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Complexity control by gradient descent
in deep networks

Tomaso Poggio™ Qianli Liao' & Andrzej Banburski'

Overparametrized deep networks predict well, despite the lack of an explicit complexity
control during training, such as an explicit regularization term. For exponential-type loss
functions, we solve this puzzle by showing an effective regularization effect of gradient
descent in terms of the normalized weights that are relevant for classification.
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nce upon a time, models needed more data than para-

meters to provide a meaningful fitting. Deep networks

seem to avoid this basic constraint. In fact, more weights
than data is the standard situation for deep-learning networks
that typically fit the data and still show good predictive perfor-
mance on new datal. Of course, it has been known for some time
that the key to good predictive performance is controlling the
complexity of the network and not simply the raw number of its
parameters. The complexity of the network depends on appro-
priate measures of complexity of the space of functions realized
by the network such as VC dimension, covering numbers and
Rademacher numbers. Complexity can be controlled during
optimization by imposing a constraint, often under the form of a
regularization penalty, on the norm of the weights, as all the
notions of complexity listed above depend on it. The problem is
that there is no obvious control of complexity in the training of
deep networks! This has given an aura of magic to deep learning
and has contributed to the belief that classical learning theory
does not hold for deep networks.

In the case of regression for shallow linear networks such as
kernel machines, it is well known from work on inverse problems
and in machine learning (see refs. 23) that iterative gradient
descent (GD) has a vanishing regularizing effect with the iteration
number ¢ (for fixed step size) being equivalent to % (where A is the
corresponding regularization parameter): thus t — co corresponds
to A — 0. The simplest example is least-square regression on a
linear network, where vanishing regularization unifies both the
overdetermined and the underdetermined cases as follows

1
min = [|Y — Xw||* + A |w||’
weRt N

(1)

yielding w;, = (XX + AnI) 'XTY. It is noteworthy that
lim, ,w, = w' is the pseudoinverse. In this case, iterative GD
minimizing 1[|Y — Xwl|)> performs an implicit regularization
equivalent to taking A — 0 in w, above.

The question is whether an effective regularization may be
similarly induced in nonlinear deep networks by GD and how.
This paper addresses the question of implicit regularization in the
specific case of training wrt exponential-type loss functions—such
as cross-entropy or exponential loss. It is worth noting that cross-
entropy is the loss function used in training deep networks for
classification problems, and that most of the practical applications
and successes of deep networks, at least so far, involve
classification.

This paper answers in the affirmative: there is a hidden reg-
ularization in typical training of deep networks. The basic
observation is that the weights computed during minimization
of the exponential loss do not matter by themselves and in fact
they diverge during GD. As shown in the next section, in the
case of classification—both binary and multiclass—only the
normalized weights matter: thus, complexity control is implicit
in defining the normalized weights V) as the variables of
interest. What is not completely obvious is that commonly used
GD on the unnormalized weights induces a dynamics of the
normalized weights, which converges to a stationary point. We
show that at any finite time of the dynamics, the stationary
points of the flow of Vj satisfy the necessary and sufficient
conditions for a minimum. This mechanism underlies regular-
ization in deep networks for exponential losses and, as we dis-
cuss later, is likely to be the starting point to explain their
prediction performance.

Results
Loss functions. We consider for simplicity of exposition the case
of binary classification. We call “loss” the measure of performance

of the network f on a training set S = {(x;,5,), -+ , (xy.yy) }-
The most common loss optimized during training for binary
classification is the logistic loss L(f) = £ 3N In(1 + e 7/(%),
We focus on the closely related, simpler exponential loss
L(f(w)) = ij:le‘f (% We call classification “error” ﬁzljzl

H(—y,(f(x,)), where y is binary (y € {—1, +1}) and H is the
Heaviside function with H(—yf(x)) =1 if —yf > 0, which cor-
respond to the wrong classification. We say that f separates the
data if y,f(x,,) > 0,V n. We will typically assume that GD at some
t > T, will reach an f that separates the data (which is usually the
case for overparametrized deep networks). There is a close relation
between the exponential or logistic loss and the classification
error: both the exponential and the logistic losses are upper
bounds for the classification error. Minimizing the exponential or
logistic loss implies minimizing the classification error. Mini-
mization of the loss can be performed by GD techniques. In
today’s praxis, stochastic GD (SGD) is used to train deep net-
works. We focus here on GD for simplicity. Our main results
should also hold for SGD.

Deep networks. We define a deep network with K layers
and coordinate-wise scalar activation functions o(z): R — R as
the set of functions AW; x) = o(WKa(WK-1 ... o(Wlx))), where
the input is x € RY, the weights are given by the matrices WK,
one per layer, with matching dimensions. The symbol W is used
to denote the set of WX matrices k =1, - , K. For simplicity,
we consider here the case of binary classification in which f
takes scalar values, implying that the last layer matrix WX is
WK € RV As mentioned, the labels are yn € {—1, 1}. The
weights of hidden layer [ are collected in a matrix of size h; x h
_1. There are no biases apart from the input layer where
the bias is instantiated by one of the input dimensions being
a constant. The activation function is the Rectified Linear
Unit (ReLU) activation. For ReLU activations, the follo-
wing important positive one-homogeneity property holds

o(z) = a%_(zz)z. For the network, homogeneity implies fi, (x) =

T f(Vy, -+ Vi x,), where Wi = piVi

The network is a function flx) = fiWy, ---, Wy; x) where x is
the input and the weight matrices W) are the parameters. We
define the normalized network f as f,, = pf, with ||V,|| = 1,p =
[T ,pe I is the associated class of “normalized neural networks”
f(x). It is noteworthy that the definitions of p;, Vi, and f all
depend on the choice of the norm used in normalization. It is also
worth noting that because of homogeneity of the ReLU network
f(x) = pf(x), the signs of fand f are the same.

For simplicity of notation we consider for each weight matrix
Vi the corresponding “vectorized” representation in terms of
vectors W) = W, for each k layer.

We use the following definitions and properties (for a vector w
and the 2-norm) neglecting indeces:

e Define WE=% thus w = ||w||,v with |[v||, = 1.

e The following relations are easy to check:

1 ollwll, _
. ow

T ww”
L S=1—-w =1 -
3 o s wlE
Toow T [l

Training by unconstrained gradient descent. Consider the
typical training of deep networks. The exponential loss (more in
general an exponential-type loss such as the cross-entropy) is
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minimized by GD. The gradient dynamics is given by

Z

Wy = —
aw’kf pra

B eI (%) (2)

aW‘J

Clearly there is no explicit regularization or norm control in
the typical GD dynamics of Eq. (2). Assuming that for T> T, GD
achieves separability, the empirical loss goes to zero and the
norms of the weights py = [||W||, grow to infinity Vk. For
classification, however, only the normalized network outputs
matter because of the softmax operation.

Training by constrained gradient descent. Let us contrast
the typical GD above with a classical approach that uses
complexity control. In this case the goal is to minimize
L(fW) = Zln\]:l e_fW(xn)yn = Zfa\jzl e_pr(xn)yn’ with p= Hpk’ sub-
ject to ||V |§ = 1Vk, that is under a unit norm constraint for the

. . . 2 .
weight matrix at each layer (if p =2 then 3, (V}); ;= lis the
Frobenius norm). It is noteworthy that the relevant function is
not f(x) and the associated Wy, but rather f,(x), and the asso-
ciated Vi as the normalized network f(x) is what matters for
classification, and other key properties such as the margin
depend on it.

In terms of p, Vj, the unconstrained gradient of L gives

o yr oL oL G)
Pe= Vi W, = Pkawk
. oL _ _ 9Wi oL Fo_ oL _ _ OW, JL
as fi = — 5 = — 5 ow, and Vi = — g = —Guiawn

There are several ways to enforce the unit norm constraint on
the dynamics of V. The most obvious one consists of Lagrange
multipliers. We use an equivalent technique, which is also
equivalent to natural gradient, called tangent gradient transfor-

mation? of a gradient increment g(t) into Sg(t) For a unit L,

— ' enforces the unit

[lull;
norm constraint. According to theorem 1 in ref. 4, the dynamical

system & = Sg with ||u(0)]|, =1 describes the flow of a vector u
that satisfies ||u(f)|], = 1 for all t > 0. Applying the tangent
gradient transformation to 53+ ylelds

. BL . oL
Pr=—Viz— aw, Vi= *Spkm (4)

norm constraint, the projector S =

dynamlcs of Eq. (4) is the same as of the weight normalization
algorithm, originally® defined for each layer in terms of w = ST 3

It is relatively easy to check (see ref. ) that the

volL . g oL
=——, =8 5
Wiow =Tl Sow ®
with S=1— Imz' The reason Egs. (4) and (5) are equivalent is

because ||v||> in Eq. (5) can be shown to be constant in time’.
Weight normalization and the closely related batch normalization
technique are in common use for training deep networks.
Empirically, they behave similar to unconstrained GD with some
advantages especially for very deep networks. Our derivation,
however, seems to suggest that they could be different, as weight
normalization enforces an explicit, although so far unrecognized,
unit norm constraint (on the Vj dynamics), which unconstrained
GD (Eq. (2)) seems not to enforce.

Implicit complexity control. The first step in solving the puzzle
is to reparametrize Eq. (2) in terms of Vj, px with W) = p, V/,
and ||Vi||, =1 at convergence. Following the chain rule for the
time derivatives, the dynamics for W, Eq. (2), is identical to the

following dynamics for py = ||Wg|| and Vi

.S .
g = ViW, Vk:P_ka (6)
k

where S, =1 — VkV,? emerges this time from the change of

variables, as gv‘; S, Inspection of the equation for V, shows

that there is a unit constramt on the L, norm of V}, because of the
presence of S: in fact, a tangent gradient transformation on V
would not change the dynamics, as S is a projector and S$?=S§.
Consistently with this conclusion, unconstrained GD has the
same critical points for V} as weight normalization but a some-
what different dynamics: in the one-layer case, weight normal-
ization is
p=vlw v=Spw (7)
which has to be compared with the typical gradient equations in
the p and Vj variables given by
p=viw =S, (8)
p

The two dynamical systems are thus quite similar, differing by
a p? factor in the ¥ equations. It is clear that the stationary points
of the gradient for the v vectors—that is the values for which
v = O0—are the same in both cases, as for any t >0, p(t) > 0.

Importantly, the almost equivalence between constrained and
unconstrained GD is true only when p =2 in the unit L, norm
constraint®. In both cases the stationary point (for ﬁxed but
usually very large p, that is a very long time) are the same and
likely to be (local) minima. In the case of deep networks, we
expect multiple such minima for any finite p.

Convergence to minimum norm and maximum margin. Con-
sider the flow of V} in Eq. (6) for fixed p. If we assume that for ¢ >
To, f(V;x) separates the data, ie, Vny,f(V)(x,)>0, then
% P >0, ie., p diverges to oo with lim,_,, p = 0. In the one-layer
network case, the dynamics yields p ~ logt asymptotically. For
deeper networks, this is different. Banburski et al.> shows that the
product of weights at each layer diverges faster than logarith-
mically, but each individual layer diverges slower than in the one-

layer case. Banburski et al.> also shows that p? (the rate of growth
of ||pxl|?) is independent of k.

The stationary points at which V, =0 for fixed p —if they
exist—satisfy the necessary condition for a minimum, i.e.,

Somn(B5 i) - o
k

are critical points of the loss for fixed p (as the domain is
compact minima exist). Let us call them V(p) = minjy, -1

S, e VuPf ()

lim miny, | 126 e G) = Jim minjy, € A "),

p—00 p—00

Consider now the limit for p — oo
(10)

where x* corresponds to the training data that are support vectors
and have the smallest margin. This provides a solution Vj(eo),
which corresponds to a maximum margin solution, because
lim, . Vi(p) = min,maxy,_f,(x,) (see also ref. °). Those
maximum margin solutions are also minimum norm solution in
terms of the W for a fixed margin >1.

In summary, the dynamics of Vj for each fixed p converges to a
critical point which is likely to be a minimum on the boundary of
the p ball. For p — oo, the stationary points of the full dynamical
system Eq. (6) are reached. These points are degenerate
equilibria®.
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Discussion

The main conclusion of this analysis is that unconstrained GD in
Wy followed by normalization of Wk is equivalent to imposing a
L, unit norm constraint on V; = HW H during GD. For binary
and multiclass classification, only the normalized weights are
needed. To provide some intuition, consider that GD is steepest
descent wrt the L, norm and the steepest direction of the gradient
depends on the norm. The fact that the direction of the weights
converge to stationary points of the gradient under a constraint is
the origin of the hidden complexity control, described as implicit
bias of GD by Srebro and colleagues’, who first showed its effect
in the special case of linear networks under the exponential loss.
In addition to the approach summarized here, another elegant
theory®-10, leading to several of the same results, has been
developed around the notion of margin, which is closely related,
as in the case of support vector machines, to minimization of an
exponential-type loss function under a norm constraint.

In summary, there is an implicit regularization in deep non-
linear networks trained on exponential-type loss functions, ori-
ginating in the GD technique used for optimization. The
solutions are in fact the same as that are obtained by vanishing
regularized optimization. This is thus similar to—but more robust
than—the classical implicit regularization induced by iterative
GD on linear networks under the square loss and with appro-
priate initial conditions. In our case, the maximum margin
solutions are independent of initial conditions and the linearity of
the network. The specific solutions, however, are not unique,
unlike the linear case: they depend on the trajectory of gradient
flow, each corresponding to one of multiple minima of the loss,
each one being a margin maximizer. In general, each solution will
show a different test performance. Characterizing the conditions
that lead to the best among the margin maximizers is an
important open problem.

The classical analysis of ERM algorithms studies their
asymptotic behavior for the number of data n going to infinity. In
this limiting classical regime, n > D, where D is the fixed number
of weights; consistency (informally the expected error of the
empirical minimizer converges to the best in the class) and
generalization (the empirical error of the minimizer converges to
the expected error of the minimizer) are equivalent. The capacity
control described in this paper implies that there is asymptotic
generalization and consistency in deep networks in the classical
regime (see Fig. 1). However, as we mentioned, it has been shown
in the case of kernel regression, that there are situations in which
there is simultaneously interpolation of the training data and
good expected error. This is a modern regime in which D > n but
y = Zis constant. In the linear case, it corresponds to the limit for
A =0 of regularization, i.e., the pseudoinverse. It is likely that
deep nets may have a similar regime, in which case the implicit
regularization described here is an important prerequisite for a
full explanation—as it is the case for kernel machines under the
square loss. In fact, the maximum margin solutions we char-
acterize here are equivalent to minimum norm solutions (for
margin equal to 1, see ref. °). Minimum norm of the weight
matrices implies minimum uniform stability and thus suggests
minimum expected error, see ref. !l. This argument would
explain why deep networks trained with exponential losses pre-
dict well and why classification error does not increase with
overparametrization (see Fig. 2). It would also explain, in the case
of kernel methods and square-loss regression, why the pseu-
doinverse solution provides good expected error and at the same
time perfect interpolation on the training set!>13 with a data-
dependent double-descent behavior.

As we mentioned, capacity control follows from convergence of
the normalized weights during GD to a regularized solution with

a Model #params: 9370
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Fig. 1 Classical generalization and consistency in deep networks.

a Unnormalized cross-entropy loss in CIFAR-10 for randomly labeled data.
b Cross-entropy loss for the normalized network for randomly labeled data.
¢ Generalization cross-entropy loss (difference between training and
testing loss) for the normalized network for randomly labeled data as a
function of the number of data N. The generalization loss converges to zero
as a function of N but very slowly.

vanishing A. It is very likely that the same result we obtained for
GD also holds for SGD in deep networks (the equivalence holds
for linear networks!4). The convergence of SGD usually follows
convergence of GD, although rates being different. The
Robbins-Siegmund theorem is a tool to establish almost sure
convergence under surprisingly mild conditions.

It is not clear whether a similar effective regularization should
also hold for deep networks with more than two layers trained
with square loss. In fact, we have not been able to find a
mechanism that could lead to a similarly robust regularization.
Therefore, we conjecture that deep networks trained with square
loss (with more than two layers and not reducible to kernels) do
not converge to minimum norm solutions, unlike the same net-
works trained on exponential-type losses.
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Training data size: 50,000
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Fig. 2 No overfitting in deep networks. Empirical and expected error in
CIFAR-10 as a function of number of neurons in a 5-layer convolutional
network. The expected classification error does not increase when
increasing the number of parameters beyond the size of the training set.

Interestingly, the theoretical observations we have described
suggest that the dynamics of p may be controlled independently
from GD on the Vj, possibly leading to faster and better algo-
rithms for training deep networks. A hint of this possibilities is
given by an analysis for linear networks (see ref. °) of the
dynamics of weight normalization (Eq. (7)) vs. the dynamics of
the unconstrained gradient (Eq. (8)). Under the same simplified
assumptions on the training data, the weight normalization
dynamics converges much faster—as —than the typical
dynamics, which converges to the stationary point as @. This
prediction was verified with simulations. Together with the
observation that p(f) associated with Eq. (8) is monotonic in ¢
after separability is reached, it suggests exploring a family of
algorithms that consist of an independently driven forcing term
p(t) coupled with the equation in Vj from Eq. (8).

N
PPN el (U ()
V=Y et (B v, ).

k n=1

(1)

The open question is of course what is the optimal p(f) schedule
for converging to the margin maximizer that is best in terms of
expected error.
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