A (a

return offset of 1), the turning angle would be 180 degrees. Since we observed that subjects

promptly revisit return fixation locations with an offset of 1, we would expect the distribution

of turning angles to peak around 180 degrees. Indeed, there was a strong peak at 180 degrees

in all experiments for return fixations (Fig 5A and S7(A) Fig) The turning angles for non-

return fixations showed a slight U-curve shape with slightly more prominent turning angles of

0 degrees (continuing along the same direction), and 180 degrees (reversing directions) (Fig

5B and S7(B) Fig). The prominence of 0 degrees turning angles may reflect inertia of eye move-

ments [39]. Additionally, saccade sizes are positively correlated with the turning angles [16]

(also see S23 Fig). Subjects tend to make shorter saccades when they move their eyes forward.

In sum, return fixations were distinct from non-return fixations and also distinct from to-

be-revisited fixations. Subjects tended to remember previously visited locations, reverse eye

movement direction, and revisited locations shortly after their first encounter, typically after

making a shorter saccade, and generally spending an additional *50 milliseconds the second

time around.

Subjects returned more often to salient locations and to locations more

similar to the target during visual search

Beyond the proximity to recently explored locations, we asked whether features in the image

had an impact on the locations of return fixations. The consistency between subjects described

in S4 Fig and S5 Fig suggested that there were special locations in the image that tended to be

revisited more often. In addition, the distribution of all return fixation locations was not uni-

form, further suggesting that there are spatial biases that impact the return fixation locations
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Fig 5. Subjects tend to make more saccades with turning angles of 180 degrees preceding return fixations. (A) Distribution of

turning angles preceding return fixations. Bin size = 12 degrees. The sharp peak at 180 degrees shows that subjects often revert

directions to return to their previously fixated location with short offsets (Fig 3). (B) Distribution of turning angles preceding non-

return fixations. Bin size = 12 degrees. The curves tend to show a slight U-shape showing that subjects often either continue to move in

the same direction or else move in the opposite direction.

https://doi.org/10.1371/journal.pcbi.1010654.g005
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(S8 Fig). For example, there was a center bias, especially during free-viewing tasks for both

humans and monkeys (S8(D)–S8(F) Fig), and the return fixation locations were skewed

towards the bottom part of the image in egocentric videos (S8 Fig (G-H)). To test whether

these location biases are specific to return fixations or general to all fixations, we plotted the

spatial biases for both return fixations (S8 Fig (A1-H1)) and non-return fixations separately

(S8 Fig (A2-H2)). We compared the spatial distribution of return versus non-return fixations

using the Kullback–Leibler divergence (KLD, which has a value of 0 for two identical distribu-

tions and a large value when the two distributions are very dissimilar). To accommodate the

sparsity in the fixation distribution and to account for the resolution of the eye tracker, we

quantized the fixation locations with a 2D grid of resolution 1 dva, and computed the KLD

between return and non-return fixations. The KLD values show that the return fixation distri-

bution tended to be more spatially biased than non-return fixations.

Previous studies have shown that fixations tend to cluster in locations with high bottom-up

saliency, such as regions of high contrast changes [10, 11, 50]. Therefore, we asked whether

return fixations were distinct in terms of their bottom-up saliency. We used low-level image

features, including edges, contrast, intensity, and color, defined in reference [51] to calculate

the bottom-up saliency at each location in each image and compared the bottom-up saliency

at return fixation locations versus non-return locations. In all experiments except for Visual

Search 1, saliency at return fixation locations was higher than at non-return locations (Fig 6A).

Although saliency was higher at return fixation locations, the difference in saliency seemed

to be too small to fully explain the pattern of return fixations, especially during visual search

conditions. In particular, in the visual search experiment 1, return fixations could not be dis-

tinguished from non-return fixations in terms of their bottom-up saliency. We hypothesized

that the decision-making process driving return fixations during visual search might also

incorporate top-down information, leading us to investigate how the task demands impacted

the locations of return fixations. First, we separately considered the sought target location ver-

sus non-target locations. In the three visual search experiments (Fig 2A–2C), there were more

frequent return fixations to target locations than to non-target locations (Fig 6B). In the visual

search experiments in Fig 2B–2C (but not in the object array experiment in Fig 2A), subjects

had to use the computer mouse to click on the target location. Therefore, return fixations to

target locations most likely imply that subjects fixated on the target but were unaware that they

had found it, moved their eyes to other locations, and then returned to the target location,

became aware that they had finished the search, and clicked the target location with the

mouse.

Even though returning to the target location makes sense in terms of the task goals, subjects

also returned to non-target locations. In all three visual search experiments, the proportion of

return fixations was higher than expected by chance both for target and non-target locations

(Fig 6B). In particular, we compared the Visual Search 2 and Human Free Viewing tasks,

which used the same images. The proportion of non-target return fixations in the Visual

Search 2 task was larger than the proportion of return fixations in the Human Free Viewing

task (p< 10−4, two-tailed t-test, df = 23). Subjects revisit more locations during visual search

compared to free-viewing conditions, even when those locations do not contain the target.

A simple hypothesis of why subjects may return to non-target locations is that those loca-

tions may share some degree of visual similarity with the target, based on the previous visual

search work [8]. To test this hypothesis, we designed an experiment to assess the degree of

visual similarity between different fixation locations with the sought target (Fig 6C). Subjects

were presented with the target image plus two options and were asked to choose the image

that was most visually similar to the target (Methods). The subjects participating in these two

psychophysics experiments on target similarity were different from the ones in the two original
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Fig 6. Return fixation locations depended on the image and task. (A) Return locations tend to show higher saliency. Each dot shows a

different subject. � denotes p< 0.05, two-tailed t-test. To-be-revisited and return locations overlap by definition, saliency at to-be-

revisited locations was similar to that at return locations.(B) During visual search tasks, the proportion of return fixations was larger for

target than non-target locations. Gray asterisks denote a statistically significant difference in the proportion of return fixations with

respect to the chance levels. Black asterisks denote a statistically significant difference between target versus non-target locations. (C)

Schematic of experiment to assess whether return fixations shared similarity to the target. In each trial, subjects were presented with an

image (Target) and had to choose the more similar image between two alternatives. There were three conditions: (1) Test, where the two

alternatives were return fixations versus non-return fixations, (2) Control 1, where the two alternatives were an identical copy of the

target versus non-return fixations, and (3) Control 2, where the two alternatives were a different object from the same category as the
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visual search tasks. To ensure that subjects performed the task as directed, we included two

controls where one of the options was identical to the target (control 1), or one of the options

was a different exemplar from the same category (control 2). As expected, subjects chose the

control images over non-return fixations (Fig 6D). In the test condition, one of the images was

a non-target return fixation and the other one was a non-return fixation. Subjects indicated

that the return fixations were slightly more similar to the target than non-return fixations

55.8 ± 1.25% of the time in the visual search experiments 1 (p = 0.002, one-sample t-test com-

paring to chance, t = 4.45, df = 9) and 56.3 ± 1.57% of the time in the Visual Search 2 experi-

ment (p = 0.003, one-sample t-test comparing to chance, t = 3.99, df = 9). In sum, subjects

returned more frequently to salient locations, to locations containing the target, and to loca-

tions resembling the target in visual search experiments.

A generalist computational model of eye movements revealed return

fixations

To further understand the mechanisms that give rise to return fixations, we developed an

image-computable model capturing the basic observations in Figs 3–6. A schematic diagram

of the model is shown in Fig 7. The starting point was the neurophysiologically-inspired

invariant visual search network (IVSN) [8]. IVSN consists of a “ventral visual cortex” module,

implemented by a pre-trained deep convolutional neural network (the VGG-16 network,

[52]), and a “prefrontal cortex” module. The visual features from the target image are tempo-

rarily stored in prefrontal cortex and modulate the features of the search image in a top-down

fashion, creating a target feature similarity map, Msim (S9(A) Fig and S11(D) Fig). The IVSN

model uses this map to generate a sequence of fixations. The model does not have any mecha-

nism to process motion information or integrate temporal information across video frames;

therefore, we focus here on modeling the results of the first six experiments on static images

(Methods).

Several modifications were introduced into the IVSN architecture. First, to produce a

sequence of eye movements during free-viewing conditions, we incorporated the possibility of

having uniform top-down modulation [8] and introduced a bottom-up saliency map [53, 54],

Msal (S9(A) Fig and S11(C) Fig, Methods). The saliency map (Msal) depended exclusively on

the image contents, while the similarity map (Msim) additionally depended on the target during

visual search. Of note, the weight parameters used for extracting visual features for Msim and

Msal were neither trained with any of the images used in this study, nor were they trained to

match human performance: all the weights in the VGG-16 architecture were pre-trained using

the ImageNet dataset in a visual recognition task [52].

Second, we incorporated a constraint on saccade size [55, 56]. The distribution of saccade

sizes in humans and monkeys is not uniform (S6(A) Fig): eccentricity-dependent sampling

and oculomotor constraints imply that there are few large saccades and the saccade sizes follow

an approximately gamma distribution [57]. Therefore, for each fixation t, we included a sac-

cade prior map, Msac,t, computed from the current fixation location and an empirical saccade

size distribution for each task (S10(B) and S11(E)) Figs. Thus, in contrast to the previous two

maps, Msac,t does not depend on the image content.

A third and critical modification is the introduction of a memory decay function for previ-

ous fixation locations [17, 58, 59]. Many visual search models, including the initial

target versus non-return fixations. (D) Accuracy in distinguishing images from each of the conditions in C versus non-return fixations.

Asterisks denotes statistically significant difference from chance levels (horizontal dashed line at 50%, (p< 0.05, one sample t-test)).

Photo sources: (C) was modified from a public dataset [8].

https://doi.org/10.1371/journal.pcbi.1010654.g006
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Fig 7. Architecture of the computational model. (A) The model has a ventral visual cortex module (pre-trained VGG-16) that extracts features

from the image. These features constitute the saliency map (Msal). In visual search tasks, the same ventral visual cortex module processes the

target image and modulates the features in the search image via top-down modulation, generating a target similarity map (Msim) [8]. See S9 Fig

and Methods for detailed architecture. (B) The generation of eye movements is governed by a weighted combination of 4 maps: Msal (part A),

Msim (part A, only in visual search tasks), a time-dependent memory map (Mmem,t, and a time-dependent saccade size constrain map (Msac,t). At

each time point t, the 2D spatial memory decay map Mmem,t is updated based on all previous visited locations fl1; l2; . . . ; ltg. The brighter the

color on the memory decay map, the stronger the effect of memory inhibition. The saccade size constrain map is also updated at each time point

according to the current fixation location, lt. A winner-take-all chooses the maximum in the combined attention map Matt,t (yellow circle) as the

location for the next fixation. In visual search tasks, the model computes a recognition map Mrecog indicating the confidence that the current
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implementation of IVSN include an infinite inhibition-of-return mechanism that prohibits

fixations to revisit previous locations. Instead, we introduced a memory decay map Mmem,t

that contained information about previously visited locations (S10(A) and S11(F)) Figs. The

map Mmem,t does not depend on the image contents but rather it is calculated from the eye

positions at all the previous fixations 1, . . ., t.
The model linearly combines the four maps, Msim, Msal, Msac,t and Mmem,t, producing a final

attention map, Mf,t. (Methods, S11(G) Fig). The linear combination involved two scalar

weights, wsac and wmem, which control the relative importance of the Msac,t and Mmem,t maps.

We set values for wsac and wmem based on the Visual Search 2 experiment. These two parame-

ters were then fixed and used to test all the datasets. The location of the next fixation for the

model is dictated by the maximum of Mf,t (S11(G) Fig). The saccade and memory maps are

updated after each fixation (the similarity and saliency maps are fixed), and a new fixation is

generated. During visual search, the model decides whether the current fixation contains the

target or not by using the ventral visual cortex to extract visual features in the current fixation

and comparing those features to the stored target features (S9(B) Fig, Methods). The process is

iterated until the target is found in visual search tasks or for a fixed number of steps in the free

viewing tasks.

An example sequence of fixations produced by the model in the free-viewing experiment is

shown in Fig 8A, right. The model makes one return fixation denoted by the red triangle,

which is close to the location of a return fixation made by the monkey in the same experiment.

In this example, both the monkey and the model revisited a location within the face (note that

the model has no special bias towards faces and follows features extracted from the image by

the ventral visual cortex module). Further visualization examples for each of the six datasets

are shown in S12 Fig.

Similar to the results shown for humans and monkeys in Fig 3, the model made more

return fixations than expected by chance in all six experiments (Fig 8B, p< 10−3, bootstrap

1000 resamples), with a proportion of return fixations ranging from 5.5 ± 0.4% in the human

Free-Viewing experiment to 25.3 ± 1% in the human Visual Search 2 experiment. The propor-

tion of return fixations was higher in the visual search tasks (Fig 8, columns 1–3) compared to

the free-viewing tasks (Fig 8, columns 4–6, p< 10−3, bootstrap 1000 resamples).

Consistent with the results shown in Fig 6B, even though the model does not explicitly

incorporate any target location information, the model tended to produce a higher proportion

of return fixations at the target locations than at non-target locations in the Visual Search 2

and 3 experiments (S13 Fig), but not in the Visual Search 1 experiment.

The computational model captures key properties of return fixations

Next, we compared the properties of return fixations between humans/monkeys and the

model. Consistent with the results in humans and monkeys (Fig 3J), most of the return offsets

for the model tended to be small and the return offset distribution showed an approximately

exponential decay (Fig 8C).

The model does not have any notion of fixation duration and therefore we cannot plot the

equivalent to Fig 4A. The overall distribution of saccade sizes for the model was similar to the

one for humans and monkeys (compare S6(A) Fig versus S6(B) Fig). In the Visual Search 2

and 3 tasks, the saccade sizes preceding a return fixation for the model tended to be larger than

fixation contains the sought target (S9(B) Fig). If the target is found, the search stops; otherwise, it continues. During free viewing tasks, the

recognition map is not used and the model keeps generating eye movements for a fixed amount of time. Photo sources: (A, B) were modified

from a public dataset [8].

https://doi.org/10.1371/journal.pcbi.1010654.g007
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Fig 8. The computational model generates return fixations. (A). Example scanpaths by monkeys and by the model

while free viewing natural images (conventions follow those in Fig 1.) (B) Proportion of return fixations. The black dot

denotes the proportion of return fixations for each subject (reproduced from Fig 3A–3H). The red triangle denotes the

proportion of return fixations for the model. Black solid lines show average across subjects and gray dashed lines show

chance level. (C) Distribution of the return offset for the model (format as in Fig 3J). Photo sources: (A) Reproduced

with permission from BPRC and pexels.com.

https://doi.org/10.1371/journal.pcbi.1010654.g008
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those preceding non-return fixations (S14 Fig, columns 1–3), which is different from the trend

observed in humans in Fig 4B. In the human and monkey free-viewing tasks, the saccade sizes

preceding return fixations for the model tended to be smaller (S14 Fig, columns 4–6), consis-

tent with the results in humans and monkeys Fig 4B.

Image properties also influenced the probability of making a return fixation to a particular

location in the model, as shown by the increased bottom-up saliency at return fixations com-

pared to non-return fixations (Fig 9C, compare to Fig 6A). The model also captured the sharp

peak of 180-degree turning angles (compare Figs 5A and 9A; see also S15(A) Fig). In the case

of non-return fixations, the model is also qualitatively similar to human and monkey behavior

(compare Figs 5B and 9B; see also S15(B) Fig).

Fig 9. The computational model captures return fixation turning angles and saliency. Distribution of turning angles preceding return fixations (A)

and non-return fixations (B) for the model (format as in Fig 5A–5B). (C). Saliency at return fixation locations and non-return fixation locations for the

model (format as in Fig 6A).

https://doi.org/10.1371/journal.pcbi.1010654.g009
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It is important to emphasize that there were no free parameters in the model tuned to

reproduce the properties of return fixations in the experimental data. In sum, without any

task-specific training, the model approximated most of the basic properties of return fixations

in humans and monkeys.

Ablations highlight the relevance of each model component to capture

return fixation properties

To gain further insights about the model design choices and their impact on return fixations,

we conducted ablation studies, separately removing either the similarity/saliency module

(Ablated similarity/saliency), the memory module (Ablated memory), or the saccade distri-

bution module (Ablated Saccade Distribution). Details about the implementation of the

ablated models are described in the Methods section. For each ablated model, we recomputed

the proportion of return fixations (S16 Fig), the return offsets (S17 Fig), the saccade size distri-

bution (S18 Fig), the turning angles (S19 Fig), and the saliency at fixated locations (S20 Fig).

Table 1 summarizes the key ablation results.

As expected, ablating the memory module led to large increase in the proportion of return

fixations (Table 1, S16 Fig). Conversely, and trivially, a model with infinite inhibition of return

demonstrates no return fixations [8].

Removing the similarity/saliency module led to more random fixations and to a large

reduction in the proportion of return fixations (Table 1, S16 Fig). During the visual search

experiments, saccade locations are largely dictated by the similarity to the target rather than

bottom-up saliency. Conversely, during free viewing, saccade locations are largely dictated by

saliency. The distribution of turning angles for return fixatons was also severely distorted in

the absence of the similarity/saliency module (Table 1, S19 Fig). As expected, the image patch

saliency at fixated locations was reduced when this module was ablated (Table 1, S20 Fig).

The saccade size constraint had a lesser impact on the overall proportion of return fixations

(S16 Fig), but removing this constraint led to a much more uniform distribution of saccade

sizes, which is inconsistent with the experimental data (Table 1, S18 Fig). Removing this con-

straint also led to longer return offsets than observed experimentally (Table 1, S17 Fig).

In sum, altering each of the modules led to worse correspondence to the experimental prop-

erties of return fixations. These ablation studies suggest that return fixations in humans and

monkeys are orchestrated by multiple interacting mechanisms.

Table 1. Summary of similarity indices for full and ablated versions of the model for multiple properties. Values

indicate the mean similarity index (with SD in parentheses) across the six tasks (Human Visual Search 1, 2, and 3,

Human Free Viewing, and Monkey Free Viewing 1, and 2). Highlighted in bold are the values that showed large differ-

ences with respect to the full model. These results indicate that altering each of the model modules led to worse corre-

spondence to the experimental properties of return fixations. For each property, the supplementary figures cited in the

first column provide similarity indices for each individual task.

Full Model Abla. Sacc. Dist. Abla. Memory Abla. Sim/Sal.

Prop. Ret. Fixations (S16(B) Fig) 0.74 (0.08) 0.75 (0.13) 0.53 (0.13) 0.19 (0.13)

Return Offsets (S17(B) Fig) 0.63 (0.11) 0.53 (0.07) 0.71 (0.07) 0.48 (0.29)

Saccade Dist. (S18(B) Fig) 0.69 (0.16) 0.49 (0.12) 0.71 (0.17) 0.49 (0.26)

Turn. Angle, Ret. Fix. (S19(C) Fig) 0.73 (0.15) 0.72 (0.12) 0.75 (0.12) 0.41 (0.32)

Turn. Angle, NonRet. Fix. (S19(C) Fig) 0.87 (0.07) 0.73 (0.10) 0.87 (0.08) 0.84 (0.11)

Saliency, Ret. Fix. (S20(B) Fig) 0.93 (0.07) 0.93 (0.08) 0.92 (0.12) 0.81 (0.11)

Saliency, NonRet. Fix. (S20(B) Fig) 0.91 (0.12) 0.91 (0.13) 0.91 (0.11) 0.82 (0.16)

https://doi.org/10.1371/journal.pcbi.1010654.t001
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Discussion

We examined and modeled 44,328 return fixations out of a total of 217,440 fixations (20.4%).

In contrast to previous studies focusing on a single task and specific conditions in humans,

here we studied eight experiments monitoring eye movements across a wide range of tasks

and experimental conditions in humans and monkeys (Fig 2). Return fixations were ubiqui-

tous across visual search tasks of different complexity levels, during free-viewing conditions, in

humans and monkeys, and also during naturalistic freely moving behaviors (Fig 3). Return fix-

ations tended to occur shortly after the first visit to a given location, in many cases with the

minimum possible offset of one intervening fixation (Fig 3J). Return fixations lasted *50 ms

longer (Fig 4A), often following small saccades (Fig 4B) and a shift in the saccade direction

(Fig 5). The locations of return fixations were consistent across subjects (S4 Fig and S5 Fig)

and tended to cluster around regions of higher bottom-up saliency (Fig 6A) as well as towards

regions that resemble the target during visual search tasks (Fig 6B–6D).

We developed an image-computable neural network model that simulated the universal

properties of return fixations (Figs 7 and 8 and 9) in multiple tasks from multiple species. The

proposed model has five key components: (i) an image feature extractor, (ii) a saliency map,

(iii) a target similarity map, (iv) a constraint on saccade sizes, and (v) a finite inhibition-of-

return with an approximately exponential memory decay function (Fig 7B). The first two com-

ponents depend exclusively on the image contents. Salient locations include spatial changes in

color, orientation, and texture, among other properties. There is extensive literature docu-

menting the role of salient locations in attracting eye movements [53, 54]. The target similarity

map, which is only relevant during visual search tasks, makes image locations that resemble

the target especially attractive for fixations [8] (S16 Fig and S20 Fig). We used convolution

neural networks to extract image features. These neural networks preserve spatial locations

when extracting visual features, and that helps us easily align and combine the different atten-

tion maps, and ultimately apply the Winner-Take-All mechanism. In the brain, there could be

multiple maps in different neural circuits and with different resolutions [60], raising the ques-

tion of how these different maps are combined.

The third model component is based on the observed distribution of saccade sizes (S6 Fig),

which favors small saccades. The avoidance of large saccades is likely to be due to a combina-

tion of eccentricity-dependent sampling and constraints imposed by the eye movement mus-

culature itself [55–57, 61]. This constraint also makes it more likely to revisit recent locations

(Fig 4B), but previous work has shown that the saccade size distribution is not sufficient to

account for the frequency of return fixations [39] (S17 Fig and S18 Fig).

The fourth model component is memory decay, which approximates finite inhibition-of-

return (IOR). The strength of IOR plays a central role in balancing curiosity towards new loca-

tions (stronger inhibition of prior fixations enhances foraging of novel image locations) versus

scrutiny of known locations (weaker inhibition facilitates return fixations). The proportion of

return fixations is lower than what would be expected by a memoryless system [39] (S16 Fig),

which can be explained by a finite IOR. Although a finite IOR has been partially attributed to

memory capacity limitations, it can also bring benefits in biological vision. Because recogni-

tion during rapid saccades in complex and cluttered environments can be imperfect, it may be

advantageous to return to previous locations. Furthermore, it may also be useful to frequently

inspect important or high-risk areas, such as regions where predators are likely to hide. Simi-

larly, in real-world, dynamic environments, the environment is continually updated as items

move, the subject navigates and takes action, and regions become occluded or revealed. Finite

IOR allows the subject to review previously-visited locations that may have dynamically

changed. As an initial approximation, the computational model assumes that the finite IOR
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function is fixed and independent of the task, species, or experimental conditions. Differences

in the return fixation properties across tasks are thus accounted for in the model by the inte-

gration of the four components.

Task demands can play an important role in determining the frequency and duration of

return fixations. For example, during the cooking task when the subject is cutting carrots (Fig

2G), the eyes are constantly drawn to the knife and carrot, thus increasing the number of

return fixations. Under these conditions, there is no need to process extensive information at

each fixation and the fixation durations are shorter. In contrast, during the Waldo search task

(Fig 2C), there is a stronger incentive for exploring novel locations, thus reducing the fre-

quency of return fixations, yet each return fixation lasts longer as the large amount of clutter

makes the target recognition decision harder. Task instructions are also likely to alter the fre-

quency and properties of return fixations. For example, if subjects are instructed to fixate each

location for a long time (on the order of seconds), there may be less incentive to return to this

location and the return offset might be longer.

It is interesting to speculate that return fixations may be especially linked to an imperfect

visual recognition machinery. In an extreme case where the visual recognition machinery

achieves perfect performance in interpreting the contents at the fovea in every fixation, there

would be little incentive to revisit locations to gain further insights. Multiple studies have

praised the virtues of fast recognition in approximately 150 ms after flashing a stimulus [62–

64]. However, many of those studies have focused either on isolated objects or large objects

with minimal clutter. Under more natural conditions and especially for smaller objects embed-

ded in clutter, subjects make many recognition mistakes [65, 66]. Indeed, a strong example of

recognition errors is the case of return fixations to the target during visual search (Fig 6B; see

also discussion in [8]). Consistent with the link between return fixations and imperfect recog-

nition during a single fixation, several studies have argued that return fixations allow re-

inspection of incomplete or dynamic regions in scenes [39], recovery of lost information [35–

38], and rehearsals of visual working memory [31, 34].

The proposed model is deliberately founded on using pre-trained neural networks and has

very few free parameters. The weights to extract image features in the ventral visual cortex

module are pre-trained on an independent visual recognition task using the ImageNet dataset

and are not fine-tuned for any of the images or tasks in the current study. The saccade size con-

strain, the IOR memory decay function and the relative weight of those two components are

derived from experimental data. Specifically, they were tuned using the Visual Search 2 experi-

ment. All of those parameters were fixed thereafter, and the results for all the other datasets

shown throughout the text do not use any type of data fitting. The model does not always

quantitatively match the observations in humans and monkeys (e.g., compare Fig 3B versus

8B, Fig 4B versus S14 Fig, Fig 6A versus 9C). Fine-tuning the model for each dataset would

improve the quantitative fitting to each experiment, allow to incorporate task-specific instruc-

tions, and also to capture differences between individual subjects. However, the purpose of the

model was to provide a conceptual proof-of-principle demonstration of the key ingredients

underlying return fixations rather than an attempt at fine-tuning multiple parameters to fit the

experiments. Thus, without any explicit training or data fitting, the computational model

makes testable predictions about viewing behavior across many complex tasks and species.

Most eye movement studies have focused on flashing two-dimensional images on a com-

puter screen. This paradigm as a surrogate for natural vision has been criticized for lacking

depth information, natural spatiotemporal statistics, and natural head and body movements.

Egocentric videos provide a more naturalistic venue to study first-person viewing behaviors

where subjects interact with physical objects while freely moving their eyes, heads and bodies.

Despite the notable experimental differences to flashing images, in terms of return fixations,
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subjects revisit previously fixated locations during naturalistic behaviors like visual search and

cooking, in a similar fashion to the behavior observed in static images. Task demands and nat-

ural behaviors may impose additional constraints. Several studies have shown that the egocen-

tric gaze in a natural environment requires the combination of gaze direction (the line of sight

in a head-centered coordinate system), head orientation, and body pose [67–69]. For example,

during the cooking task, the gaze point tends to fall on the object that is currently being manip-

ulated. This constraint results in a higher proportion of return fixations compared with the

other tasks.

The amount of time devoted to visual processing during a saccade has been used as a

proxy for the computational demands of given tasks [70, 71]. Consistent with this notion,

the average fixation duration during free viewing (259.7 ± 0.9 ms) was shorter than during

visual search (297.9 ± 0.9 ms). Interestingly, return fixations showed longer durations (Fig

4A). A possible interpretation of this observation is that the brain tags these locations as

return fixations, perhaps acknowledging the difficulties in visual recognition during the first

pass, and devotes additional computational time to improving recognition the second time

around.

Even though the model captures essential properties of return fixations, the model does not

behave exactly the way humans and monkeys do. First, the model shows constant acuity over

the entire visual field, which is clearly not the case for primate vision where acuity drops rap-

idly from the fovea to the periphery [72]. Second, humans and monkeys have a better recogni-

tion system to decide whether the target is present or not at the current fixation (S21 Fig).

Third, humans and monkeys may capitalize on contextual information integrated over multi-

ple saccades to decide whether a return fixation is warranted or not [66]. For example, the

object relations in the environment might attract primates to check back for relevant objects.

Fourth, there is no learning in the current model, but humans and monkeys can adapt and

change their strategies in a task-dependent manner. Fifth, the model does not capture the

duration of each fixation or saccade; nor does the model account for the momentum carried

from a previous saccade, which also plays an important role in constraining primate eye

movements.

Despite these limitations, the model provides a simple, reasonably good, and plausible

mechanistic account of the key components responsible for return fixations: bottom-up

saliency, top-down task goals such as target similarity, a constrain on saccade sizes, and a finite

memory. The model shows return fixations and reproduces the fundamental properties of

return fixations, including their frequency, offsets, turning angles, and preferred image loca-

tions. The model can capture these properties across different tasks, different species, and dif-

ferent experimental dynamics and conditions, without any retraining or parameter fitting in

each condition. Given the ubiquitous presence of return fixations, these computational efforts

open the doors to help build better models of active scene sampling via eye movements during

visual search and visual object recognition.

Methods

Ethics statement

All the human psychophysics experiments were conducted with the subjects’ written informed

consent and according to the protocols approved by the Institutional Review Board at Boston

Children’s Hospital. All animal research procedures were approved by the Harvard Medical

School Institutional Animal Care and Use Committee, and the Washington University School

of Medicine Institutional Animal Care and Use Committee, and conformed to NIH guidelines

provided in the Guide for the Care and Use of Laboratory Animals.
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Datasets

We evaluated return fixations on eight datasets (Fig 2), individually described below.

Visual search on static images. We evaluated eye movements during three visual search

tasks with increasing level of difficulty, reported in reference [8]: object arrays (Visual Search

1, Fig 2A), natural images (Visual Search 2, Fig 2B), and Waldo images (Visual Search 3, Fig

2C). Forty-five naive observers (19–37 years old, 15 subjects per experiment) participated in

these tasks. Subjects had to fixate on a cross shown in the middle of the screen for 500 ms, a

target object was presented followed by another fixation delay (object arrays and natural

images), a search image was presented, and subjects had to move their eyes to find the target.

In the natural images (Visual Search 2) and Waldo images (Visual Search 3), subjects had to

indicate the target location via a mouse click. If the clicked location fell within the target, sub-

jects went on to the next trial; otherwise, subjects stayed on the same search image until the

target was found. If the subjects could not find the target within 20 seconds, the trial was

aborted and the next trial was presented. For further details about the images, the eyetracking

experiment setup, and the tasks, see reference [8].

In these visual search experiments and also in the free-viewing experiments described

next, the participants’ eye movements were recorded using the EyeLink 1000 plus system,

sampling at 500 Hz and <1 dva resolution (SR Research, Canada). All participants had nor-

mal or corrected-to-normal vision. Participants were compensated for participation in the

experiments. All the human psychophysics experiments were conducted with the subjects’

written informed consent and according to the protocols approved by the Institutional

Review Board at Boston Children’s Hospital. Stimuli were presented in grayscale on a

19-inch CRT monitor (Sony Multiscan G520) occupying full screen (1024 × 1280 pixels, sub-

tending 25 × 30 degrees of visual angle (dva)). Observers were seated at a viewing distance of

66.4 cm.

Human free viewing. To compare human eye movements during visual search versus

free viewing, we conducted an experiment with 10 subjects (18–37 years old, 5 female). We

used the same 240 natural images from the Visual Search 2 task, described above. Subjects had

to first fixate on the center cross for 500 ms and then freely move their eyes to explore the

image for 4500 ms (Fig 2D). The stimulus presentation duration of 4500 ms was chosen

because subjects were able to find the target in 90% of the trials within this time during the

visual search task (Visual Search 2) [8], therefore providing us with an approximately compa-

rable number of fixations. Subjects were instructed to look at the images, without any other

task demands.

Monkey free viewing. To compare eye movements under free viewing conditions across

species, we analyzed eye-tracking data from free-viewing monkeys (Fig 2E–2F). These two

data sets were initially collected for other experiments with the goal of studying neuronal

responses during free viewing; the neuronal responses are not discussed here. These two

experiments were not designed to specifically match the conditions in the previous experi-

ments. The purpose of introducing these experiments in the current study is not to quantita-

tively assess whether humans make more or less return fixations than monkeys, which would

require matching the experimental conditions. Rather, the purpose here is to qualitatively

assess the properties of return fixations in different species and to evaluate whether the model

can capture those properties. Six monkeys (5–13 years old, all male) from one lab were tested

in the Monkey Free Viewing 1 experiment. Two monkeys (both 7 years old males) from a sec-

ond lab were tested in the monkey Free Viewing 2 experiment. Procedures were approved by

the Harvard Medical School Institutional Animal Care and Use Committee (Monkey Free

Viewing 1), and the Washington University School of Medicine Institutional Animal Care and
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Use Committee (Monkey Free Viewing 2), and conformed to NIH guidelines provided in the

Guide for the Care and Use of Laboratory Animals.

In the Monkey Free Viewing 1 experiment (Fig 2E), each trial of the experiment did not

start with a center cross. Instead, the initial fixation of a trial could start anywhere on the

screen. The presentation duration of each trial vary from 1,000 ms to 2,000 ms. There were 121

images in total with repeated presentations in random order. In our analysis, we focused on

fixation sequences longer than 1,500 ms during only first stimulus presentations. We discarded

other fixation sequences in repeated presentations due to concerns about the impact of mem-

ory across trials on return fixations. The trial sequence intermixed both natural images and

images containing salient visual features, such as other monkeys or body parts. There were 36

images out of 121 containing faces. To ameliorate the center fixation bias in each trial, the

image location was randomly jittered relative to the original image in a [-3:1:3] dva grid. For

example, in Fig 2E, the stimulus was shifted to the left; with the vacant space shown as grey

background. Monkeys were seated at a viewing distance of approximately 57–58 cm away. All

images were presented in color on a monitor screen (635 × 635 pixels, subtending 16 × 16

dva).

In the Monkey Free Viewing 2 experiment (Fig 2F), monkeys were trained to first look at

the center fixation for 500 ms, followed by the stimulus presentation for 1000—1500 ms.

There were 1,761 images in total with 1,380 natural images from the MSCOCO dataset [73],

around 240 images that contain either monkey faces or their body parts, and around 140 pic-

tures of local laboratory staff and animal shelters. As in the Monkey Free Viewing 1 experi-

ment, to eliminate the center bias, all the images were shifted randomly in a 2-degree radius

circle. Monkeys were seated at a viewing distance of approximately 57–58 cm away. All images

are presented in color on a monitor screen (596 × 596 pixels, subtending 15 × 15 dva).

Human egocentric videos. While the majority of eye movement studies have focused on

static images, here we also considered a more naturalistic setting where subjects could move

freely and interact with physical objects while eye positions and first person videos were

recorded (Egocentric videos, Fig 2G–2H). We used two existing egocentric video datasets [48,

49]. In both cases, subjects wore an SMI mobile eyetracker (iMotions, Denmark) with a sam-

pling rate of 30 Hz and precision of� 0.5 dva.

The egocentric video dataset 1 (Humans, Videos 1) consisted of eye positions in 86 videos

showing the field of view captured from a fist-person perspective [48]. In these videos, 32 sub-

jects performed cooking activities. Each video clip lasted 20 minutes and was captured at 24

frames per second and 960 × 1280 pixels (corresponding to� 46 × 60 dva). In the beginning

of each cooking task, subjects were instructed to follow the steps on a recipe. There were 10

recipes, such as northern American breakfast, pizza, and turkey sandwich. Each recipe entailed

a sequence of meal preparation steps. S2(B) Fig shows example video frames and their corre-

sponding fixations overlaid on the last frame of each video clip (yellow circles).

The egocentric video dataset 2 (Humans, Videos 2) consisted of eye positions in 57 videos

showing the field of view captured from a first-person perspective [49]. In these videos, 44 sub-

jects performed a visual search task. Each video clip lasted around 15 minutes and was cap-

tured at 24 frames per second and a resolution of 960 × 1280 pixels (corresponding to� 46 ×
60 dva). The experiment site was a fully furnished and functional model home including a

master bedroom, children’s room, living room, open kitchen, dining area, study room, recrea-

tional room, bathroom and exercise area. Each subject was asked to search for a list of 22 items

commonly used in daily life (including thumb drive, shampoo, etc.) and move them to the des-

ignated packing location (dining table). S2(C) Fig shows example video frames and their corre-

sponding fixations overlaid on the last frame of each video clip (yellow circles).
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Psychophysics experiments on target feature similarity for return fixations

In Fig 6C and 6D, we asked whether the return fixation locations were visually similar to the

sought target during the visual search tasks. To answer this question, we conducted two psy-

chophysics experiments on Amazon Mechanical Turk (Mturk). We recruited 20 subjects (10

subjects for the object arrays task and 10 subjects for the natural images task).

Subjects were presented with a target object and two alternative images. Subjects performed

a two-alternative forced choice task indicating which of the two options was more similar to

the target object. The images remained on the screen until the subjects made a choice. The two

image options were randomly mapped onto choice A or B. The images were fixation patches

obtained by cropping the search image. In the main test condition, one of the options always

corresponded to a return fixation patch and the other option corresponded to a non-return

fixation patch, where return and non-return were defined based on the eye movement data

independently obtained from different subjects in reference [8]. For each trial, the return and

non-return fixation image patches were extracted from the same image and trial. In the object

array experiment (Fig 2A), the patch encompassed the entire object (subtending about 3.6

dva). In the natural images experiment (Fig 2B), the patch encompassed a square box of size

156 ×156 pixels, subtending 3.6 dva and centered at each fixation. We collected 412 pairs on

object arrays and 1,041 pairs on natural images.

As a sanity check to evaluate the quality of the online results from Mturk, we introduced

two control conditions that were randomly intermixed with the test trials. In control 1 (3% of

the trials), the two options were a non-return fixation patch versus the actual identical target.

We (obviously) expected subjects to indicate that the identical target was more similar to the

target than the non-return fixation locations. In control 2 (3% of the trials), the two options

were a non-return fixation patch versus an object belonging to the same semantic category as

the target object but showing a different exemplar, different rotation and scaling. We expected

subjects to indicate that the exemplar from the same category was more similar to the target

than the non-return fixation locations. We set an exclusion criteria for subjects that made

more than 3 errors in the control trials, but all 20 subjects satisfied these two controls and

none were excluded from the analyses.

Computational model to predict return fixations

We first provide a high-level intuitive outline of the proposed computational model, followed

by a full description of the implementation details (Fig 7). The model is based on the previ-

ously published architecture for invariant visual search (IVSN [8]). The current model incor-

porates many modifications, most notably the prediction of eye movements during free

viewing conditions when there is no target to search for, the incorporation of multiple maps

discussed below, and finite inhibition-of-return.

The output of the model is a sequence of fixations. During visual search tasks, there are two

inputs to the model: the target image (IT) and the search image (IS). During free viewing tasks,

there is only a single stimulus input (IS). The model posits an attention map Mf,t at each fixa-

tion time t by integrating four components: a bottom-up saliency map Msal, a target visual fea-

ture similarity map Msim, a saccade prior map Msac,t dependent on the previous fixation

location, and a visual working memory map Mmem,t dependent on the location of previous fix-

ations (Fig 7).

In the visual search tasks, both the target image (IT) and the search image (IS) are processed

through the same deep convolutional neural network, which aims to mimic the transformation

of pixel-like inputs through the ventral visual cortex [74–76]. The target feature similarity map

(Msim) indicates the similarity between the target image and each location of the search image.
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Msim is computed using the same procedure described previously [8]. Briefly, feature informa-

tion from the top level of the visual hierarchy provides top-down modulation, based on the tar-

get high-level features, on the activation responses to the search image. The target feature

similarity map depends exclusively on IT and IS and does not change with each fixation. Dur-

ing the free viewing tasks, there is no target image, and we therefore remove the top-down

modulation, and use the same deep convolutional neural network to extract the high-level fea-

tures of the stimulus IS, aggregating all the feature maps into one saliency map Msal.

Inhibition-of-return refers to the observation that previously fixated locations tend to be

inhibited [17]. Many models of visual search, including the initial version of IVSN [8], assume

infinite inhibition-of-return. Under these conditions, there cannot be any return fixations

since these models remember perfectly the previously visited locations and never look back.

Modeling return fixations requires a finite memory. Many studies [31, 34–38] have capitalized

on return fixations to study visual working memory. Here we introduced a memory decay

function to keep track of previous visited locations and constantly update the visual working

memory map Mmem,t over all past fixations from 1 to t−1 (S10(A) Fig). Mmem,t depends only

on the previous fixations and is independent of the content of IT or IS.
Researchers have also shown that oculomotor biases constrain the saccade sizes (e.g., sub-

jects are more likely to make two 10 dva saccades than one 20 dva saccade, [57]). Together

with eccentricity-dependent sampling [61], this oculomotor constraint can also impact the fre-

quency of return fixations [39]. To take saccade size constraints into account, the model incor-

porated a saccade prior distribution map Msac,t. Msac,t depends only on the previous fixation t
−1 and is independent of the content of IT or IS.

The final attention map Mf,t integrates Msim, Msal, Mmem,t and Msac,t. A winner-take-all

mechanism selects the maximum local activity as the location for the next fixation at t + 1.

During visual search tasks, if the model recognizes the target at the current fixation location,

the search stops. Otherwise, the maps are updated and the model produces a new fixation.

During the free viewing tasks, the model stops when it reaches the average number of fixations

made by humans or monkeys in the corresponding datasets.

The model was always presented with the exact same images that were shown to the sub-

jects in all the tasks. We focus here on modeling the results for only the first six experiments

on static images for several reasons. First, the model does not have any mechanisms for pro-

cessing motion information or integrate temporal information across video frames. Second,

the model does not have any mechanism to incorporate specific task information such as fol-

lowing a recipe in the cooking task. Third, a model of the egocentric videos would require con-

structing a memory map in 3D.

Target feature similarity map. The computation of the target feature similarity map Msim

follows the IVSN model in reference [8]. Of note, this is a zero-shot model which does not

require training on any eye movement data. We describe the computation of Msim briefly here

and refer the reader to reference [8] for further details. The “ventral visual cortex” module

builds upon the basic bottom-up architecture for visual recognition [52, 74, 75, 77–79]. We

used a deep feed-forward network, implemented in VGG16 [52], pre-trained for image classi-

fication on the 2012 version of the ImageNet dataset [80]. The same set of weights, that is, the

same network, is used to process the target image IT and the search image IS. The output of the

ventral visual cortex module is given by the activations at the top-level (Layer 31 in VGG16,

ϕ31(IT, W), and the layer before that (Layer 30 in VGG16), ϕ30(IS, W), in response to the target

image and search image, respectively. The top level activation is stored in a “pre-frontal cortex”

module. We use the activations in layer 31 in response to the target image to provide top-

down modulation to layer 30’s response to the search image (Fig 7 and S9(A) Fig). This modu-

lation is achieved by convolving the representation of the target with the representation of the
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search image before max-pooling:

Msim ¼ f ð�31ðIT;WÞ; �30ðIS;WÞÞ ð1Þ

where f(�) is the target modulation function defined as a 2D convolution operation with kernel

ϕ31(IT, W) on the search feature map ϕ30(IS, W).

Saliency map. The saliency map Msal is computed using the same ventral visual cortex

module (without any weight changes or retraining). We obtained the activations of size

C30 × W30 × H30 at the top-level (Layer 30 in VGG16) where C30 is the number of channels, W30

and H30 are the width and height respectively. We take the average over all channels. In other

words, ϕ30(IS, W) gets uniformly modulated by an all-ones matrix JCl�1�1 of size Cl × 1 × 1.

Msal ¼ f ðJCl�1�1; �30ðIS;WÞÞ ð2Þ

Saccade prior map. Humans and monkeys make relatively small saccades, probably due

to a combination of eccentricity-dependent sampling [7, 61] and oculomotor constraints [8,

39]. We used the empirical distribution of saccade sizes to constrain the saccade sizes for the

model. Specifically, we plotted the saccade size distribution of the subjects on the correspond-

ing datasets and interpolated to create a 2D map Msac,t centered at the tth fixation. S10(B) Fig

plots the empirical saccade size distributions of all fixations over all trials and subjects for each

dataset and their corresponding 2D saccade maps when the fixation is at the center. The sac-

cade prior map is updated after each fixation. S11(E) Fig shows example visualizations of sac-

cade priors over fixations.

Memory decay map. Humans and monkeys have limited memory capacity and finite

inhibition of return [17, 58, 59]. We added a finite memory module to the model where the 2D

memory map Mmem;~t at the ~tth fixation keeps track of memories at all the past fixation locations

fðx1; y1Þ; ðx2; y2Þ; :::; ðxt; ytÞ; :::; ðx~t ; y~t Þg. From the ~tth back to the 1st fixation locations, the

memory value at at the tth fixation location gets degraded using the following memory decay

function:

at ¼
a

~t � t; if a~t � t � b

b; otherwise

8
<

:
ð3Þ

where we set memory decay parameter α = 0.92 and clipping threshold β = 0.5. S10(A) Fig

shows the plot of memory value at as a function of fixation number t when ~t ¼ 15. The mod-

el’s memory decays for the most recent fixations and maintains a low memory level for the rest

of past fixations. To avoid sparseness of the 2D memory map Amem,t for the tth fixation at (xt,

yt), we applied Gaussian filtering centered at that fixation location:

Amem;tðxt; ytÞ ¼ atexp
�
ðx� xt Þ2þðy� yt Þ2

2s2 ð4Þ

where σ is the standard deviation of the Gaussian. The value of σ controls how much the

model remembers adjacent pixels centered around fixation location (xt, yt). We set σ = 0.08 on

object arrays (Visual Search 1) and σ = 0.02 in the other datasets. The different σ is because in

object arrays, each object stands alone, and the choice of the Gaussian memory mask is large

enough to cover the complete object on the arrays. To avoid overfitting, we optimized α, β and

σ only on the Visual Search 2 task, and fixed those parameters for the rest of the tasks.

After updating Amem,t(xt, yt) for each fixation t, the model predicts the final memory map

Mmem;~t by taking the largest memory value across Amem,t(xt, yt) for all previous fixation
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locations t 2 f1; 2; :::; t; :::;~tg. S11(F) Fig shows visualization examples of the memory map

Mmem;~t . When there is a return fixation, by taking the largest memory value across Amem,t(xt,

yt), the memory value at the revisited location overwrites the decayed memory value at the “to-

be-revisited” location.

Integration of feature maps. The model predicts the final attention map Mf,t by taking

the weighted linear combination of Msim, Msal, Mmem,t and Msac, t, after normalizing them to

[0, 1] (S11 Fig).

Mf ;t ¼ wmemMmem;t þ wsacMsac;t þ wsimMsim þ wsalMsal ð5Þ

In the visual search tasks, wsim = 1 and wsal = 0 and in the free viewing tasks wsim = 0 and wsal =

1. We fit the 2 weights wmem and wsac to approximate the return fixation properties only on the

Visual Search 2 experiment with natural images. We used the following weights: wmem = −0.93,

wsac = 0.2346. These weights are fixed throughout the experiments and do not depend on t.
The model takes the maximum in the attention map Mf,t as the location of the t + 1-th fixation.

Object recognition. In the visual search tasks, given a fixation location, the model needs

to decide whether the target was found or not (in a similar way that humans need to decide

whether they found the target after moving their eyes to a new location). The model performs

visual recognition to decide whether the target is present at the fixated location. We used a

simplified visual recognition mechanism consisting of four steps: (1) we cropped a patch of 1

dva centered at the current fixation; (2) we used the same deep feed-forward architecture

described above to extract the activations in the last classification layer of VGG16 in response

to the cropped patch; (3) we similarly extracted the activation in the last classification layer of

VGG16 in response to the target image IT, and (4) we computed the cosine similarity distance

between the activations for the image patch and the target image.

We computed Mrecog for each location in the image. At each fixation location, the model

retrieved the cosine similarity distance in Mrecog. We empirically set a hard threshold for cosine

similarity distance (0.5 for object arrays and Waldo images; 0.3 for natural images). If the dis-

tance between the current fixation patch and the target image is below the threshold, the

model decides that the target is found and the search trial stops; otherwise, the model contin-

ues the visual search process by updating the four maps and the overall attention map (Eq 5).

In the free viewing tasks, there is no target image to recognize. Instead, we stop the model

after it generated Nc fixations, where Nc is the average number of fixations by humans or mon-

keys in the corresponding dataset.

Ablated models. We assess the model components by testing the following ablated mod-

els in all the six experiments.

Ablated target feature similarity map. In the three visual search experiments, we removed

the target feature similarity map by setting wsim to be zero in Eq 5. Since the ablated model

now predicts image feature-agnostic attention maps for all the images, selecting the maximum

of the attention map as the location for the next fixation would result in generating the same

sequence of fixations for all the images. Thus, we introduced stochasticity to the winner-take-

all mechanism by sampling the next fixation location from the attention map Mf,t so that the

model outputs different sequences of fixations for different images.

Ablated saliency map. In the three free viewing experiments, we removed the saliency map

by setting wsal to be zero in Eq 5. Similar as Ablated target feature similarity map, we intro-

duced stochasticity to randomly sample the next fixation location from Mf,t.

Ablated saccade prior map. We enforced wsac to be zero in Eq 5. The winner-take-all

mechanism selects the maximum of the attention map as the location for the next fixation.
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Ablated memory decay map. This model considered the possibility that prior location

does not effectively get added into the memory. This defective memory module was imple-

mented by randomly assigning a value between [-1,0] to wmem in Eq 5.

Null model. We compared the model performance against a null model that made ran-

dom eye movements. Similar to reference [39], the null model is memoryless: it does not have

any history dependency during prediction of the next fixation location. The only constraint

that the null model has is the saccade size, ensuring that the null model can also make return

fixations by selecting random locations in the vicinity of the current fixation. Thus, the null

model randomly samples the next fixation location from the saccade amplitude distribution

Msac,t. We used the same stopping criteria for the null model as the one described in the previ-

ous paragraph. We ran simulations generating at least 25,000 random sequences of fixations

and reported their proportion of return fixations for all datasets in Fig 3, S1 Fig and S3 Fig.

These random sequences of fixations have the same length as the average number of fixations

per trial for each dataset. Similarly, the number of return fixations also impacts the entropy

value (S4 Fig). In order to calculate the chance level for the between-subject consistency analy-

ses, we used the number of return fixations collected from all subjects in each trial (that is,

each image) to randomly generate an equal number of random return fixations and computed

the entropy for these random return fixations. We repeated this process 100 times for every

trial per dataset.

In the null model described above, we do not take bottom-up saliency map into account.

An alternative null model would be to incorporate Msac,t, Msim and Msal with Mmem,t removed.

Without Mmem,t, Msal would dominate the final attention map Mf,t. Hence, such an alternative

null model would fixate back and forth between the maximum and the second local maximum

on alternating Mf,t and Mf,t + 1. This would result in strong exploitation of those two locations

without any exploration.

Data analyses

Fixation extraction and calibration. In the visual search tasks, we used the fixations from

the previous work [8]. In the human free viewing task, we used the fixation clustering function

from [81], implemented in MATLAB. During all the human eyetracking experiments on static

images, if a fixation was not detected during the initial fixation window in each trial, the exper-

imenter re-calibrated the eye tracker.

In the Monkey Free Viewing 1 task, there were 3–5 re-calibrations. We minimized the

number of times for checking re-calibrations in order to maintain the monkeys’ attention. The

checking process was only activated if the monkeys failed 3 times or more to complete a trial.

We used two eyetrackers (four monkeys using ISCAN, 60 Hz sampling rate and<1 dva resolu-

tion, and two monkeys using Eyelink 1000 Plus, 1000 Hz sampling rate and<1 dva resolution)

to record monkeys’ eye positions. In the Monkey Free Viewing 2 task, calibration was con-

ducted in the beginning of each session. We used the ISCAN eyetracker to record the mon-

keys’ eye positions. We used the built-in Monkeylogic 2 graphics library [82] to monitor eye

movements on MATLAB.

In the two egocentric datasets [48, 49], calibration was only performed once before each

experiment. In a natural environment the resulting egocentric videos represent a combination

of head pose and gaze position. Different from static images, both foreground and background

objects move with respect to the egocentric coordinate. This implies that the coordinates of a

fixated object on the current video frame might be shifted with respect to the next frame or

even disappear in the next frame due to abrupt large head motions. To avoid the complexities

of using optic flow to track coordinates across frames, we simplified the analyses by
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considering short segments with minimal head motion. We uniformly split the long egocentric

videos into short 5-second video clips. To approximate head motion, we calculated the Euclid-

ean distance between the first frame and the last frame of the video clip at the pixel level and

normalized the Euclidean distance by the total number of pixels on each frame (S2 Fig). We

only considered video clips if the normalized Euclidean distance between the first frame and

the last frame was� 0.4.

The field of view of the camera capturing the egocentric videos was limited to 46 × 60 dva

while the field of view for human eyes is at least 120 dva. Thus, we could have cases when the

eye tracking data goes beyond the size of the video frame, leading to missing fixations in some

video frames. Missing eye tracking data could also arise as a consequence of large head rota-

tions. The coordination between head and gaze movements results in an early movement of

eye gazes to the anticipated direction of what subjects intend to look at before the head rotates

such that subjects can re-position the object of interest in the center of the field of view [69].

Therefore, in addition to the constraint based on the normalized Euclidian distance, we also

discarded from analyses those video clips with more than 14 consecutive frames with missing

fixations. Fourteen consecutive frames at 24 frames per second corresponds to about 3 fixa-

tions. For the rest of the video clips with fewer missing fixations, we performed linear interpo-

lation to estimate eye positions in frames with missing data. After all these pre-filtering steps,

we ended up with 8,468 video clips in the cooking egocentric videos (Fig 2G) and 1,186 clips

in the visual search egocentric videos (Fig 2H). Despite these efforts to remove large head

motion, we could still have video clips with small head movements, which would lead to inac-

curate analyses of return fixations. Therefore, for the egocentric videos, we relaxed the thresh-

old in the definition of return fixations to 1.5 dva overlap, instead of 1 dva overlap as used in

all the other datasets.

Evaluation of object recognition during visual search. During visual search, subjects

can fixate on the target object without realizing that they have found the target and continue

searching (there are multiple examples of this phenomenon and discussion in reference [8]).

We refer to these cases of missing the targets as “false negatives” in visual recognition (S21

Fig). To compute the false negative rate for humans, we counted the total number of fixations

on the targets without mouse clicks and divided it by the total number of fixations for all the

trials (S21 Fig).

Conversely, there could also be cases when humans are not looking at the target but rather

they are fixating on a distractor; yet, they misclassify the distractor as the target by clicking the

mouse at the wrong location. We refer to these failure cases as “false positives”. We computed

the false positive rate as the number of trials when false clicks happen within that trial, normal-

ized by the total number of trials (S21 Fig).

In the object array experiments, subjects were not asked to click the target location with the

mouse and therefore we cannot compute false positives or false negatives. Thus, we only

reported false positive and false negative rates in the Visual Search 2 and 3 datasets (natural

images and Waldo). The model similarly makes false positives and false negatives, also

reported in (S21 Fig).

Evaluation of return fixation properties. Definition of return fixations: A fixation loca-

tion was considered to be a return fixation if it was within one degree of visual angle (dva) of a

previous fixation location (Figs 1 and 3I). One dva is approximately the resolution of the eye

tracking data in the experiments reported here. The original fixation is referred to as a to-be-
revisited location. All other fixations are referred to as non-return locations. This definition is

consistent with criteria previously used in the literature (e.g., [26]). In the egocentric video

datasets (Fig 2G–2H), we relaxed the degree of overlap to 1.5 dva to account for the alignment

imprecision introduced by potential head movements.
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Throughout the manuscript we used 1 dva as the criterion threshold to define a location as

a return fixation and 1.5 dva in egocentric videos (Figs 1 and 3I). To assess the robustness of

the results to this definition, we repeated all the analyses using a threshold of 2 dva, 3 dva, or 4

dva (S22 Fig). The qualitative conclusions about the patterns of return fixations in humans,

monkeys, and the model are not changed with different thresholds. The quantitative values do

change; for example, trivially, the proportion of return fixations increases dramatically as the

radius is enlarged. Moreover, there is an even better model-experiment consistency when

using larger thresholds (S22 Fig). We keep the definition of 1 dva because this is approximately

the resolution of the eye tracker, therefore providing a good reference to indicate that two fixa-

tions actually correspond to the same location.

Proportion of return fixations: The proportion of return fixations is defined as the number

of return fixations normalized by the total number of fixations in each trial. Fig 3A–3H reports

the proportion of return fixations for every subject and Fig 8B reports the proportion of return

fixations for the model. In the visual search tasks, we further divided the return fixations based

on whether they landed on the target objects or non-target locations (Fig 6B). The proportion

of return fixations at target locations was calculated as the number of on-target return fixations

divided by the total number of on-target fixations per trial. Similarly, we calculated the propor-

tion of non-target return fixations. We omitted the division of on-target and non-target return

fixations on the egocentric visual search dataset because of the lack of annotations of target

object locations in each video frame.

Return offset: The return offset was defined as the number of intervening fixations in

between a to-be-revisited location and a return fixation. For example, in Fig 3I the return offset

between to-be-revisited location 3 and return fixation 6 is 2. Fig 3J shows the distributions of

return offsets for all experiments and Fig 8C shows the corresponding distributions for the

model.

Saliency: To study whether return fixations correlate with saliency, we evaluated saliency

maps using Graph-based Visual Saliency (GBVS), which is a bottom-up saliency prediction

algorithm in computer vision using low-level visual features, such as color, orientation, and

contrast [51]. We computed the average of all saliency values for each fixation patch, defined

as a squared region covering one dva and centered at the fixation location. Fig 6A shows

saliency for all the experiments and Fig 9C shows saliency for the model.

In the case of egocentric videos, it is not justifiable to establish a one-to-one mapping from

an extracted fixation (lasting approximately 250 ms) to a single video frame (about 42 ms,

24Hz video frame rate). The fact that one fixaiton involves many frames implies the need for

further assumptions to calculate the saliency value for a fixation. Assuming that we have little

head motion for the selected video clips, we approximated the saliency value for a fixation by

projecting all the fixations within a video clip back to the last frame, and computed saliency

using GBVS on the last frame.

Mouse clicks: In the Visual Search 2 and Visual Search 3 experiments, subjects were asked

to use the mouse to click on the location of the target. We asked whether there were additional

return fixations at the end of each trial which were related to this testing procedure. For exam-

ple, subjects may find the target, then look for the mouse position, and then make a second

saccade to the target. We conducted two additional analyses to evaluate this possibility. First, if

subjects look back for the mouse pointer, the fixation preceding the return fixations should

overlap with the mouse pointer location. Subjects were instructed not to move the mouse dur-

ing visual search, except when the target was found at the end of the trial. We computed the

proportion of fixations preceding return fixations that overlapped with the mouse pointer

location with respect to the total number of return fixations in both experiments. There were

only 1.5% and 1.3% of preceding return fixations overlapping with mouse pointer locations in
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the Visual Search 2 and 3 experiments, respectively. Second, to further quantify the effect of

looking for mouse pointers, we examined the first 6 fixations in each trial (S3 Fig). In both

experiments, it took subjects much more than 6 fixations to find the target [8]. During the ini-

tial 6 fixations, it is unlikely that the subjects were looking for the mouse pointer. During the

first 6 fixations, the proportion of return fixations was significantly above chance in the Visual

Search 2 experiment, but not in the Visual Search 3 experiment. In sum, the presence of return

fixations in the visual search experiment 1 (where subjects did not use the mouse), combined

with the presence of return fixations during the first 6 fixations in the Visual Search 2 experi-

ment, and together with the low fraction of return fixations where subjects look for the mouse

pointer before making a return fixation, suggest that the majority of return fixations cannot be

ascribed to subjects searching for the mouse pointer.

Between-subject consistency in return fixation locations. To evaluate between-subject

consistency (S4 Fig and S5 Fig), we performed the following steps: (1) we mapped all return

fixations from all subjects on each image to a uniform 2D grid of size 32 by 40 (S4(B) Fig); (2)

we computed the proportion of subjects that showed a return fixation at location l, with

l = 1, . . ., 32 × 40; (3) computed the entropy H for this distribution over L locations using the

following equation:

HðLÞ ¼ �
X32�40

l¼1

pl logðplÞ ð6Þ

For the entropy calculation, we took the following measures to avoid singularity and take

into account sparsity. First, to avoid singularity where the probability value is 0, we set the 0

probability values to be 10−10. Second, to take into account the sparsity of the fixation posi-

tions, we applied Gaussian blur on the 2D histogram to soften the probabilistic distribution.

An extreme case of perfect consistency would lead a probability of 1 at a given location and

0 elsewhere, leading to minimal entropy, whereas a complete lack of consistency would lead to

an approximately uniform probability distribution except for random overlaps, resulting in

high entropy. We omitted this analysis in the egocentric video datasets because the field of

view in each frame could be different across subjects, making comparisons difficult to

interpret.

Model-subject consistency in return fixation locations. To evaluate the model-subject

consistency in S16 Fig—S20 Fig, we introduced the Similarity Index (SI) for each property per

experiment:

SI ¼ 1 � ðS � MÞ=ðSþMÞ ð7Þ

where S and M are the property values of the average subject (S) and the model (M), respec-

tively. The property value refers to the proportion of return fixations (S16 Fig), return offset

(S17 Fig), saccade size (S18 Fig), saliency values (S20 Fig), and turning angles (S19 Fig). If a

model follows the return fixation patterns of primates for a given experiment, it will have a

high Similarity Index.

Statistical analyses. In each experiment, we calculated the average for each subject and

performed statistical analyses across subjects using two-tailed t-tests (Figs 3, 4 and 6, S1 Fig

and S3 Fig). For the model, two-tailed t-tests were computed across fixations for all properties,

except for the proportion of return fixations in which statistical significance was determined

using bootstrapping (resampling with replacement) with 1000 resamples. These methods were

used to evaluate differences between conditions and also to compare experimental results

against chance levels.
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Supporting information

S1 Fig. Proportion of fixations that revisit the same location twice.

(TIF)

S2 Fig. Extraction of fixations on egocentric videos.

(TIF)

S3 Fig. Proportion of return fixations among the first six fixations.

(TIF)

S4 Fig. Return fixations are consistent across subjects.

(TIF)

S5 Fig. Example of return fixation consistency across subjects.

(PDF)

S6 Fig. Distribution of saccade sizes.

(TIF)

S7 Fig. Saccade sizes and angles for primates.

(TIF)

S8 Fig. Return and non-return fixation locations.

(PDF)

S9 Fig. Calculation of bottom-up saliency map, target similarity map, and recognition

map in the computational model.

(TIF)

S10 Fig. Memory decay function and 2D empirical distribution of saccade sizes.

(TIF)

S11 Fig. Visualization examples of attention maps for the model.

(TIF)

S12 Fig. Example return fixations in model predictions.

(TIF)

S13 Fig. The model makes more return fixations at target locations than non-target loca-

tions in visual search.

(TIF)

S14 Fig. The model makes shorter saccades at return fixations than non-return fixations.

(TIF)

S15 Fig. Saccade sizes and turning angles for the model.
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S16 Fig. Model ablations reveal critical model components.
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S17 Fig. Effect of model ablations on return offset.
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S18 Fig. Effect of model ablations on saccade size distribution.

(TIF)
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S19 Fig. Effect of model ablations on turning angles.

(TIF)

S20 Fig. Effect of model ablations on saliency at fixated locations.

(TIF)

S21 Fig. False negative and positive rates for humans and the model in Visual Search 2 on

natural images (A) and in Visual Search 3 on Waldo images (B).

(TIF)

S22 Fig. Effect of threshold to define return fixations.

(PDF)

S23 Fig. Primates and our model tend to make longer saccades with larger turning angles.

(TIF)

S24 Fig. Return fixation durations are longer for target compared to non-target locations.

(TIF)
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