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Computational models of category-selective brain
regions enable high-throughput tests of selectivity
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Cortical regions apparently selective to faces, places, and bodies have provided important

evidence for domain-specific theories of human cognition, development, and evolution. But

claims of category selectivity are not quantitatively precise and remain vulnerable to

empirical refutation. Here we develop artificial neural network-based encoding models that

accurately predict the response to novel images in the fusiform face area, parahippocampal

place area, and extrastriate body area, outperforming descriptive models and experts. We use

these models to subject claims of category selectivity to strong tests, by screening for and

synthesizing images predicted to produce high responses. We find that these high-response-

predicted images are all unambiguous members of the hypothesized preferred category for

each region. These results provide accurate, image-computable encoding models of each

category-selective region, strengthen evidence for domain specificity in the brain, and point

the way for future research characterizing the functional organization of the brain with

unprecedented computational precision.
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The discovery of cortical regions apparently specialized for
the perception of faces1, places2, and bodies3 has not only
enriched our understanding of the functional organization

of the human brain, but energized longstanding debates about the
structure, evolution, and development of the human mind. After
all, faces, bodies, and places are highly meaningful stimuli at the
core of two human abilities: engaging in complex social interac-
tions with other people, and finding our way around in the world.
Extensive research has further shown that these abilities follow
distinct developmental trajectories in infancy4,5 and are subserved
by different representations and computations in adults. Thus, a
theoretically rich account of category-selective regions in the
brain requires understanding the meaning and significance of
faces, places, and bodies to humans, and how the perception of
these stimuli might be tailored to their post-perceptual uses in
social cognition and navigation6,7.

On the other hand, the intuitive definitions of faces, places, and
bodies that figure in theories of cognitive architecture, develop-
ment, and evolution are incomplete as characterizations of neural
responses. First, they are not image computable, instead requiring
a human in the loop to ascertain what counts as a face, place or
body. Second, they provide no quantitative account of reliable
differences in each region’s response to images either within, or
outside, its hypothesized preferred category. Finally, although
considerable evidence supports the hypothesized category selec-
tivities of the fusiform face area (FFA)8,9, extrastriate body
area3,10,11 (EBA), and the parahippocampal place area
(PPA)2,12–14, each hypothesis remains vulnerable to refutation.
Despite the hundreds of stimuli whose responses have been
reported in the literature on each region, a vast space of images
remains untested. If any image not from the preferred category is
found in the future to maximally drive the region, the claim of
category selectivity of that region will be seriously challenged.
That is, a real possibility exists that the claimed category selec-
tivity of the FFA, PPA, or EBA could turn out to be false. Here we
tackle all three problems by developing image-computable
encoding models that accurately predict the response of each
region to new images and generalize across participants. We then
cycle back to use these models to conduct the strongest tests to
date of the hypothesized category selectivity of these regions.

Our work is made possible by recent advances in deep con-
volutional artificial neural networks (ANNs), based loosely on the
hierarchical architecture and repeated computational motifs
observed in the primate visual system15,16. These networks now
approach human-level performance on object recognition
benchmarks, providing the first computationally explicit
hypotheses of how these tasks might be accomplished by the
brain. Further, the internal representations developed at different
processing stages within these ANNs mirror the hierarchical
organization of the visual cortex17–19, and activations in these
networks can be linearly combined to accurately predict the
observed response to previously unseen images at different stages
of the visual processing hierarchy20–23. For these reasons, specific
ANNs are now considered our most quantitatively accurate
computational models of visual processing in the primate ventral
visual stream21. However, it remains unclear whether or how the
understanding provided by these models engages with previous
theories of visual processing in the brain24, or whether they even
represent any significant advance in our understanding beyond
what is already known from decades of published work on these
regions.

In this work, we addressed these questions by collecting high-
quality event-related functional MRI (fMRI) responses in the
FFA, PPA, and EBA and screening a large number of ANN-based
models of the ventral stream for their ability to predict observed
responses in each region. Using prediction as one metric of

understanding, we further tested whether these models outper-
form experts on the human ventral visual pathway at predicting
the fMRI responses to novel images. Finally, we adapted recent
machine learning methods to identify stimuli that maximally or
differentially drive single neurons in the macaque visual
system25–27, to identify optimal stimuli for the FFA, PPA, and
EBA. This method enables us to turbo-charge the search for
counterevidence to the claimed selectivity of the FFA, PPA, and
EBA, thereby conducting strong tests of longstanding hypotheses
about the category selectivity of each region.

We show here that our models accurately predict the response
of each region to images, even outperforming predictions from
prior descriptive models and experts in the fields. This enables us
to use these models to screen millions of images and synthesize
naturalistic stimuli predicted to produce the highest response in
each region. All the high-response predicted images for each
region are obvious exemplars of the hypothesized preferred
category for that region, supporting the claimed category selec-
tivity of each region.

Results
We scanned four participants with fMRI to first localize the FFA,
PPA, and EBA in each participant individually using a standard
dynamic localizer28–30, and then recorded event-related fMRI
responses in each of these functionally-defined regions of interest
(fROIs) to a diverse set of 185 naturalistic stimuli. Each of the 185
images was presented at least 20 times to each participant over
four scanning sessions (~10 h scanning in each of N= 4 parti-
cipants), producing highly reliable responses of regions and
voxels in the ventral pathway to these stimuli (Figs. S1, S2).

ANN models of the ventral stream accurately predict responses
to the FFA, PPA, and EBA. How well do computational models of
the ventral stream predict the observed response to natural stimuli
in the FFA, PPA, and EBA? To find out, we modeled the average
response across participants of each of six fROIs (left and right FFA,
PPA, and EBA) to 185 natural images using a regression-based
model-to-brain alignment approach20,21,23,26,31,32 (Fig. 1). Specifi-
cally, given a model, we established a linear mapping between a
selected layer of the model and the activation of each brain region.
To determine the weights of that linear mapping, we used the brain
region’s measured responses (mean within a fROI, averaged over
participants) to a subset of the stimuli (randomly selected) (Fig. 2).
That is, the response of each ROI is modeled as a fixed, weighted
sum of ANN features. We then tested the accuracy of this model at
predicting responses to completely held-out stimuli (aka. cross-
validation, scored as the Pearson correlation of the predicted vs. the
observed responses on those held-out stimuli, see section on
Encoding Models in Methods). Using this approach we screened a
range of models on their ability to predict the observed responses
across the different fROIs (i.e., integrative benchmarking21,33).
These models include pixel and Gabor wavelet-based V1 models
which extract low-level features as well as several popular ANNs,
considered the leading models of the primate ventral visual
stream20,21,26 (N= 60 models, Table S1).

The results from the broad model screen are presented for all
fROIs in Fig. S3, which shows that several ANNs have high cross-
validated neural predictivity (i.e., above 0.8). Comparison of
predictivity scores across models also reveal several notable
trends. First, deep ANN models of the ventral stream surpass
simple pixel and V1-level models. Second, prediction scores were
higher for deeper ANN models (or recurrent models like
CORnet-R34 and CORnet-S) than shallower models (with no
recurrence) like CORnet-Z or even AlexNet. Third, models
trained on broad stimulus categories (like ImageNet and Places,
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which contain diverse naturalistic images) better predict neural
responses than models trained on a specific domain of stimuli
(like faces). This conclusion is based on comparing the neural
predictivity for models with the same architecture backbone (say
Resnet-50), but with synaptic weights trained on object
categorization using different stimulus datasets (like
IMAGENET35, Places36536, or VGGfaces237). And finally, we
find that models that are trained (see ResNet-50 random, Fig. S3)
are much more accurate than models that have randomly
initialized synaptic weights (see ResNet-50-random, Fig. S2).
Figure 2a–c shows the striking correlation between the predicted
and observed response to each image, separately for each
hemisphere of the FFA, EBA, and the PPA, for one of the best
ANN models—Resnet50-V1. Note that these correlations have
not been corrected by the data reliability (though see Methods
under Encoding Models). Together, the results from Fig. 2 and
Fig. S2 show that the models for each fROI based on a trained
ResNet50 are able to predict the observed average response to
previously unseen stimuli with high accuracy (consistent with
ref. 38).

These encoding models for the FFA, PPA, and the EBA would
be most useful if they also generalized to predict the observed
responses from entirely new subjects. To find out how well our
current models do this, we next built models based on pooling
data from three of the participants and evaluating how well this
model generalizes to new stimuli in the held-out participant
(cross-validation across both subjects and images). Here too we
found that models predict the observed responses in the held-out
subject, with average correlations between predicted and observed
responses for all fROIs above R= 0.78, (mean ± s.e.m across
fROIs 0.82 ± 0.01, each P < 0.00005, Fig. S4). How many
participants do we need to obtain a good model for a given
fROI? And do our methods work well even when models are built
from a single participant, without first averaging responses across
three or more participants? To find out we measured predictive
accuracy when models were built based on a single participant’s
responses to 90% of stimuli and tested on the held-out 10%
stimuli for the same participant. Here too the correlations
between predicted and observed responses were high (each
R > 0.78, mean ± s.e.m across fROIs 0.83 ± 0.01 for all fROIs, each
P < 0.00005, Fig. S4). Finally, we asked whether the models built
from individual subjects generalize to other subjects by measuring

the predictive accuracy of a model built from one subject on
another individual’s responses to unseen images. Here again
predictive accuracy remained quite high, with the correlations
between predicted and observed responses R > 0.76 for all fROIs
(mean ± s.e.m across fROIs 0.79 ± 0.01, each P < 0.00005, see
Fig. S4).

The results described so far indicate that the encoding model
for each fROI generalizes across participants, but they do not yet
address the grain of predictions across stimuli. Do these models
predict the responses to individual images, over and above
predictions based on their category membership? The fact that
the high predictive accuracy of the pooled model in Fig. 2a–c was
also observed in a separate analysis of stimuli both within the
hypothesized preferred category, and outside the preferred
category (Fig. 2a blue and pink dots, correlations shown as
insets) already provides some evidence that they do. We further
tested this question in two ways. First, we randomly shuffled the
image labels (N= 100 iterations) but only within the face, body,
scene, and object categories (within-category shuffled control)
and estimated the correlation between this shuffled order and the
predicted activation. This correlation was significantly lower than
the unshuffled correlation between the predicted and observed
response (Fig. 2e, P= 0.03, Wilcoxon sign-rank test), indicating
that models explained unique image-level variance over and
above the different mean responses to each category. Second, we
estimated the degree to which the models could predict the
observed response to individual stimuli within each of the four
stimulus categories. If the models predict no image-level variance,
the correlation within each category should be 0 (Fig. 2f, dotted
line). Instead, each of these correlations were significantly greater
than 0 for all fROIs (Fig. 2f, mean ± s.e.m across fROIs and
categories 0.56 ± 0.03, P= 1.19 × 10−7 Wilcoxon sign-rank test).
Further, within-category predictivity was higher for the preferred
than nonpreferred categories for each region, as expected from
the plausible hypothesis that these regions are more sensitive to
variation across exemplars within their preferred category than
variations across exemplars within nonpreferred categories.
Taken together, these results show that ANN models of the
ventral stream can predict the response to images in the FFA,
PPA, and the EBA with very high accuracy. Further analyses on a
trained ResNet50 show that the predictive accuracy of the models
remain high even when tested on individual stimuli within

Integrative benchmarking with several base-models

event-related fMRI

mapping between
models and fMRIbrain-model

a.
400ms

400ms

3.6 - 11.6s

Fig. 1 Outline of experiment design, fROI modeling. a Experiment design and fROI modeling. BOLD responses to each image were collected using an
event-related fMRI experiment (top), and the functional ROIs (FFA, EBA, PPA) were defined in each subject using an independent functional localizer
(schematically outlined on the brain in red). The same images were then fed to several candidate image-computable models (base-models, below). Using a
subset of stimuli, we learn a linear mapping (right) from each model to each brain region (see Methods) to build a brain model for each region based on
each CNN model. The brain-models for each region were then evaluated based on the ability to predict the responses to held-out images not used in the
mapping (integrative benchmarking). Note that images here are used only for illustrative purposes and are not the actual images used in the experiment.
Permission was obtained from the parents of the person in the photograph to publish the image used in this figure.
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categories and even across participants. Testing predictions
within categories also exposed a larger gap between the model
predictions and responses, which indicates room for further
model-development efforts.

ANN models of the ventral stream also predict voxel-wise and
population-level representational dissimilarities across images
in the FFA, PPA, and EBA in individual subjects. The previous
analyses evaluate the ability of models to predict the pooled
response averaged across voxels within each category-selective
fROI in an effort to build models that generalize across subjects
and directly interface with the bulk of prior experimental litera-
ture on these regions. But of course information in these regions
is coded by the distributed pattern of response across the neural
population. So, how well do these models predict the voxel-wise
responses (similar to other modeling studies22,23,32,38–40) in each
region? And how correlated are the voxel-wise metrics of pre-
dictivity to the pooled population metrics, across models? To find
out, we screened all 60 models as before, but this time on each
individual voxel in every participant, and to the patterns of
responses across voxels within a region. Specifically, we calculated
the correlation between model predictions and the observed
neural response for all the models using two population-level
metrics: (i) a neural predictivity metric based on building models
for every voxel and measuring the median correlation between
the observed and predicted responses across voxels, and (ii) a
population-level Representational Dissimilarity Matrix (RDM)-
based metric, which was computed by comparing the observed
population RDM within each fROI with the model-predicted

RDM based on transforming the voxel-wise predictions into
RDMs. The neural predictivity scores for all 60 models tested on
both population-level metrics are shown in Fig. S5. We observed
a striking match between the fROI mean and the voxel-wise
scores (Spearman R= 0.99, P < 0.00001, N= 60 models). Note,
however, that the neural predictivity scores for the mean-fROI
responses were in general higher, presumably because averaging
across voxels increased SNR. It is also clear that the models that
best predict the mean responses within individual ROIs, also best
predict the voxel-wise responses and the RDMs (Fig. S5, and see
Fig. S6 for the observed and predicted RDMs for a few repre-
sentative models) in individual subjects. Together these results
show the success of our encoding models at predicting the voxel-
wise responses as well as population-based RDMs of these fROIs
with high accuracy, and that the pooled and population-level
metrics are highly correlated for these data.

ANN models of the ventral stream have higher predictive
accuracy than category-based descriptive models and domain
experts. As we have demonstrated, our encoding models for the
FFA, EBA, and the PPA based on a trained ResNet50 are highly
accurate at predicting the observed responses to individual images,
even within the preferred category. This finding indicates that the
models are capturing something beyond a binary distinction
between the preferred versus nonpreferred categories. But how
much better are these models compared to the previous descriptive
characterizations used for these regions? That is, are the models
capturing a graded version of category selectivity, much like human
intuitions of graded category membership41,42? To find out, we
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Fig. 2 Models accurately predict image-level responses of the FFA, PPA, and EBA and generalize across subjects. a Scatterplots show the cross-
validated predicted response (x-axis) v/s observed response (y-axis) for each of the 185 stimuli for the left and right FFA (left and right columns,
respectively). Numbers indicate correlation between the predicted and observed data across all stimuli (black text), for stimuli within the hypothesized
preferred category (blue dots and text) and stimuli not within the hypothesized preferred category (pink dots and text). The dotted line denotes the x= y
line and **** is P < 0.00005. Source data are provided as a Source Data file. b Same as a but for left and right EBA. Source data are provided as a Source
Data file. c Same as a but for left and right PPA. Source data are provided as a Source Data file. d Schematic describing how the data were pooled across
subjects. Data were averaged within each fROI (schematized as a red circle) in every subject and pooled across subjects and the computational models
were built to predict the pooled responses for previously unseen images across participants. e Computational models predict the responses to individual
stimuli within each of the fROIs (circles) significantly better than the within-category image shuffled baseline controls (triangles). Ticks indicate the mean
and the errorbars indicate the std over samples. N= 6 fROIs. * is P= 0.03, two-sided Wilcoxon signed-rank test across fROIs, demonstrating predictive
accuracy as a function of not just category but individual images. Source data are provided as a Source Data file. f Computational models predict responses
to individual stimuli even for stimuli within each of the categories. Each circle indicates the model performance for the FFA (left column), EBA (middle
column), and the PPA (right column), the dashed line at 0 indicates the expected baseline performance if models did not predict any image-grained
variance within the categories. The shaded regions indicate the estimated noise-ceiling of the data. Source data are provided as a Source Data file.
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conducted a crowd-sourced behavioral experiment in which parti-
cipants (henceforth ‘novices’) were instructed to organize each of
the 185 stimuli by the degree to which each image was repre-
sentative of the hypothesized preferred category (face/body/scene)
for each region (see Fig. 3a and Methods). In general, the responses
made by novices were highly reliable (test-retest reliability > 0.8,
tested on repeating a subset of 40 stimuli per participant, see
Methods). We then measured the degree to which these category
membership ratings correlate with the observed fMRI responses
within the fROIs for each individual fMRI participant, and we
compared this prediction to that of the model. A challenge in this
analysis is that model prediction accuracies might be slightly
overestimated given the distinct data used to lock down model
parameters (from the opposite-hemisphere fROI) might not be fully
independent because of correlated noise between homologous
regions in opposite hemispheres. To avoid this potential problem,
we tested the ability of models and humans to predict each fMRI
participant’s individual held-out data (instead of the pooled data
averaged across participants, see section on Behavioral experiments
under Methods). That is, for these analyses we used models not
trained on any of the specific to-be-predicted subjects’ data (or
images), paralleling the situation of our human participants’ pre-
dictions. Figure 3b shows that behavioral ratings do not predict the
observed responses as well as the encoding models do (mean ±
s.e.m across fROIs, 0.82 ± 0.01 for the ANN, 0.64 ± 0.04 for the
behavioral data from novices, P= 0.03, Wilcoxon signed-rank test)
indicating that the human intuitions of graded category member-
ship do not explain the observed fMRI responses as well as the
ANN-based models.

The previous analysis demonstrates that the models do not
merely provide image-computable versions of the word-level
descriptions of the responses of each region, but embody further

information not entailed in those word models. Here we ask
whether the models know more about these regions than even
experts in the field do. To find out, we invited professors who
have published extensively on the human ventral visual pathway
to predict the magnitude of response of the FFA, the PPA and the
EBA to each of the 185 stimuli in our set. Strikingly, even the
expert predictions were not as accurate as our (ANN) encoding
models (Fig. 3b, mean ± s.e.m across fROIs, 0.82 ± 0.01 for the
ANN models, 0.77 ± 0.01 for the experts, P= 0.03, Wilcoxon
signed-rank test between between model and expert predictions
across the fROIs). The difference between the ANNs and experts
was even more striking when we removed the category-based
variance by testing the predictions on individual images within
each of the individual categories (Fig. 3c, mean ± s.e.m image-
level predictions for individual images within categories across
regions, 0.39 ± 0.03 for the ANN models, 0.23 ± 0.02 for the
expert predictions, and 0.12 ± 0.03 for the novice participants;
P= 2.1 × 10−5 between ANNs and experts, P= 1.8 × 10−5

between ANNs and novices, P= 4.4 × 10−5 between experts
and novices, Wilcoxon sign-rank test). This was true even for the
hypothesized preferred category for each region (Fig. 3c, mean ±
s.e.m image-level predictions for the hypothesized preferred
category across regions, 0.50 ± 0.04 for the ANN model,
0.17 ± 0.07 for the expert predictions, and 0.03 ± 0.10 for the
novice participants P= 0.03 between ANNs and experts, P= 0.03
between ANNs and novices; P= 0.03 between experts and
novices, Wilcoxon signed-rank test between model predictions,
and expert and novice subjects across fROIs). Together these
results demonstrate that current ANN-based models of the
ventral stream provide more accurate predictions than the
judgements of both novice participants and experts who have
extensively investigated these regions.

Fig. 3 Model-based predictions compared to novice participants and experts in the field. a Schematic of the comparison between neural network models
for each fROI (left) and human participants who were either Professors with several published papers on the human ventral visual cortex (experts) or
participants from a crowd-sourced experimental platform (novices), and b Performance of the ANN-based encoding models (left column), experts (middle
column), and novice participants (right column) at predicting the observed responses to stimuli. The connected lines indicate each fROI. For the behavioral
data, each dot indicates the mean prediction and the errorbars indicate the s.e.m. across participants. Source data are provided as a Source Data file.
c Comparison between ANN models (A), experts (E), and novice (N) participants at predicting the observed responses at the grain of individual stimuli
within each of the four categories of stimuli used in the experiment for the FFA (left column), the EBA (middle column), and the PPA (right column). For
the behavioral data, each dot indicates the mean and the errorbars indicate the s.e.m. across participants. The line and shaded regions indicate the ceiling
for how good the models can be, based on the reliability of the data. Source data are provided as a Source Data file.
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The fact that our models make accurate predictions and
operate directly on image pixels (i.e., are image computable)
enables us to use these models to ask new questions. Next we use
the models to put the claims of the hypothesized category
selectivity of these regions to their strongest test yet.

ANN models of the ventral stream enable strong tests of
category selectivity. Now that we are equipped with computa-
tionally precise encoding models that can predict the responses in
the FFA, PPA, and EBA with high accuracy, can we connect these
findings in neuroscience to other fields, which use verbal
descriptions of category selectivity? To do this we first need to
know if the previously claimed category selectivity of each region
is even true, given that the responses in these regions have been
tested for only a very small subset of possible images. Category
selectivity can be defined and quantified in several different ways,
but the most common definition concerns the category of images
that evoke the highest response in a neuron or voxel or region.
According to this criterion the selectivity of the FFA for faces
could be falsified if any of the stimuli producing the highest
responses in this region are not faces (as judged by humans).

So, are faces in fact the stimuli that produce the highest
response in the FFA, places in the PPA, and bodies in the EBA?
Here we cycle back to use the ANN-based models to put the
category selectivity of these regions to a strong test by using
models to simulate high-throughput experiments that could not
be run with actual fMRI measurements. Specifically, we used our
predictive models to screen ~3.5 million stimuli (N= 3,450,194
images, Fig. 4a) from three popular natural image databases to
find the images predicted to produce the strongest response in
each region. These datasets include VGGface, which consists of
faces only, usually used to train models on face discrimination
tasks; Imagenet, a diverse stimulus set with 1000 different object
categories; and Places2, a stimulus set with snapshots of 400
unique place categories usually used to train models on scene
categorization tasks. A histogram of the predicted responses of
each fROI for all ~3.5 million images is presented for each
stimulus database in Fig. 4b. The histogram for the FFA for
instance, shows that the responses to (face) stimuli from the
VGGface database is considerably higher than the response to
stimuli in the other databases. The key question though is
whether any of the top-predicted images based on this high-
throughput screening procedure are not members of the
hypothesized preferred category. To find out, we first visually
inspected each of the top-predicted 5000 images for each region.
Remarkably, we found that all were unambiguous members of the
hypothesized preferred category for that region (five representa-
tive images are shown in Fig. 4c). To test farther down the list, we
sub-subsampled the top two images from each thousand of the
top 100,000 images for each region (Figs. S7-S9). Again, we found
that all 200 such images were unambiguous members of each
region’s hypothesized preferred category.

Finally, for the case of faces and the FFA and PPA, we
performed an additional test wherein we removed all the images
in the VGG-face image set (that the builders of that set labeled as
faces), and all the images in the Places2 image set (that its builders
had previously labeled as places). Remarkably, when we asked
each model to report the remaining 5000 most preferred images
in those sets, the FFA model still ended up finding only stimuli
containing faces and the PPA model still only found stimuli
containing places (Figs. S10-S10). Had we found any stimuli pre-
dicted to produce a strong response in a region that were not
members of the hypothesized preferred category for that region,
we would have cycled back to scan participants viewing those
images to see if indeed they produced the predicted high

responses. But we did not find such images, so there were no
potentially hypothesis-falsifying stimuli to scan. This finding
further strengthens the inference that these regions are indeed
selective for faces and places.

Is this observation guaranteed, given that these regions were
defined by a preference for one category over others? To
investigate whether the alternative outcome was even possible,
e.g., that the images predicted to produce the highest response in
the FFA would not be faces, we performed a simulation of the
experiment run on our human participants but instead on single
units within a control ANN model. Briefly, we identified putative
“face units” from the conv-5 layer of Alexnet based on snapshots
from the dynamic localizer used in our experiment and built a
ResNet-50 based computational model to predict the response to
the 185 images averaged over these putative face units. In this
case we find that despite choosing the model units (from Alexnet
layer conv-5) that were putatively “face-selective” based on the
higher response to faces than to bodies, scenes, and objects on
the localizer task, 85% of the top-predicted images for those units
are not faces (as compared to 0% for the human FFA). This
simulation demonstrates that our method is capable of falsifying
previously observed selectivities and that the model-derived “face
units” were not as face-selective as the human FFA (Fig S12).

As we demonstrated above, the high-throughput screening
strategy is a powerful way to test category selectivity, but it still
depends on having the stimuli capable of falsifying the hypothesis
in the screened stimulus databases. To address this limitation, we
turned to a complementary image synthesis method. Specifically,
given each encoding model (above), we used a generative
adversarial network (GAN) to synthesize images that the model
predicts would strongly activate each fROI (Fig. 4d). This method
allows exploration of the naturalistic images space that is much
broader than sifting through photographic databases (above). We
found that the preferred images synthesized by the algorithm
could be easily recognized as members of the previously
hypothesized preferred category (Fig. 4e). Taken together, both
the image screening and synthesis procedures demonstrate the
power of the computational modeling approach that now enable
us to strongly test and validate the claims of category selectivity
for the FFA, PPA, and EBA on naturalistic images in a way that
was not possible before.

ANN models of the ventral stream enable efficient identifica-
tion of features of the stimulus that drive neural responses in
the fROIs. Our previous analyses demonstrated how models of
the ventral stream can be used to put theories of category selec-
tivity to strong tests. But, as presented above, they still do not
provide any human-interpretable intuition about which features
of the preferred stimuli drive the responses within their respective
fROIs. This is not only an important scientific question in its own
right, but also one that could increase our confidence in the use of
these models, by ascertaining whether the model is doing what we
think it is doing (e.g., responding to face parts rather than inci-
dental features associated with faces like hair or earrings). Dis-
tilling this human-interpretable intuition about each brain
subregion directly from neuroimaging experiments has proven
challenging because the standard approaches (reverse correlation
or partial occlusion) require measuring responses to a very large
number of images. Next we show how computational models may
help overcome this critical barrier using a variant of Randomized
Input Sampling for Explanation (RISE)43. Conceptually, this
method relies on applying a large number of different occluding
masks (2000 masks per image) to randomly subsample different
parts of an image, obtaining the predicted response to each
masked image for each fROI, and finally linearly combining the
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masked images and the predicted responses to generate an
‘importance map’ (Fig. 5a).

We first applied this method to identify regions of a face
stimulus that trigger the response of voxels in the FFA. The
overlaid colormaps in Fig. 5b suggest that the response of the FFA

models are driven largely by eyes and noses. Similar analyses on
the EBA (Fig. 5c) and PPA (Fig. 5d) suggest that the responses in
the EBA models are driven by hands and torsos (and critically not
faces), and the responses in the PPA models are driven by side
walls and perspective cues. But our typical natural viewing
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Fig. 4 Strong tests of hypothesized selectivity using high-throughput screening and GAN-based image synthesis. a Schematic of the high-throughput
image screening procedure. Here we screened ~3.5 million stimuli from several public image databases through the encoding models and investigated the
stimuli that the models predict strongly activate a given fROI. b Histograms showing the distribution of predicted responses by the encoding models for the
different regions of interest. Each color indicates a different stimulus database for the predictions. Source data are provided as a Source Data file. c
Representative images predicted to strongly activate each of the fROIs. See Figs. S7-S11 for stimuli subsampled from the top 100,000 images. Note that the
actual images have been replaced with copyright-free illustrative versions here. See https://osf.io/5k4ds/ for the actual top images. d Schematic for the
GAN-based image synthesis procedure. We coupled a Generative Adversarial Network (BigGAN) as the prior along with our Resnet50 (the encoder) to
optimize pixels and synthesize new stimuli that predict yet stronger responses in each of the desired fROIs. e Stimuli synthesized from this GAN-based
synthesis procedure that the models predict maximally activate the FFA, EBA, and the PPA.
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Fig. 5 Using computational models to identify features of the stimulus that drive neural responses in each fROI. a Schematic of the algorithm used to
generate importance maps. We convolve each image with 2000 masks (left) and run the masked images through our brain model for each fROI to
generate the predicted response for each image. The importance map (right) is the generated by taking a weighted sum of the masks with these predicted
responses. Permission was obtained from the person in the photograph to publish the image used in this figure. b Importance maps for the left and right
FFA for the images predicted to generate high responses. The warm colors on the overlaid colormaps indicate regions that most strongly activate the FFA
and cool colors indicate regions that do not activate the FFA. c Same as b but for left and right EBA. d Same as b but for left and right PPA. e Importance
maps for three representative photographs with faces, bodies and background scenes and importance maps for each fROI. Permission was obtained from
the persons in the photographs to publish the image used in this figure.
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experience rarely contains isolated stimuli like the maximally
activating images used for these analyses. Do models for the FFA,
EBA, and the PPA isolate the faces, bodies, and scenes from such
composite images? We tested this question on complex natural
images (Fig. 5e) and indeed as hypothesized, we find that
computational models of the fROIs identify the expected region
of the scene containing preferred stimuli for that region. Together
these analyses demonstrate the utility of computational models in
building hypotheses about which features of a stimulus are
driving the predicted responses in a given region of the brain. Of
course once any new hypotheses are derived from the models,
they should be tested empirically with actual brain measurements.

Discussion
In this study we built and tested computational models of three of
the most extensively studied regions of the human ventral visual
pathway, the FFA, the EBA, and the PPA. We find that particular
ANN-based models of the primate ventral stream can predict the
response of these regions to novel images with high accuracy.
We also show that the predictions made by these models gen-
eralize across participants and are more accurate than prior
descriptive models and even experts in the field. Most impor-
tantly, these predictive models enabled us to subject the claimed
category selectivity of the FFA, PPA, and EBA to their strongest
tests on naturalistic images to date. We used the models to screen
millions of images, and to synthesize novel images, to ask whether
any of the images predicted to produce the highest responses in
each region are not members of the hypothesized preferred
category for that region. In both cases, we failed to find such
images, even though our approach has the power to do so, thus
substantially strengthening the previous claims of face, scene, and
body selectivity of the FFA, PPA, and EBA.

We are not the first to use ANN-based predictive models of
neural responses measured with either neurophysiology21,44 or
fMRI22,45–48. What is new in our study is the high accuracy of our
model predictions, their application to the mean response of entire
cortical subregions (as well as patterns of response within those
regions), their ability to generalize across participants, and most
importantly, the ability to test longstanding hypotheses about the
selectivity of each region. Our ANN-based models also provide
efficient and high-throughput methods for discovering features
within each preferred image that might drive each region. Our
ANN-based models not only confirm, but also go beyond classic
“word models” (i.e. that the FFA, PPA, and EBA are selective for
faces, places, and bodies respectively) in two important respects.
First, they are image computable, so we no longer need a human to
tell us if an image is a face or place or body to predict if a brain
region is likely to respond to that image. Second, they provide fine-
grained predictions of the responses to individual images both
within and outside the preferred category. As we show, these
models outperform both binary and graded versions of the category
selectivity hypothesis, and thus “know”more about the selectivity of
each region than is entailed in the simple category-selective word
label. Further, the models’ ability to outperform even scientific
experts who have extensive experience measuring the responses of
these regions shows that these models contain new information
about these regions not already built into the intuitions of experts in
the field. We provide the vision community with this new syn-
thesized knowledge as downloadable models of entire cortical
regions, as well as with a roadmap for testing their own hypotheses
of the FFA, PPA, and EBA.

Given all of these advantages of the ANN-based encoding
models, should we now dispense entirely with word models? We
think not. Because word-based hypotheses are grounded in
everyday concepts, they provide accessible and intuitive

explanations of the function of each cortical region. Further,
theories in psychology and development and evolution concern
real entities in the world like faces and places and bodies, and
their significance to humans, which cannot be fully captured by
vectors of connection weights. Word-based models are therefore
necessary to interface between the rich tradition of findings and
theories from those fields, and the empirical findings in neu-
roscience. For all these reasons, ANN-based computational
models complement rather than replace word models. Minimally,
the words “face”, “body”, and “place” serve as pointers to the code
that can be used to execute the current models of each brain
subregion.

Although ResNet50-V1 provided the numerically most accurate
models across regions (consistent with ref. 38) based on a broad
screen of models it is important to note that a single study or small
number of regions considered (as in our own work) is insufficient to
prescribe a single base-model as being the most brain-like. Ulti-
mately the model arbitration will require a community-wide effort
and rigorous integrative benchmarking on completely independent
data from new subjects and evermore regions (similar to say the
BrainScore platform21,33 for non-human primate data). An
important contribution of our work is the fROI-scale of computa-
tional modeling, which makes it possible to evaluate our exact
model on completely independent subjects, hypotheses, and data.
fROIs like the FFA, PPA, and EBA can be isolated in almost all
participants and our models make testable predictions and are more
directly falsifiable than say voxel-wise models (though as we show,
these metrics are highly correlated).

That said, our current modeling efforts also show that there is
room for improvement for example in the within-category predic-
tions. One route will make use of new models now being developed
that include known properties of biological networks49–52 and that
may better fit neural responses. Another route will learn from model
failures in an effort to improve predictive accuracy. For example, the
ANNs used here were trained on naturalistic images, are vulnerable
to targeted adversarial attacks53,54 and are known to have limited
generalizations to out-of-domain sample distributions (for instance,
do not generalize from natural images to line drawings). These
shortcomings suggest that these models are not likely to accurately
predict observed fMRI responses to more abstract3,55,56 and sym-
bolic stimuli57–60 including contextually defined faces61,62. Thus an
important avenue of future work will entail exposing and expanding
the bounds within which these models retain their predictive power.
An effective strategy could be to run evermore targeted experiments
that push model-development efforts either by including more
diverse set of stimuli for training (like sketches, line drawings, car-
toons etc.), or stronger inductive biases as biological networks.

Further, our ultimate our goal as vision researchers is to build
computational models that not only predict neural responses in a
given region of the brain, but that also reveal the full sequence of
computations over all successive stages of visual processing that
lead to those responses. For example, future work can also test
whether cortical regions thought to provide input to the FFA and
PPA (e.g., the OFA and OPA, respectively) match earlier layers in
the network. An example of this “simultaneous compare at all
processing levels” approach has recently been taken up by the
Brain-Score open model evaluation platform33. Thus, our current
work is just the first iteration of a cycle of high-quality data
collection and model improvement that should evermore accu-
rately capture the computations entailed in visual information
processing.

In this paper we have focused on building models that can
accurately predict the mean response of each cortical subregion
(i.e., as if it were a single “unit”). Of course, information is
encoded in each subregion not by the mean response of millions
of neurons, but by the pattern of response across those neurons.
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Indeed, our models were also quite accurate in predicting
responses of individual voxels and of patterns of responses across
voxels (Figs. S5, S6), and prior work in rodents and macaques has
shown that similar models have good predictive accuracy for even
finer-grained recordings25–27. So we now have the methods in
place to derive excellent encoding models for the entire visual
pathway, at any spatial grain our data provide, and all transfor-
mations of those data (e.g., RDMs). This success represents
substantial progress and opens the door to future work on the
even bigger challenge of understanding how other parts of the
brain read these neural codes to tell us what we are looking at.
Because neural responses typically contain information not only
about the stimuli that elicit the strongest response63 (cf the
nonpreferred predictivity found here), causal interventions on the
brain are necessary to determine which of the information pre-
sent in each region is read out to produce our rich repertoire of
visually guided behaviors64.

Perhaps most fundamentally, a rich scientific account of visual
processing in the brain requires not only accurate predictive
models, but an understanding of how those models work. New
methods for analyzing computational networks, much like those
developed by neuroscientists for understanding brains, are
enabling us to demystify how ANNs produce the responses they
do. We can characterize and visualize responses in different
network layers18,65 and “lesion” parts of the system to test their
causal role in explaining neural data66. But with networks we also
have a suite of new methods that are not available in human
cognitive neuroscience: We can independently alter properties of
the network architecture, loss functions, and training diet to test
which of these properties are essential for the model to perform as
it does49,67. Taken together, the highly accurate prediction of
neural responses that are already possible, along with powerful
methods for improving and analyzing our models, are giving us
an unprecedented opportunity to discover and understand the
actual neural computations that enable us to see.

Methods
All studies were approved by the Committee on the Use of Humans as Experi-
mental subjects of the Massachusetts Institute of Technology (MIT).

Functional MRI. All the fMRI scanning sessions were performed at the Athinoula
A. Martinos Imaging Center at MIT on a Siemens 3-T MAGNETOM Prisma
Scanner with a 32-channel head coil. Functional scans included T2*-weighted
echoplanar (EPI) BOLD images for each experiment session (acquisition para-
meters: simultaneous interleaved multi-slice acquisition (SMS) 2, TR= 2000ms,
TE= 30 ms, voxel size 2 mm isotrotropic, number of slices= 52, flip angle: 90°,
echo-spacing 0.54 ms, 7/8 phase partial Fourier acquisition whole brain coverage).
Each fMRI participant (N= 4, 2 females) participated in five neuroimaging ses-
sions. A high-resolution T1-weighted (multi-echo MPRAGE) anatomical scan
(acquisition parameters: 176 slices, voxel size: 1 × 1 × 1mm, repetition time
(TR)= 2500 ms, echo time (TE)= 2.9 ms, flip angle= 8°) was acquired during the
first scanning session, along with data to localize the functional regions of interest
(fROIs). The data to be modeled were collected over 4 additional neuroimaging
sessions (sessions 2–5) using an event-related experiment paradigm. Details of the
(dynamic) localizer and event-related scans are described next.

Dynamic localizer. The fusiform face area (FFA), parahippocampal place area
(PPA) and the extrastriate body area (EBA) were localized in each individual
participant using a standard dynamic localizer, which has been used extensively to
isolate these regions28,30. Briefly, the stimuli were short video clips corresponding
to one of five stimulus classes (faces, bodies, scenes, objects and scrambled objects).
Each experiment run included 25 18-s blocks (20 stimulus blocks, four per cate-
gory, and 5 fixation blocks). Each block contained six 3-s long video clips randomly
drawn from a set of 60 clips. The stimuli were 20 degrees of visual angle (dva) wide
and 15 dva tall. The order of the conditions was palindromic (e.g., A-B-C-D-E-E-
D-C-B-A) and subjects were given no specific instructions except to view the videos
being presented on the screen. Each subject participated in five runs of the dynamic
localizer experiment over the course of the first neuroimaging session.

Event-related experiment. We used an event-related experimental paradigm for
the main experiment. The stimuli comprised naturalistic full-field, unsegmented,

colored images sampled predominantly from the THINGS database68. The sti-
mulus set included 25 images with faces, 50 images with bodies, 50 images with
scenes, and 65 images with objects (total N= 185 images). Each image subtended
8dva inside the fMRI scanner and participants viewed 100 unique images per
experimental session. Each stimulus was presented for 300 ms followed by mini-
mum inter-stimulus-interval (ISI) of 3700 ms and maximum ISI of 11700 ms
optimized using OptSeq2 (https://surfer.nmr.mgh.harvard.edu/optseq/) and the
stimulus order was randomized separately for each experiment run. All partici-
pants provided informed consent before being scanned. Subjects were instructed to
maintain fixation on a small 0.3dva fixation cross at the center of the screen at all
times, with no other task. Subjects viewed a fixed set of 100 unique images, 15 of
which were repeated in every experiment session (normalizer images) and used to
normalize the data (see data normalization below). Each stimulus was repeated at
least 20 times per participant to maximize the test-retest reliability of the data (see
Fig S1). Subjects performed 10 experimental runs per session and the data were
collected over four neuroimaging sessions.

fMRI preprocessing and general linear modeling, and data normalization
across sessions. fMRI data preprocessing was performed on Freesurfer (version:
6.0.0; Downloaded from: https://surfer.nmr.mgh.harvard.edu/fswiki/). Data pre-
processing included slice time correction, motion correction of each functional run,
alignment to each subject’s anatomical data, and smoothing using a 5 mm FWHM
Gaussian kernel. Generalized linear modelling (GLM) for the dynamic localizer was
also performed on Freesurfer and included one regressor per stimulus condition, as
well as nuisance regressors for linear drift removal and motion correction per run,
and analyzed on the surface reconstructed versions of the data. GLM analysis for
the event-related experiment was performed using GLMdenoise69. This method,
optimized for event-related fMRI, estimates the noise regressors directly from the
data. Consistent with previous reports69,70, this method substantially improved the
test-reliability of the estimated beta parameters in our pilot experiments. Using this
method, we estimated a single beta parameter estimate per stimulus corresponding
to the change in BOLD signal in response to the presentation of that image.
Following methods routinely used in non-human primate studies26,71 we nor-
malized the data per group of 100 images by the responses observed to the 15
normalizer images repeated per experiment session (by subtracting the mean and
dividing by the standard deviation).

Encoding models. We screened several computational models, predominantly
deep convolutional artificial neural network (ANN) based models to predict the
observed responses (normalized beta estimates per image, see above) in the FFA,
PPA and the EBA to the images in our stimulus set. Specifically, we used ANNs
trained to categorize static images based on a large dataset of labeled natural
images. Our working hypothesis is that these networks learn internal representa-
tions similar to those produced by the population of neurons in the brain. Given
that the learned representational space in these computational models may not
exactly align with those in the brain, we allow a single linear transformation on
those features to create a mapping between the ANN model and the neural
measurements20,39,44. Therefore, our predictive modeling methods comprised two
parts: (a) an embedding model (e.g., a given ANN model) and (b) a linear mapping
function, each of which is described next. Note that all the predictions reported in
the paper are always based on images not used to train the model (cross-validated)
and with the specific layer choice and hyperparameters determined using com-
pletely distinct neural data from the homologous regions in the other hemisphere
(see outline in Fig S13).

Embedding model. ANN-based models trained to categorize stimuli from static
natural images have previously been shown to develop representations that are
remarkably similar to recordings from monkey and human visual
cortex19,20,22,26,44,45,72. In our experiments we screened a set of 60 different
computational models at predicting measurements (Table S1) from the human
visual cortex. Parameters of each network (except the randomly initialized
untrained Resnet-50 model) were first optimized for object categorization perfor-
mance using supervised learning methods15. At the end of this training, all the
parameters were fixed and the internal activations at the individual layers of the
network were extracted to predict the neural responses.

Mapping ANNs to measured responses. As detailed above, we used linear mapping
methods to make predictive models of neurons using features extracted from
different layers in each embedding model. We used two linear mapping methods to
predict neural measurements from ANN activations. Each of the mapping methods
are explained below.

Choice of base-model and best model layer
Each neural network encoding model (base-model or network) has several layers of
computations. Activations at each layer constitute a different feature set that could be
related to the neural responses in each of the ROIs. We first screened all the feature sets
(every layer of every base-model). To do this, we used a regularized ridge regression with
5-fold cross-validation (over five separate randomization seeds) to map the activations
from each layer of every network to the neural responses in each fROI. We used this
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method because of its low computational cost that allowed us to evaluate and compare
many feature sets across many networks (Figs. S3, S5). We did not perform any addi-
tional search for the optimal regularization parameter for the ridge regression and set it
to 0.01 (further post-hoc analyses show that changing this parameter within reasonable
limits does not change the relative ordering between models). These screening prediction
scores were used to freeze the decisions about the specific base-model and the specific
layer before obtaining the final predictions for all subsequent experiments.
The choice of the base-model was decided through an integrative benchmarking
approach33—that is, we chose the base-model that simply had the numerically highest
cross-validated predictive accuracy (always based on held-out data) across all the 6 fROIs
considered in the study. Note that this choice is highly constrained and does not change
even when N-1 fROIs were used to make the selection for the Nth fROI.
For that specific base-model, the best layer for a given fROI (for example, the left FFA)
was determined based on distinct neural data from the homologous region in the other
hemisphere (the right FFA in this example). This is how we ensure that all the free
parameter choices (base-model architecture and specific layer) for a given region were
fixed based on distinct neural data before determining the final cross-validated prediction
accuracies. Moreover, the goal of this exercise was to not arbitrate between models (see
Discussion) but to identify a sufficiently good representational feature basis set for
subsequent experiments.

Fitting the fROI responses from activations in the best layer
After selecting the numerically highest performing base-model and model layer based on
distinct neural data (see above) we fit a two-stage linear mapping function26,73 to predict the
brain measurements from the best network and layer. In this method, the mapping function
consists of two separate stages that essentially codes the what and where of the neural
function. The layer activations for an individual image consist of three dimensions, width,
height, and depth. The width and height dimensions correspond to the spatial dimensions
of the input while the depth dimension refers to the various encoding dimensions (i.e.,
convolutional filters) in that specific layer. The first stage of mapping, which learns the
spatial correspondence between the model and the brain activity, consists of learning a
unique spatial mask over the width and height dimensions of the activation map that best
relates the model activations to the fROI responses. In the second stage of mapping, the
spatially masked activations are then averaged over the spatial dimensions (i.e., the width
and height of the activation map) and then multiplied by a second vector of learnable
parameters that computes a weighted average of the different encoding dimensions (i.e.,
convolutional filters). The mapping function parameters are optimized to reduce the pre-
diction error for the brain responses within each fROI. Because this method allows for per-
fROI spatial masking of the feature set, it contains much fewer trainable parameters
(compared to most regression methods such as ridge regression) and leads to more accurate
predictions. However, this comes at a relatively high computational cost compared to the
linear regression and was therefore only computed once we determined the best base-model
and layer after the screening procedure.
The convolutional mapping has two hyperparameters that control the degree of weight
regularization for the spatial and encoding dimensions. We considered 6 points, spaced
evenly on a logarithmic scale, within the [0.01–100] range. We chose these hyperpara-
meters by performing a grid-search on these two hyperparameters using a separate 10-
fold cross-validation procedure. As before, the grid-search was performed on distinct
neural data from the homologous region in the opposite hemisphere (on the same set of
185 images) and on the model layer determined from 1) above. The final model pre-
diction accuracy for the fROI was then determined (using features from the specific
model layer, and using grid-search regularization weights determined from homologous
regions from the opposite hemisphere) using a single 10-fold cross-validation (using a
different random seed for both weight initialization and data split from before) over the
185 images. This entire procedure is outlined schematically in Fig. S13a.
Note that we always used distinct neural data to determine all the free parameters
(choices on which base-model, layer and grid-search hyperparameters) to reduce any
model selection bias. Nonetheless it may be argued that neural data across hemispheres
and regions are not entirely independent because of perhaps shared scanner noise even
across hemispheres within each individual fMRI participants’ data (see ref. 74 for
instance). While we cannot entirely rule out the influence of this shared noise on the
reported neural predictivity estimates, these effects, if any, are likely small and do not
qualitatively affect the majority of results. For quantitative comparison of model pre-
diction accuracy to humans, we avoid this problem by cross-validating across both
images and participants (see section on Behavioral experiments below).

Noise-ceiling estimates. The noise-ceiling indicates the maximum attainable accu-
racy of the encoding models given the reliability of the recorded data themselves.
To derive these estimates, we randomly split the 20 runs of recorded data into two
groups (and repeated this randomization 10 times). The noise-ceiling for every
subject was estimated by first computing the beta estimates per image separately for
each half of the data, and then measuring the (Spearman-Brown corrected) cor-
relation between the estimated betas from the two halves (repeating this entire
procedure 10 times for each binary split). For the pooled data we used the same
procedure to measure the pooled beta-parameters (by averaging across the per-
image beta estimates in each split over subjects) for each randomization split and
calculating the Spearman-Brown corrected split-half correlation between the esti-
mated betas across splits. The plots in Figs. 2, 3 indicate the mean and the standard

deviation of the correlations across splits. For the across-subject prediction tests we
estimated the noise-ceiling directly by correlating the pooled data from (n-1)
subjects with the data for the nth subject (Fig. S4, across-subject generalization test
1) and by correlating the observed data for each subject with the observed data for
every other subject (Fig. S4, across-subject generalization test 2).

Neural predictivity. We used the Pearson product moment correlation between
the observed responses across images and the cross-validated predictions (pre-
dictions on held-out data) of responses to those same images (neural predictivity
score) to assess the match between the model and the brain. Given the question we
were addressing, we used the models to predict the activations of each individual
voxel (voxel-wise predictivity), the mean response within a given fROI for each
subject (mean-fROI predictivity), or the pooled response in a given fROI across
subjects (pooled predictivity).

Population code representational similarity analysis (RSA). We used repre-
sentational similarity analyses to compare the degree to which the voxel-wise
pattern of population responses observed in the brain within the fROIs matched
the voxel-wise pattern of population responses predicted by the encoding models.
For every (observed or predicted) nvoxels × nstimuli data matrix corresponding to
a given fROI, we computed the Euclidean distance between each pair of images
(185C2= 17020 pairs) to obtain the observed and predicted 185 × 185 images
representational dissimilarity matrices75–78 (see ref. 79 for a discussion on why
Euclidean distance is better suited than the oft used correlation distance for
responses in the FFA, PPA, and the EBA). The similarity between the observed and
predicted RDMs was assessed by taking a spearman correlation between observed
and predicted RDMs.

Behavioral experiments. To address the degree to which the observed responses
could be predicted based on human intuitions of graded category membership, we
conducted a behavioral experiment on an independent group of participants
recruited from Amazon Mechanical Turk. Three independent groups of partici-
pants performed each of the face/body/scene tasks. Participants in the experiment
were directed to an online platform (www.meadows-research.com) where they
performed a drag-rate arrangement task. Specifically, the subjects were instructed
to “Drag and drop the images based on how [face/body/scene]-like they are” by
organizing each of the 185 images onto a graphical region where the top of the y-
axis indicated very [face/body/scene]-like images and the very bottom of the y-axis
indicated that the images were not [face/body/scene]-like at all. To make sure that
participants comprehended the instructions and were indeed performing the task
consistently, they were asked to repeat the experiment on a smaller subset of 40
images. Participants took on average 15 minutes to finish the experiment and were
monetarily compensated for their time. The participant responses were in general
reliable but we included only participants with a mean test-retest correlation 0.85
(Total number of subjects recruited per task: 130, Total number of participants’
data retained, N= 106 subjects on the face-task, N= 115 on the body task, N= 60
for the scene task, mean test-retest correlation 0.95, 0.95, and 0.90 for the face,
body, and scene tasks respectively). The match to observed data was assessed by
taking the Pearson correlation between each novice’s ratings and the observed
fMRI responses in each fMRI participant’s individual fROIs (then averaged over
fMRI participants to get the accuracy of that novice).

To assess the degree to which experts could predict the observed responses to
the 185 images, we reached out to a group of 30 researchers who we judged to have
the greatest expertise worldwide in measuring fMRI responses from the human
ventral visual pathway. Ten of them provided responses (all were Assistant
Professors or above). These experts were asked to participate in a similar drag-rate
arrangement experiment as described above, but with different instructions.
Experts were instructed to “Place the images on the graph based on the expected
[FFA/EBA/PPA] activations by organizing each of the 185 images onto a graphical
region where the top of the y-axis indicated maximum [FFA/EBA/PPA] activation
and the very bottom of the y-axis indicated low [FFA/EBA/PPA] activation
(Fixation).” Like the novice subjects, the experts also repeated the task for small
subset of 40 images. The order of the tasks was randomized across experts who
took on average 30 min to finish the experiment. Responses were highly reliable
within experts (mean test-retest reliability 0.97, 0.96, and 0.96 for the FFA, EBA,
and PPA tasks). As with the novices, the match to observed data was assessed by
taking the Pearson correlation of each experts’ own predictions, with the observed
response in each fROI for every fMRI subject.

In order to fully allay any concern about prediction accuracies being biased in
favor of models (see last paragraph on Encoding Models above), we used models
cross-validated across both participants and images (similar to Fig. S4, third
column from left). To expand, for each subject, we used computational models
trained using a 10-fold cross-validation on all other subjects. This procedure in
outlined schematically in Fig. S13b. In this way the models did not use any of that
Nth fMRI participants’ individual data (nor those specific images on which the
predictions are made) in the model training procedure. For models, the match to
observed data was assessed by taking the Pearson correlation between each (Nth)
subject’s individual data for every fROI, and the predicted responses by the model
trained on N-1 subjects (and then averaged over all fMRI subjects).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25409-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5540 | https://doi.org/10.1038/s41467-021-25409-6 |www.nature.com/naturecommunications 11

http://www.meadows-research.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Image screening. Given that our trained encoding models for each fROI could
operate directly on the images (i.e., were image computable) and could predict the
observed responses within the fROIs for naturalistic stimuli at relatively low
computational costs, we screened several large publicly available image databases to
find stimuli that the models predict would strongly drive responses in a given
functional region of interest. Specifically, we screen the images from the
IMAGENET35 database which contains a diverse set of images from 1000 stimulus
categories based on WordNet (N= 1,281,167 images), the Places2 database36

which contains stimuli from about 400 unique scene categories (N= 1,569,127
images), and the VGGface2 database used to train models on face recognition with
several stimuli containing faces only (N= 599,900 images, Total images across all 3
databases= 3,450,194). In all cases we ran all ~3 million stimuli through the
models and obtained the model-derived predictions and visualized the subsampled
top 100,000 stimuli predicted to activate a given fROI.

Image synthesis. We used the predictive model of the brain responses to syn-
thesize natural-looking stimuli that were predicted to elicit large responses in each
fROI. We used a synthesis method based on80 which formalizes the image synthesis
procedure as an optimization problem. Our goal was to synthesize stimuli that
would maximally activate a given target fROI. For this, the optimization objective is
defined as the magnitude of the predicted response in the target fROI. Compared to
prior work26 where the pixel values were iteratively tuned following the ascending
gradient of the optimization objective, here we instead used an alternative para-
meterization of the image based on Generative Adversarial Networks (GANs)81.
This reparameterization is done via a generative neural network [specifically,
BigGan82] that is trained to produce natural-looking images given a low dimen-
sional latent code and a 1000-way image category. The complete network used for
image synthesis consisted of the generative network followed by the encoding
neural network and the linear mapping function (see Fig. 4). The input to this
network consisted of the GAN latent code and a 1000-way class identity and the
output was the predicted brain activity in the target fROI. We used the pretrained
version of BigGan network, which was trained to produce images of size 256 × 256
pixels (available via Tensorflow hub). The class category variable was initialized as
αSðnÞ where α= 0.05, S is the softmax function, and n is a vector of scalars
randomly sampled from the truncated normal distribution between [0, 1]. The
latent vector z was also sampled from a truncated normal distribution between
[−2, 2]. The truncation parameter was set to 0.5. For each synthetic image, we
iteratively minimized the objective function for 30000 steps using the Adam
optimizer83 with a fixed learning rate of 0.00134,36.

Data availability
Stimuli, model checkpoints, preprocessed fMRI data, and behavioral ratings associated with
experts and novices are available at the Open Science Framework repository for this project
(https://osf.io/5k4ds/). The following publicly available resources were used for this work:
THINGS database: https://osf.io/jaetd/ Imagenet: https://image-net.org/download.php
Places2: http://data.csail.mit.edu/places/places365/train_large_places365standard.tar
VGGFace2: http://www.robots.ox.ac.uk/~vgg/data/ Source data are provided with this paper.

Code availability
The code used to generate the plots, model checkpoints, and model weights are available
at https://osf.io/5k4ds/. Code to run inference on custom images directly from the
browser will be made available from the authors’ Github page (https://github.com/
ratanmurty/NatComm2021).
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