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Deep neural network models reveal interplay of
peripheral coding and stimulus statistics in pitch
perception
Mark R. Saddler1,2,3,5✉, Ray Gonzalez1,2,3,5 & Josh H. McDermott 1,2,3,4✉

Perception is thought to be shaped by the environments for which organisms are optimized.

These influences are difficult to test in biological organisms but may be revealed by machine

perceptual systems optimized under different conditions. We investigated environmental and

physiological influences on pitch perception, whose properties are commonly linked to per-

ipheral neural coding limits. We first trained artificial neural networks to estimate funda-

mental frequency from biologically faithful cochlear representations of natural sounds.

The best-performing networks replicated many characteristics of human pitch judgments.

To probe the origins of these characteristics, we then optimized networks given altered

cochleae or sound statistics. Human-like behavior emerged only when cochleae had

high temporal fidelity and when models were optimized for naturalistic sounds. The results

suggest pitch perception is critically shaped by the constraints of natural environments in

addition to those of the cochlea, illustrating the use of artificial neural networks to reveal

underpinnings of behavior.

https://doi.org/10.1038/s41467-021-27366-6 OPEN

1 Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA. 2McGovern Institute for Brain Research, MIT, Cambridge, MA, USA. 3 Center for
Brains, Minds and Machines, MIT, Cambridge, MA, USA. 4 Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA,
USA. 5These authors contributed equally: Mark R. Saddler, Ray Gonzalez. ✉email: msaddler@mit.edu; jhm@mit.edu

NATURE COMMUNICATIONS |         (2021) 12:7278 | https://doi.org/10.1038/s41467-021-27366-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27366-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27366-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27366-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27366-6&domain=pdf
http://orcid.org/0000-0002-3965-2503
http://orcid.org/0000-0002-3965-2503
http://orcid.org/0000-0002-3965-2503
http://orcid.org/0000-0002-3965-2503
http://orcid.org/0000-0002-3965-2503
mailto:msaddler@mit.edu
mailto:jhm@mit.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


A key goal of perceptual science is to understand why
sensory-driven behavior takes the form that it does. In
some cases, it is natural to relate behavior to physiology,

and in particular to the constraints imposed by sensory trans-
duction. For instance, color discrimination is limited by the
number of cone types in the retina1. Olfactory discrimination is
similarly constrained by the receptor classes in the nose2. In other
cases, behavior can be related to properties of environmental
stimulation that are largely divorced from the constraints of
peripheral transduction. For example, face recognition in humans
is much better for upright faces, presumably because we pre-
dominantly encounter upright faces in our environment3.

Understanding how physiological and environmental factors
shape behavior is important both for fundamental scientific
understanding and for practical applications such as sensory pros-
theses, the engineering of which might benefit from knowing how
sensory encoding constrains behavior. Yet, the constraints on
behavior are often difficult to pin down. For instance, the auditory
periphery encodes sound with exquisite temporal fidelity4, but the
role of this information in hearing remains controversial5–7. Part of
the challenge is that the requisite experiments—altering sensory
receptors or environmental conditions during evolution or devel-
opment, for instance—are practically difficult (and ethically unac-
ceptable in humans).

The constraints on behavior can sometimes instead be
revealed by computational models. Ideal observer models, which
optimally perform perceptual tasks given particular sensory
inputs and sensory receptor responses, have been the method of
choice for investigating such constraints8. While biological
perceptual systems likely never reach optimal performance, in
some cases humans share behavioral characteristics of ideal
observers, suggesting that those behaviors are consequences of
having been optimized under particular biological or environ-
mental constraints9–12. Ideal observers provide a powerful fra-
mework for normative analysis, but for many real-world tasks,
deriving provably optimal solutions is analytically intractable.
The relevant sensory transduction properties are often prohi-
bitively complicated, and the task-relevant parameters of natural
stimuli and environments are difficult to specify mathematically.
An attractive alternative might be to collect many real-world
stimuli and optimize a model to perform the task on these sti-
muli. Even if not fully optimal, such models might reveal con-
sequences of optimization under constraints that could provide
insights into behavior.

In this paper, we explore whether contemporary “deep” arti-
ficial neural networks (DNNs) can be used in this way to gain
normative insights about complex perceptual tasks. DNNs pro-
vide general-purpose architectures that can be optimized to
perform challenging real-world tasks13. While DNNs are unlikely
to fully achieve optimal performance, they might reveal the effects
of optimizing a system under particular constraints14,15. Previous
work has documented similarities between human and network
behavior for neural networks trained on vision or hearing
tasks16–18. However, we know little about the extent to which
human-DNN similarities depend on either biological constraints
that are built into the model architecture or the sensory signals
for which the models are optimized. By manipulating the prop-
erties of simulated sensory transduction processes and the stimuli
on which the DNN is trained, we hoped to get insight into the
origins of behaviors of interest.

Here, we test this approach in the domain of pitch—traditionally
conceived as the perceptual correlate of a sound’s fundamental
frequency (F0)19. Pitch is believed to enable a wide range of
auditory-driven behaviors, such as voice and melody recognition20,
and has been the subject of a long history of work in
psychology21–25 and neuroscience26–29. Yet despite a wealth of data,

the underlying computations and constraints that determine pitch
perception remain debated19. In particular, controversy persists
over the role of spike timing in the auditory nerve, for which a
physiological extraction mechanism has remained elusive30,31. The
role of cochlear frequency selectivity, which has also been proposed
to constrain pitch discrimination, remains similarly debated26,32.
By contrast, little attention has been given to the possibility that
pitch perception might instead or additionally be shaped by
the constraints of estimating the F0 of natural sounds in natural
environments.

One factor limiting resolution of these debates is that previous
models of pitch have generally not attained quantitatively accu-
rate matches to human behavior25,33–40. Moreover, because most
previous models have been mechanistic rather than normative,
they do not speak to the potential adaptation of pitch perception
to particular types of sounds or peripheral neural codes. Here we
used DNNs in the role traditionally occupied by ideal observers,
optimizing them to extract pitch information from peripheral
neural representations of natural sounds. DNNs have become the
method of choice for pitch tracking in engineering applications41,
but have not been combined with realistic models of the per-
ipheral auditory system, and have not been compared to human
perception. We then tested the influence of peripheral auditory
physiology and natural sound statistics on human pitch percep-
tion by manipulating them during model optimization. The
results provide new evidence for the importance of peripheral
phase locking in human pitch perception. However, they also
indicate that the properties of pitch perception reflect adaptation
to natural sound statistics, in that systems optimized for alter-
native stimulus statistics deviate substantially from human-like
behavior.

Results
Training task and stimuli. We used supervised deep learning to
build a model of pitch perception optimized for natural speech and
music (Fig. 1a). DNNs were trained to estimate the F0 of short
(50ms) segments of speech and musical instrument recordings,
selected to have high periodicity and well-defined F0s. To emulate
natural listening conditions, the speech and music clips were
embedded in aperiodic background noise taken from YouTube
soundtracks. The networks’ task was to classify each stimulus into
one of 700 F0 classes (log-spaced between 80Hz and 1000Hz, bin
width= 1/16 semitones= 0.36% F0). We generated a dataset of 2.1
million stimuli. Networks were trained using 80% of this dataset
and the remaining 20% was used as a validation set to measure the
success of the optimization.

Peripheral auditory model. In our primary training condition, we
hard-coded the input representation for our networks to be as
faithful as possible to known peripheral auditory physiology. We
used a detailed phenomenological model of the auditory nerve42 to
simulate peripheral representations of each stimulus (Fig. 1a). The
input representations to our networks consisted of 100 simulated
auditory nerve fibers. Each stimulus was represented as a 100-fiber
by 1000-timestep array of instantaneous firing rates (sampled at
20 kHz).

An example simulated auditory nerve representation for a
harmonic tone is shown in Fig. 1b. Theories of pitch have tended
to gravitate toward one of the two axes of such representations:
the frequency-to-place mapping along the cochlea’s length, or the
time axis. However, it is visually apparent that the nerve
representation of even this relatively simple sound is quite rich,
with a variety of potential cues: phase locking to individual
frequencies, phase shifts between these phase-locked responses,
peaks in the time-averaged response (the “excitation” pattern) for
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low-numbered harmonics, and phase locking to the F0 for the
higher-numbered harmonics. The DNN models have access to all
of this information. Through optimization for the training task,
the DNNs should learn to use whichever peripheral cues best
allow them to extract F0.

Neural network architecture search. The performance of an
artificial neural network is influenced both by the particular
weights that are learned during training and by the various
parameters that define the architecture of the network16. To
obtain a high-performing model, we performed a large-scale
random architecture search. Each architecture consisted of a
feedforward series of layers instantiating linear convolution,
nonlinear rectification, normalization, and pooling operations.
Within this family, we trained 400 networks varying in their
number of layers, number of units per layer, extent of pooling

between layers, and the size and shape of convolutional filters
(Fig. 1c).

The different architectures produced a broad distribution of
training task performances (Fig. 1d). In absolute terms accuracy
was good – the median error was well below 1% (Fig. 1e), which is
on par with good human F0 discrimination thresholds25,43. The
vast majority of misclassifications fell within bins neighboring the
true F0 or at an integer number octaves away (Fig. 1f), as in
human pitch-matching judgments44.

Characteristics of pitch perception emerge in optimized DNNs.
Having obtained a model that can estimate F0 from natural
sounds, we simulated a suite of well-known psychophysical
experiments to assess whether the model replicated known
properties of human pitch perception. Each experiment measures
the effect of particular cues on pitch discrimination or estimation

a.

b. Simulated auditory nerve representation c. Example network architectures

d. Network training

Cochlear
model

Background noise

Speech or music

F0

Deep convolutional neural network

+

e. Median F0 error f. Confusion matrix

Fig. 1 Pitch model overview. a Schematic of model structure. DNNs were trained to estimate the F0 of speech and music sounds embedded in real-world
background noise. Networks received simulated auditory nerve representations of acoustic stimuli as input. Green outlines depict the extent of example
convolutional filter kernels in time and frequency (horizontal and vertical dimensions, respectively). b Simulated auditory nerve representation of a
harmonic tone with a fundamental frequency (F0) of 200 Hz. The sound waveform is shown above and its power spectrum is shown to the left. The
waveform is periodic in time, with a period of 5ms. The spectrum is harmonic (i.e., containing multiples of the fundamental frequency). Network inputs
were arrays of instantaneous auditory nerve firing rates (depicted in greyscale, with lighter hues indicating higher firing rates). Each row plots the firing rate
of a frequency-tuned auditory nerve fiber, arranged in order of their place along the cochlea (with low frequencies at the bottom). Individual fibers phase-
lock to low-numbered harmonics in the stimulus (lower portion of the nerve representation) or to the combination of high-numbered harmonics (upper
portion). Time-averaged responses on the right show the pattern of nerve fiber excitation across the cochlear frequency axis (the “excitation pattern”).
Low-numbered harmonics produce distinct peaks in the excitation pattern. c Schematics of six example DNN architectures trained to estimate F0. Network
architectures varied in the number of layers, the number of units per layer, the extent of pooling between layers, and the size and shape of convolutional
filter kernels d Summary of network architecture search. F0 classification performance on the validation set (noisy speech and instrument stimuli not seen
during training) is shown as a function of training steps for all 400 networks trained. The highlighted curves correspond to the architectures depicted in
a and c. The relatively low overall accuracy reflects the fine-grained F0 bins we used. e Histogram of accuracy, expressed as the median F0 error on the
validation set, for all trained networks (F0 error in percent is more interpretable than the classification accuracy, the absolute value of which is dependent
on the width of the F0 bins). f Confusion matrix for the best-performing network (depicted in a) tested on the validation set.
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using synthetic tones (Fig. 2, left column), and produces an
established result in human listeners (Fig. 2, center column). We
tested the effect of these stimulus manipulations on our ten best-
performing network architectures. Given evidence for individual
differences across different networks optimized for the same
task45, most figures feature results averaged across the ten best
networks identified in our architecture search (which we collec-
tively refer to as “the model”). Averaging across an ensemble of
networks effectively allows us to marginalize over architectural
hyperparameters and provide uncertainty estimates for our

model’s results46,47. Individual results for the ten networks are
shown in Supplementary Fig. 1.

As shown in Fig. 2, the model (right column) qualitatively and
in most cases quantitatively replicates the result of each of the five
different experiments in humans (center column). We emphasize
that none of the stimuli were included in the networks’ training
set, and that the model was not fit to match human results in any
way. These results collectively suggest that the model relies on
similar cues as the human pitch system. We describe these results
in turn.

Human results Model results

a.  Effect of harmonic number and phase on pitch discrimination (Bernstein & Oxenham, 2005)

b.  Pitch of alternating-phase harmonic complexes (Shackleton & Carlyon, 1994)

e. Necessity of correct tonotopic representation for pitch discrimination (Oxenham et al., 2004)

d. Pitch of complexes with individually mistuned harmonics (Moore et al., 1985)

c. Pitch of frequency-shifted complexes (Moore & Moore, 2003)

Stimulus manipulation and task

Pitch discrimination
Human task: was the pitch of tone 1 
or tone 2 higher?

Model task: was the reported F0 for 
tone 1 or tone 2 higher?

Trial with lowest harmonic number = 5

6th harmonic is 
mistuned by +6%

Axes legends to the 
right indicate which 

harmonic is mistuned

Pitch estimation
Human task: adjust F0 
of sine-phase harmonic 
complex to match pitch 
of test stimulus

Model task: report F0 
estimate for test stimulus

Pitch
discrimination

(detailed in A)

Pitch
estimation

(detailed in D)Low harmonics 
shifted by +24%

of F0

High harmonics 
shifted by +24%

of F0

Pitch
estimation

(detailed in D)
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Dependence on low-numbered harmonics. First, human pitch
discrimination is more accurate for stimuli containing low-
numbered harmonics (Fig. 2a, center, solid line)22,25,43,48. This
finding is often interpreted as evidence for the importance of
“place” cues to pitch, which are only present for low-numbered
harmonics (Fig. 1b, right). The model reproduced this effect,
though the inflection point was somewhat lower than in human
listeners: discrimination thresholds were low only for stimuli
containing the fifth or lower harmonic (Fig. 2a, right, solid line).

Phase effects are limited to high-numbered harmonics. Second,
human perception is affected by harmonic phases only for high-
numbered harmonics. When harmonic phases are randomized,
human discrimination thresholds are elevated for stimuli that
lack low-numbered harmonics (Fig. 2a, center, dashed vs. solid
line)25. In addition, when odd and even harmonics are summed
in sine and cosine phase, respectively (“alternating phase”, a
manipulation that doubles the number of peaks in the waveform’s
temporal envelope; Fig. 2b, left), listeners report the pitch to be
twice as high as the corresponding sine-phase complex, but only
for high-numbered harmonics (Fig. 2b, center)22. These results
are typically thought to indicate use of temporal fluctuations in a
sound’s envelope when cues for low-numbered harmonics are
not available22,26,43. The model replicates both effects (Fig. 2a, b,
right), indicating that it uses similar temporal cues to pitch as
humans, and in similar conditions.

Pitch shifts for shifted low-numbered harmonics. Third,
frequency-shifted complex tones (in which all of the component
frequencies have been shifted by the same number of Hz; Fig. 2c,
left) produce linear shifts in the pitch reported by humans, but
only if the tones contain low-numbered harmonics (Fig. 2c,
center)23. The model’s F0 predictions for these stimuli resemble
those measured from human listeners (Fig. 2c, right).

Fourth, shifting individual harmonics in a complex tone
(“mistuning”; Fig. 2d, left) can also produce pitch shifts in
humans under certain conditions21: the mistuning must be small
(effects are largest for 3–4% mistuning) and applied to a low-
numbered harmonic (Fig. 2d, center). The model replicates this
effect as well, although the size of the shift is smaller than that
observed in humans (Fig. 2d, right).

Poor discrimination of transposed tones. Fifth, “transposed
tones” designed to instantiate the temporal cues from low fre-
quencies at a higher-frequency place on the cochlea (Fig. 2e, left)
elicit weak pitch percepts in humans and thus yield higher dis-
crimination thresholds than pure tones (Fig. 2e, center)24. This
finding is taken to indicate that to the extent that temporal cues to
pitch matter perceptually, they must occur at the correct place on
the cochlea. The model reproduced this effect: discrimination
thresholds were worse for transposed tones than they are for pure
tones (Fig. 2e, right).

DNNs with better F0 estimation show more human-like
behavior. To evaluate whether the human-model similarity evi-
dent in Fig. 2 depends on having optimized the model archi-
tecture for F0 estimation of natural sounds, we simulated the full
suite of psychophysical experiments on each of our 400 trained
networks. These 400 networks varied in how well they estimated
F0 for the validation set (Fig. 1d, e). For each psychophysical
experiment and network, we quantified the similarity between
human and network results with a correlation coefficient. We
then compared this human-model similarity to each network’s
performance on the validation set (Fig. 3a–e).

For four of the five experiments (Fig. 3a–d), there was a
significant positive correlation between training task performance
and human-model similarity (p < 0.001 in each case). The
transposed tones experiment (Fig. 3e) was the exception, as all
networks similarly replicated the main human result regardless of
their training task performance. We suspect this is because
transposed tones cause patterns of peripheral stimulation that
rarely occur for natural sounds. Thus, virtually any model that
learns to associate naturally occurring peripheral cues with F0 will
exhibit poor performance for transposed tones.

To illustrate the effect of optimization for one experiment,
Fig. 3f displays the average F0 discrimination thresholds for each
of the worst, middle, and best 10% of networks (sorted by
performance on the validation set). It is visually apparent that
top-performing networks exhibit more similar psychophysical
behavior to humans than worse-performing networks. See
Supplementary Fig. 2 for analogous results for the other four
experiments from Fig. 2. Overall, these results indicate that
networks with better performance on the F0-estimation training
task generally exhibit more human-like pitch behavior, consistent

Fig. 2 Pitch model validation: human and neural network psychophysics. Five classic experiments from the pitch psychoacoustics literature (a–e) were
simulated on neural networks trained to estimate the F0 of natural sounds. Each row corresponds to a different experiment and contains (from left to right)
a schematic of the experimental stimuli, results from human listeners (re-plotted from the original studies), and results from the neural networks. Error
bars indicate bootstrapped 95% confidence intervals around the mean of the ten best network architectures when ranked by F0 estimation performance on
natural sounds (individual network results are shown in Supplementary Fig. 1). a F0 discrimination thresholds for bandpass synthetic tones, as a function of
lowest harmonic number and phase. Human listeners and networks discriminated pairs of sine-phase or random-phase harmonic tones with similar F0s.
Stimuli were bandpass-filtered to control which harmonics were audible. b Perceived pitch of alternating-phase complex tones containing either low or
high-numbered harmonics. Alternating-phase tones (i.e., with odd-numbered harmonics in sine phase and even-numbered harmonics in cosine phase)
contain twice as many peaks in the waveform envelope as sine-phase tones with the same F0. Human listeners adjusted a sine-phase tone to match the
pitch of the alternating-phase tone. Networks made F0 estimates for the alternating-phase tones directly. Histograms show distributions of pitch
judgments as the ratio between the reported F0 and the stimulus F0. c Pitch of frequency-shifted complexes. Harmonic complexes (containing either low
or high-numbered harmonics) were made inharmonic by shifting all component frequencies by the same number of Hz. Human listeners and networks
reported the F0s they perceived for these stimuli (same experimental methods as in b). Shifts in the perceived F0 are shown as a function of the shift
applied to the component frequencies. d Pitch of complexes with individually mistuned harmonics. Human listeners and networks reported the F0s they
perceived for complex tones in which a single harmonic frequency was shifted (same experimental methods as in b). Shifts in the perceived F0 are shown
as a function of the mistuning applied to seven different harmonics within the tone (harmonic numbers indicated in different colors at top of graphs). Note
that the y-axis limits are different in the human and model graphs—they exhibit qualitative but not quantitative similarity. This could be because the
networks are better able to isolate the contribution of the harmonic to the F0, whereas human listeners may sometimes erroneously be biased by the
harmonic itself. e Frequency discrimination thresholds measured with pure tones and transposed tones. Transposed tones are high-frequency tones that
are amplitude-modulated so as to instantiate the temporal cues from low-frequency pure tones at a higher-frequency place on the cochlea. Human and
network listeners discriminated pairs of pure tones with similar frequencies and pairs of transposed tones with similar envelope frequencies.
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with the idea that these patterns of behavior are byproducts of
optimization under natural constraints.

Because the space of network architectures is large, it is a
challenge to definitively associate particular network motifs
with good performance and/or human-like behavior. However,
we found that very shallow networks both performed poorly on
the training task and exhibited less similarity with human
behavior (Supplementary Fig. 3). This result provides evidence
that deep networks (with multiple hierarchical stages of
processing) better account for human pitch behavior than
relatively shallow networks.

Human-like behavior requires a biologically-constrained cochlea.
To test whether a biologically-constrained cochlear model was
necessary for human-like pitch behavior, we trained networks to
estimate F0 directly from sound waveforms (Fig. 4a). We replaced
the cochlear model with a bank of 100 one-dimensional convolu-
tional filters operating directly on the audio. The weights of these
first-layer filters were optimized for the F0 estimation task along
with the rest of the network.

The learned filters deviated from those in the ear, with best
frequencies tending to be lower than those of the hardwired
peripheral model (Fig. 4b). Networks with learned cochlear filters
also exhibited less human-like behavior than their counterparts
with the fixed cochlear model (Fig. 4c, d). In particular, networks
with learned cochlear filters showed little ability to extract pitch
information from high-numbered harmonics. Discrimination
thresholds for higher harmonics were poor (Fig. 4c, Expt. A)

and networks did not exhibit phase effects (Fig. 4c, Expt. A & B).
Accordingly, human-model similarity was substantially lower
with learned cochlear filters for two of five psychophysical
experiments (Fig. 4d; Expt. A: t(18)= 5.23, p < 0.001, d= 2.47;
Expt. B: t(18)= 12.69, p < 0.001, d= 5.98). This result suggests
that a human-like cochlear representation is necessary to obtain
human-like behavior, but also that the F0 estimation task on its
own is insufficient to produce a human-like cochlear representa-
tion, likely because the cochlea is shaped by many auditory tasks.
Thus, the cochlea may be best considered as a constraint on pitch
perception rather than the other way around.

Dependence of pitch behavior on the cochlea. To gain insight
into what aspects of the cochlea underlie the characteristics of
pitch perception, we investigated how the model behavior
depends on its peripheral input. Decades of research has sought
to determine the aspects of peripheral auditory representations
that underlie pitch judgments, but experimental research has been
limited by the difficulty of manipulating properties of peripheral
representations. We took advantage of the ability to perform
experiments on the model that are not possible in biology,
training networks with peripheral representations that were
altered in various ways. To streamline presentation, we present
results for a single psychophysical result that was particularly
diagnostic: the effect of lowest harmonic number on F0 dis-
crimination thresholds (Fig. 2a, solid line). Results for other
experiments are generally congruent with the overall conclusions
and are shown in Supplementary Figures. We first present

a. b. e.d.c.

Human
listeners

Networks grouped by F0 estimation performance on natural sounds
(middle 10%)(worst 10%) (best 10%)

f.

Bernstein & Oxenham, 2005

Fig. 3 Network architectures producing better F0 estimation for natural sounds exhibit more human-like pitch behavior. a–e Plot human-model
similarity in each experiment for all 400 architectures as a function of the accuracy of the trained architecture on the validation set (a set of stimuli distinct
from the training dataset, but generated with the same procedure). The similarity between human and model results was quantified for each experiment as
the correlation coefficient between analogous data points (Methods). Pearson correlations between validation set accuracy and human-model similarity for
each experiment are noted in the legends. Each graph a–e corresponds to one of the five main psychophysical experiments (Fig. 2a–e): a F0 discrimination
as a function of harmonic number and phase, b pitch estimation of alternating-phase stimuli, c pitch estimation of frequency-shifted complexes, d pitch
estimation of complexes with individually mistuned harmonics, and e frequency discrimination with pure and transposed tones. f The results of the
experiment from a (F0 discrimination thresholds as a function of lowest harmonic number and harmonic phase) measured from the 40 worst, middle, and
best architectures ranked by F0 estimation performance on natural sounds (indicated with green patches in a). Lines plot means across the 40 networks.
Error bars indicate 95% confidence intervals via bootstrapping across the 40 networks. Human F0 discrimination thresholds from the same experiment are
re-plotted for comparison.
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experiments manipulating the fidelity of temporal coding, fol-
lowed by experiments manipulating frequency selectivity along
the cochlea’s length.

Human-like behavior depends critically on phase locking.
To investigate the role of temporal coding in the auditory

periphery, we trained networks with alternative upper limits of
auditory nerve phase locking. Phase locking is limited by bio-
physical properties of inner hair cell transduction4, which are
impractical to alter in vivo but which can be modified in silico
via the simulated inner hair cell’s lowpass filter42. We separately
trained networks with lowpass cutoff frequencies of 50 Hz,

F0
a.

b.

d.

c.

Sound 
waveform

1D first-layer 
filter kernel -layer) representation is learned with rest of the model

Expt. E

Expt. D

Expt. C

Expt. A

Expt. B

Fig. 4 Networks trained to estimate F0 directly from sound waveforms exhibit less human-like pitch behavior. a Schematic of model structure. Model
architecture was identical to that depicted in Fig. 1a, except that the hardwired cochlear input representation was replaced by a layer of one-dimensional
convolutional filters operating directly on sound waveforms. The first-layer filter kernels were optimized for the F0 estimation task along with the rest of
the network weights. We trained the ten best networks from our architecture search with these learnable first-layer filters. b The best frequencies (sorted
from lowest to highest) of the 100 learned filters for each of the ten network architectures are plotted in magenta. For comparison, the best frequencies of
the 100 cochlear filters in the hardwired peripheral model are plotted in black. c Effect of learned cochlear filters on network behavior in all five main
psychophysical experiments (see Fig. 2a–e): F0 discrimination as a function of harmonic number and phase (Expt. a), pitch estimation of alternating-phase
stimuli (Expt. b), pitch estimation of frequency-shifted complexes (Expt. c), pitch estimation of complexes with individually mistuned harmonics (Expt. d),
and frequency discrimination with pure and transposed tones (Expt. e). Lines plot means across the ten networks; error bars plot 95% confidence intervals,
obtained by bootstrapping across the ten networks. d Comparison of human-model similarity metrics between networks trained with either the hardwired
cochlear model (black) or the learned cochlear filters (magenta) for each psychophysical experiment. Asterisks indicate statistical significance of two-
sample t-tests comparing the two cochlear model conditions: ***p < 0.001, *p= 0.016. Error bars indicate 95% confidence intervals bootstrapped across
the ten network architectures.
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320 Hz, 1000 Hz, 3000 Hz (the nerve model’s default value,
commonly presumed to roughly match that of the human
auditory nerve), 6000 Hz, and 9000 Hz. With a cutoff frequency
of 50 Hz, virtually all temporal structure in the peripheral
representation of our stimuli was eliminated, meaning the
network only had access to cues from the place of excitation
along the cochlea (Fig. 5a). As the cutoff frequency was
increased, the network gained access to progressively finer-
grained spike-timing information (in addition to the place
cues). The ten best-performing networks from the architecture

search were retrained separately with each of these altered
cochleae.

Reducing the upper limit of phase locking qualitatively
changed the model’s psychophysical behavior and made it less
human-like. As shown in Fig. 5b, c, F0 discrimination thresholds
became worse, with the best threshold (the left-most data point,
corresponding to a lowest harmonic number of 1) increasing as
the cutoff was lowered (significantly worse for all three
conditions: 1000 Hz, t(18)= 4.39, p < 0.001, d= 1.96; 320 Hz,
t(18)= 11.57, p < 0.001, d= 5.17; 50 Hz, t(18)= 9.30, p < 0.001,
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d= 4.16; two-sample t-tests comparing to thresholds in the
3000 Hz condition). This in itself is not surprising, as it has long
been known that phase locking enables better frequency
discrimination than place information alone9,49. However,
thresholds also showed a different dependence on harmonic
number as the phase locking cutoff was lowered. Specifically, the
transition from good to poor thresholds, here defined as the left-
most point where thresholds exceeded 1%, was lower with
degraded phase locking. This difference was significant for two of
the three conditions (1000 Hz, t(18)= 5.15, p < 0.001, d= 2.30;
50 Hz, t(18)= 10.10, p < 0.001, d= 4.52; two-sample t-tests
comparing to the 3000 Hz condition; the transition point was
on average lower for the 320 Hz condition, but the results were
more variable across architectures, and so the difference was
not statistically significant). Increasing the cutoff to 6000 Hz or
9000 Hz had minimal effects on both of these features (Fig. 5c),
suggesting that superhuman temporal resolution would not
continue to improve pitch perception (at least as assessed here).
Discrimination thresholds for high-numbered harmonics were
in fact slightly worse for increased cutoff frequencies. One
explanation is that increasing the model’s access to fine timing
information biases the learned strategy to rely more on this
information, which is less useful for determining the F0 of
stimuli containing only high-numbered harmonics. Overall,
these results suggest that auditory nerve phase locking like that
believed to be present in the human ear is critical for human-
like pitch perception.

A common criticism of place-based pitch models is that they
fail to account for the robustness of pitch across sound level,
because cochlear excitation patterns saturate at high levels26.
Consistent with this idea, frequency discrimination thresholds
(Fig. 5d) measured from networks with lower phase locking
cutoffs were less invariant to level than networks trained with
normal spike-timing information (Fig. 5e, right). Thresholds
for models with limited phase locking became progressively
worse for louder tones, unlike those for humans (Fig. 5e, left)50.
This effect produced an interaction between the effect of
stimulus level and the phase locking cutoff on discrimination
thresholds (F(13.80,149.08)= 4.63, p < 0.001, η2partial ¼ 0:30), in
addition to the main effect of the cutoff (F(5,54)= 23.37,
p < 0.001, η2partial ¼ 0:68; also evident in Fig. 5c). Similar effects
were observed when thresholds were measured with complex
tones (data not shown).

To control for the possibility that the poor performance of
the networks trained with lower phase locking cutoffs might be
specific to the relatively small number of simulated auditory
nerve fibers in the model, we generated an alternative
representation for the 50 Hz cutoff condition, using 1000 nerve
fibers and 100 timesteps (sampled at 2 kHz). We then trained
and tested the ten best-performing networks from our
architecture search on these representations (transposing the

nerve fiber and time dimensions to maintain the input size and
thus be able to use the same network architecture). Increasing
the number of simulated auditory nerve fibers by a full order of
magnitude modestly improved thresholds but did not qualita-
tively change the results: networks without high-fidelity
temporal information still exhibited abnormal F0 discrimina-
tion behavior. The 50 Hz condition results in Fig. 5c, e are taken
from the 1000 nerve fiber networks, as this seemed the most
conservative comparison. Results for different numbers of
nerve fibers are provided in Supplementary Fig. 4.

We simulated the full suite of psychophysical experiments
on all networks with altered cochlear temporal resolution
(Supplementary Fig. 5). Several other experimental results were
also visibly different from those of humans in models with
altered phase locking cutoffs (in particular, the alternating-
phase and mistuned harmonics experiments). Overall, the
results indicate that normal human pitch perception depends
on phase locking up to 3000 Hz.

Human-like behavior depends less on cochlear filter band-
widths. The role of cochlear frequency tuning in pitch perception
has also been the source of longstanding debates22,32,43,48,51,52.
Classic “place” theories of pitch postulate that F0 is inferred from
the peaks and valleys in the excitation pattern. Contrary to this
idea, we found that simply eliminating all excitation pattern cues
(by separately re-scaling each frequency channel in the peripheral
representation to have the same time-averaged response, without
retraining the model) had almost no effect on network behavior
(Supplementary Fig. 6). This result suggests that F0 estimation
does not require the excitation pattern per se, but it remains
possible that it might still be constrained by the frequency tuning
of the cochlea.

To investigate the perceptual effects of cochlear frequency
tuning, we trained networks with altered tuning. We first scaled
cochlear filter bandwidths to be two times narrower and two
times broader than those estimated for human listeners53. The
effect of this manipulation is visually apparent in the width of
nerve fiber tuning curves as well as in the number of harmonics
that produce distinct peaks in the cochlear excitation patterns
(Fig. 6a).

We also modified the cochlear model to be linearly spaced
(Fig. 6b), uniformly distributing the characteristic frequencies
of the model nerve fibers along the frequency axis and equating
their filter bandwidths. Unlike a normal cochlea, which resolves
only low-numbered harmonics, the linearly spaced alteration
yielded a peripheral representation where all harmonics are
equally resolved by the cochlear filters, providing another test of
the role of frequency selectivity.

Contrary to the notion that cochlear frequency selectivity
strongly constrains pitch discrimination, networks trained
with different cochlear bandwidths exhibit relatively similar

Fig. 5 Pitch perception is impaired in networks optimized with degraded spike timing in the auditory nerve. a Simulated auditory nerve representations
of the same stimulus (harmonic tone with 200Hz F0) under six configurations of the peripheral auditory model. Configurations differed in the cutoff
frequency of the inner hair cell lowpass filter, which sets the upper limit of auditory nerve phase locking. The 3000 Hz setting is that normally used to
model the human auditory system. As in Fig. 1b, each peripheral representation is flanked by the stimulus power spectrum and the time-averaged cochlear
excitation pattern. b Schematic of stimuli used to measure F0 discrimination thresholds as a function of lowest harmonic number. Gray level denotes
amplitude. Two example trials are shown, with two different lowest harmonic numbers. c F0 discrimination thresholds as a function of lowest harmonic
number measured from networks trained and tested with each of the six peripheral model configurations depicted in a. The best thresholds and the
transition points from good to poor thresholds (defined as the lowest harmonic number for which thresholds first exceeded 1%) are re-plotted to the left of
and below the main axes, respectively. Here and in e, lines plot means across the ten networks; error bars plot 95% confidence intervals, obtained by
bootstrapping across the ten networks. d Schematic of stimuli used to measure frequency discrimination thresholds as a function of sound level. Gray level
denotes amplitude. e Frequency discrimination thresholds as a function of sound level measured from human listeners (left) and from the same networks
as c (right). Human thresholds, which are reported as a function of sensation level, are re-plotted from50.
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F0 discrimination behavior (Fig. 6c, d). Broadening filters by a
factor of two had no significant effect on the best thresholds
(t(18)= 0.40, p= 0.69, t-test comparing thresholds when
lowest harmonic number= 1 to the human tuning condition).

Narrowing filters by a factor of two yielded an improvement in
best thresholds that was statistically significant (t(18)= 2.74,
p= 0.01, d= 1.23) but very small (0.27% vs. 0.32% for the
networks with normal human tuning). Linearly spaced cochlear

a. Model nerve fiber frequency tuning 2x narrower cochlear filter bandwidths

Human cochlear filter bandwidths 2x broader cochlear filter bandwidths

Example stimuli: manipulating 
lowest harmonic number

c. d. Effect of cochlear filter
bandwidth on F0 discrimination

b. Model nerve fiber frequency tuning
Linearly spaced cochlear filters

with constant bandwidths

Was the reported F0 for 
tone 1 or tone 2 higher?

Fig. 6 Cochlear frequency tuning has relatively little effect on pitch perception. a Cochlear filter bandwidths were scaled to be two times narrower or two
times broader than those estimated for normal-hearing humans. This manipulation is evident in the width of auditory nerve tuning curves measured from
five individual fibers per condition (upper left panel). Tuning curves plot thresholds for each fiber as a function of pure tone frequency. Right and lower left
panels show simulated auditory nerve representations of the same stimulus (harmonic tone with 200 Hz F0) for each bandwidth condition. Each peripheral
representation is flanked by the stimulus power spectrum and the time-averaged auditory nerve excitation pattern. The excitation patterns are altered by
changes in frequency selectivity, with coarser tuning yielding less pronounced peaks for individual harmonics, as expected. b Cochlear filters modeled on
the human ear were replaced with a set of linearly spaced filters with constant bandwidths in Hz. Pure tone tuning curves measured with linearly spaced
filters are much sharper than those estimated for humans at higher frequencies (left panel; note the log-spaced frequency scale). The right panel shows the
simulated auditory nerve representation of the stimulus from a with linearly spaced cochlear filters. In this condition, all harmonics are equally resolved by
the cochlear filters and thus equally likely to produce peaks in the time-averaged excitation pattern. c Schematic of stimuli used to measure F0
discrimination thresholds. Gray level denotes amplitude. Two example trials are shown, with two different lowest harmonic numbers. d F0 discrimination
thresholds as a function of lowest harmonic number, measured from networks trained and tested with each of the four peripheral model configurations
depicted in a and b. The best thresholds and the transition points from good to poor thresholds (defined as the lowest harmonic number for which
thresholds first exceeded 1%) are re-plotted to the left of and below the main axes, respectively. Lines plot means across the ten networks; error bars
indicate 95% confidence intervals bootstrapped across the ten networks.
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filters also yielded best thresholds that were not significantly
different from those for normal human tuning (t(18)= 1.88,
p= 0.08). In addition, the dependence of thresholds on
harmonic number was fairly similar in all cases (Fig. 6d). The
transition between good and poor thresholds occurred
around the sixth harmonic irrespective of the cochlear
bandwidths (not significantly different for any of the three
altered tuning conditions: two times broader, t(18)= 1.33,
p= 0.20; two times narrower, t(18)= 1.00, p= 0.33; linearly
spaced, t(18)= 0.37, p= 0.71; t-tests comparing to the normal
human tuning condition).

All three models with altered cochlear filter bandwidths
produced worse thresholds for stimuli containing only high-
numbered harmonics (Fig. 6d). This effect is expected for the
narrower and linearly spaced conditions (smaller bandwidths result
in reduced envelope cues from beating of adjacent harmonics), but
we do not have an explanation for why networks with broader
filters also produced poorer thresholds. One possibility that we
ruled out is overfitting of the network architectures to the human
cochlear filter bandwidths; validation set accuracies were no worse
with broader filters (t(18)= 0.66, p= 0.52). However, we note
that all of the models exhibit what would be considered poor
performance for stimuli containing only high harmonics (thresh-
olds are at least an order of magnitude worse than they are for low
harmonics), and are thus all generally consistent with human
perception in this regime.

We also simulated the full suite of psychophysical experiments
from Fig. 2 on networks with altered frequency tuning. Most
experimental results were robust to peripheral frequency tuning
(Supplementary Fig. 7).

Dependence of pitch behavior on training set sound statistics.
In contrast to the widely debated roles of peripheral cues, the role
of natural sound statistics in pitch has been little discussed
throughout the history of hearing research. To investigate how
optimization for natural sounds may have shaped pitch percep-
tion, we fixed the cochlear representation to its normal human
settings and instead manipulated the characteristics of the sounds
on which networks were trained.

Altered training set spectra produce altered behavior. One
salient property of speech and instrument sounds is that they
typically have more energy at low frequencies than high fre-
quencies (Fig. 7a, left column, black line). To test if this lowpass
characteristic shapes pitch behavior, we trained networks on
highpass-filtered versions of the same stimuli (Fig. 7a, left col-
umn, orange line) and then measured their F0 discrimination
thresholds (Fig. 7b). For comparison, we performed the same
experiment with lowpass-filtered sounds.

Thresholds measured from networks optimized for highpass
sounds exhibited a much weaker dependence on harmonic number
than if optimized for natural sounds (Fig. 7c, left column). This
difference produced an interaction between the effects of harmonic
number and the training condition (F(2.16,38.85)= 72.33,
p < 0.001, η2partial ¼ 0:80). By contrast, the dependence on harmo-
nic number was accentuated for lowpass-filtered stimuli, again
producing an interaction between the effects of harmonic number
and the training condition (F(4.25,76.42)= 30.81, p < 0.001,
η2partial ¼ 0:63).

We also simulated the full suite of psychophysical experiments
on these networks (Supplementary Fig. 8) and observed several
other striking differences in their performance characteristics. In
particular, networks optimized for highpass-filtered natural
sounds exhibited better discrimination thresholds for transposed
tones than pure tones (t(18)= 9.92, p < 0.001, d= 4.43, two-sided

two-sample t-test comparing pure tone and transposed tone
thresholds averaged across frequency), a complete reversal of the
human result. These results illustrate that the properties of pitch
perception are not strictly a function of the information available
in the periphery—performance characteristics can depend
strongly on the “environment” in which a system is optimized.

Natural spectral statistics account for human-like behavior. To
isolate the acoustic properties needed to reproduce human-like
pitch behavior, we also trained networks on synthetic tones
embedded in masking noise, with spectral statistics matched to
those of the natural sound training set (Fig. 7a, center column).
Specifically, we fit multivariate Gaussians to the spectral envel-
opes of the speech/instrument sounds and the noise from the
original training set, and synthesized stimuli with spectral
envelopes sampled from these distributions. Although dis-
crimination thresholds were overall somewhat better than when
trained on natural sounds, the resulting network again exhibited
human-like pitch characteristics (Fig. 7c, center column, black
line). Because the synthetic tones were constrained only by the
mean and covariance of the spectral envelopes of our natural
training data, the results suggest that such low-order spectral
statistics capture much of the natural sound properties that
matter for obtaining human-like pitch perception (see Supple-
mentary Fig. 8 for results on the full suite of psychophysical
experiments).

For comparison, we also trained networks on synthetic tones
with spectral statistics that deviate considerably from speech and
instrument sounds. We generated these “anti-matched” synthetic
tones by multiplying the mean of the fitted multivariate Gaussian
by negative one (see Methods) and sampling spectral envelopes
from the resulting distribution. Training on the resulting highpass
synthetic tones (Fig. 7a, center column, orange line) completely
reversed the pattern of behavior seen in humans: discrimination
thresholds were poor for stimuli containing low-numbered
harmonics and good for stimuli containing only high-numbered
harmonics (producing a negative correlation with human results:
r=−0.98, p < 0.001, Pearson correlation) (Fig. 7c, center column,
orange line). These results further illustrate that the dominance of
low-numbered harmonics in human perception is not an
inevitable consequence of cochlear transduction—good pitch
perception is possible in domains where it is poor in humans,
provided the system is trained to extract the relevant information.

Music-trained networks exhibit better pitch acuity. We also
trained networks separately using only speech or only music
stimuli (Fig. 7a, right column). Consistent with the more accurate
pitch discrimination found in human listeners with musical
training54, networks optimized specifically for music have lower
discrimination thresholds for stimuli with low-numbered har-
monics (Fig. 7c, right column; t(18)= 9.73, p < 0.001, d= 4.35,
two-sample t-test comparing left-most conditions—which pro-
duce the best thresholds—for speech and music training). As a
test of whether this result could be explained by cochlear pro-
cessing, we repeated this experiment on networks with learnable
first-layer filters (as in Fig. 4) and found that networks optimized
specifically for music still produced lower absolute thresholds
(Supplementary Fig. 9). This result likely reflects the greater
similarity of the synthetic test tones (standardly used to assess
pitch perception) to instrument notes compared to speech
excerpts, the latter of which are less perfectly periodic over the
stimulus duration.

Training set noise required for “missing fundamental” illusion.
One of the core challenges of hearing is the ubiquity of background
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noise. To investigate how pitch behavior may have been shaped by
the need to hear in noise, we varied the level of the background
noise in our training set. Networks trained in noisy environments
(Fig. 8, left) resembled humans in accurately inferring F0 even when
the F0 was not physically present in the stimuli (thresholds for
stimuli with lowest harmonic number between 2 and 5 were all
under 1%). This “missing fundamental illusion” was progressively
weakened in networks trained in higher SNRs (Fig. 8, center and
right), with discrimination thresholds sharply elevated when the
lowest harmonic number exceeded two (F(2,27)= 6.79, p < 0.01,
η2partial ¼ 0:33; main effect of training condition when comparing
thresholds for lowest harmonic numbers between 2 and 5).

Networks trained in noiseless environments also deviated
from human behavior when tested on alternating-phase (Fig. 8b,
row 2) and frequency-shifted complexes (Fig. 8b, row 3),
apparently ignoring high-numbered harmonics (correlations
with human results were lower in both experiments;
t(18)= 9.08, p < 0.001, d= 4.06 and t(18)= 4.41, p < 0.001,
d= 1.97, comparing high vs. no training noise). Conversely,
discrimination thresholds for pure tones (Fig. 8b, row 5)
remained good (below 1%), as though the networks learned to
focus primarily on the first harmonic. Collectively, these results
suggest the ability to extract F0 information from high-
numbered harmonics in part reflects an adaptation for hearing
in noise.

Network neurophysiology. Although our primary focus in this
paper was to use DNNs to understand behavior in normative
terms, we also examined whether the internal representations of
our model might exhibit established neural phenomena.

We simulated electrophysiology experiments on our best-
performing network architecture by measuring time-averaged
model unit activations to pure and complex tones varying in
harmonic composition (Fig. 9a). F0 tuning curves of units in
different network layers (Fig. 9b) illustrate a transition from
frequency-tuned units in the first layer (relu_0, where units
responded whenever a harmonic of a complex tone aligned with
their pure tone tuning) to complex tuning in intermediate layers
(relu_2, relu_4, and fc_int) to unambiguous F0 tuning in the final
layer (fc_top), where units responded selectively to specific F0s
across different harmonic compositions. These latter units thus
resemble pitch-selective neurons identified in primate auditory
cortex28 in which tuning to the F0 of missing-fundamental
complexes aligns with pure tone tuning.

We quantified the F0 tuning of individual units by measuring the
correlation between pure tone and complex tone tuning curves.
High correlations between tuning curves indicate F0 tuning
invariant to harmonic composition. In each of the ten best-
performing networks, units became progressively more F0-tuned
deeper into the network (Fig. 9c, right, solid symbols). Critically,
this result depended on the harmonicity of the tones. When we

Trained on filtered
speech and music

Trained on
synthetic tones

Trained separately on
speech and music

Was the reported F0 for 
tone 1 or tone 2 higher?

b. F0 discrimination experiment (identical for all networks)

a. Average power spectrum of training stimuli

c.  Effect of training set sound statistics on network F0 discrimination behavior

Example stimuli: manipulating 
lowest harmonic number

Fig. 7 Pitch perception depends on training set sound statistics. a Average power spectrum of training stimuli under different training conditions.
Networks were trained on datasets with lowpass- and highpass-filtered versions of the primary speech and music stimuli (column 1), as well as datasets of
synthetic tones with spectral statistics either matched or anti-matched (Methods) to those of the primary dataset (column 2), and datasets containing
exclusively speech or music (column 3). Filtering indicated in column 1 was applied to the speech and music stimuli prior to their superposition on
background noise. Gray shaded regions plot the average power spectrum of the background noise that pitch-evoking sounds were embedded in for training
purposes. b Schematic of stimuli used to measure F0 discrimination thresholds as a function of lowest harmonic number. Two example trials are shown,
with two different lowest harmonic numbers. c F0 discrimination thresholds as a function of lowest harmonic number, measured from networks trained on
each dataset shown in A. Lines plot means across the ten networks; error bars indicate 95% confidence intervals bootstrapped across the ten networks.
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Trained with
high noise

(-10 to +10 dB SNR)

a. Average power spectrum of training stimuli

b. Effect of training set noise level on network pitch behavior

Trained with
low noise

(+10 to +30 dB SNR)

Trained with
no noise

Fig. 8 Key characteristics of human pitch behavior only emerge in noisy training conditions. a Average power spectrum of training stimuli. Networks
were trained on speech and music stimuli embedded in three different levels of background noise: high (column 1), low (column 2), and none (column 3).
b Effect of training set noise level on network behavior in all five main psychophysical experiments (see Fig. 2a–e): F0 discrimination as a function of
harmonic number and phase (row 1), pitch estimation of alternating-phase stimuli (row 2), pitch estimation of frequency-shifted complexes (row 3), pitch
estimation of complexes with individually mistuned harmonics (row 4), and frequency discrimination with pure and transposed tones (row 5). Lines plot
means across the ten networks; error bars indicate 95% confidence intervals bootstrapped across the ten networks.
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repeated the analysis with complex tones made inharmonic by
jittering component frequencies20 (Fig. 9c, left), network units no
longer showed F0 tuning (Fig. 9b, center) and the dependence on
network layer was eliminated (Fig. 9c, right, open symbols). In this
respect the units exhibit a signature of human F0-based pitch,
which is also disrupted by inharmonicity20,55, and of pitch-tuned
neurons in nonhuman primates56.

To compare the population tuning to that observed in the
auditory system, we also measured unit activations to harmonic
complexes as a function of the lowest harmonic in the stimulus.
The F0-tuned units in our model’s final layer responded more
strongly when stimuli contained low-numbered harmonics
(Fig. 9d, right; main effect of lowest harmonic number on mean
activation, F(1.99,17.91)= 134.69, p < 0.001, η2partial ¼ 0:94). This

d.  Population responses as a function of lowest harmonic number
Pitch-selective neurons in 

marmoset auditory cortex
Bendor & Wang, 2005

Pitch-selective voxels in 
human auditory cortex

Norman-Haignere et al., 2013

Mean response of 
all units in fc_top

Model trained on natural sounds

n=50 n=13

Model trained on natural sounds

c. Inharmonic complex tones disrupt F0 tuning

b. Emergence of F0 tuning in an example network 

a. Example stimuli and hypothetical idealized tuning curves
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result mirrors the response characteristics of pitch-selective
neurons (measured with single-unit electrophysiology) in mar-
moset auditory cortex (Fig. 9d, left)28 and pitch-selective voxels
(measured with fMRI) in human auditory cortex (Fig. 9d,
center)29.

Discussion
We developed a model of pitch perception by optimizing artificial
neural networks to estimate the fundamental frequency of their
acoustic input. The networks were trained on simulated auditory
nerve representations of speech and music embedded in back-
ground noise. The best-performing networks closely replicated
human pitch judgments in simulated psychophysical experiments
despite never being trained on the psychophysical stimuli. To
investigate which aspects of the auditory periphery and acoustical
environment contribute to human-like pitch behavior, we opti-
mized networks with altered cochleae and sound statistics. Low-
ering the upper limit of phase locking in the auditory nerve
yielded models with behavior unlike that of humans: F0 dis-
crimination was substantially worse than in humans and had a
distinct dependence on stimulus characteristics. Model behavior
was substantially less sensitive to changes in cochlear frequency
tuning. However, the results were also strongly dependent on the
sound statistics the model was optimized for. Optimizing for
stimuli with unnatural spectra, or without concurrent back-
ground noise yielded behavior qualitatively different from that of
humans. The results suggest that the characteristics of human
pitch perception reflect the demands of estimating the funda-
mental frequency of natural sounds, in natural conditions, given a
human cochlea.

Our model innovates on prior work in pitch perception in two
main respects. First, the model was optimized to achieve accurate
pitch estimation in realistic conditions. By contrast, most pre-
vious pitch models have instantiated particular mechanistic or
algorithmic hypotheses25,33–40. Our model’s initial stages incor-
porated detailed simulations of the auditory nerve, but the rest of
the model was free to implement any of a wide set of strategies
that optimized performance. Optimization enabled us to test
normative explanations of pitch perception that have previously
been neglected. Second, the model achieved reasonable quanti-
tative matches to human pitch behavior. This match to behavior
allowed strong tests of the role of different elements of peripheral

coding in the auditory nerve. Prior work attempted to derive
optimal decoders of frequency from the auditory nerve9,49, but
was unable to assess pitch perception (i.e., F0 estimation) due to
the added complexity of this task.

Both of these innovations were enabled by contemporary
“deep” neural networks. For our purposes, DNNs instantiate
general-purpose functions that can be optimized to perform a
training task. They learn to use task-relevant information present
in the sensory input, and avoid the need for hand-designed
methods to extract such information. This generality is important
for achieving good performance on real-world tasks. Hand-
designed models, or simpler model classes, would likely not
provide human-level performance. For instance, we found that
very shallow networks both produced worse overall performance,
and a poorer match to human behavior (Supplementary Fig. 3).

Although mechanistic explanations of pitch perception are
widely discussed33–38,40, there have been few attempts to explain
pitch in normative terms. But like other aspects of perception,
pitch is plausibly the outcome of an optimization process (rea-
lized through some combination of evolution and development)
that produces good performance under natural conditions. We
found evidence that these natural conditions have a large influ-
ence on the nature of pitch perception, in that human-like
behavior emerged only in models optimized for naturalistic
sounds heard in naturalistic conditions (with background noise).

In particular, the demands of extracting the F0 of natural
sounds appear to explain one of the signature characteristics of
human pitch perception: the dependence on low-numbered
harmonics. This characteristic has traditionally been proposed to
reflect limitations of cochlear filtering, with filter bandwidths
determining the frequencies that can be resolved in a harmonic
sound22,43,48,52. However, we found that the dependence on
harmonic number could be fully reversed for sufficiently unna-
tural sound training sets (Fig. 7c). Moreover, the dependence was
stable across changes in cochlear filter bandwidths (Fig. 6c).
These results suggest that pitch characteristics primarily reflect
the constraints of natural sound statistics (specifically, lowpass
power spectra) coupled with the high temporal fidelity of the
auditory nerve. In the language of machine learning, dis-
crimination thresholds appear to partly be a function of the
match between the test stimuli and the training set (i.e., the
sensory signals a perceptual system was optimized for). Our

Fig. 9 Network neurophysiology. Network activations were measured in response to pure tones and complex tones with four different harmonic
compositions. a Left: Power spectra for stimuli with 200 Hz F0. Center: expected F0 tuning curves for an idealized frequency-tuned unit. The tuning curves
are color-matched to the corresponding stimulus (e.g., black for pure tones and red for harmonics 6–14). A frequency-tuned unit should respond to pure
tones near its preferred frequency (414 Hz) or to complex tones containing harmonics near its preferred frequency (e.g., when F0= 212, 138, 103.5, or
82.8 Hz, i.e., 414/2, 414/3, or 414/4 Hz). Right: expected F0 tuning curves for an idealized F0-tuned unit. An F0-tuned unit should produce tuning curves
that are robust to harmonic composition. The strength of a unit’s F0 tuning can thus be quantified as the mean correlation between the pure tone
(frequency) tuning curve and each of the complex tone tuning curves. b F0 tuning curves measured from five representative units in each of five network
layers. Units in the first layer (relu_0) seem to exhibit frequency tuning. Units in the last layer (fc_top) exhibit F0 tuning. c Left: Nominal F0 tuning curves
were measured for complex tones made inharmonic by jittering component frequencies. Center: Such curves are shown for one example unit in the
network’s last layer. Unlike for harmonic tones, the tuning curves for tones with different frequency compositions do not align. Right: The overall F0 tuning
of a network layer was computed by averaging the F0 tuning strength across all units in the layer. A unit’s F0 tuning strength was quantified as the mean
correlation between the pure tone (frequency) tuning curve and each of the complex tone tuning curves. For each of our ten best network architectures,
overall F0 tuning (computed separately using either harmonic or inharmonic complex tones) is plotted as a function of network layer. Network units
become progressively more F0-tuned deeper into the networks, but only for harmonic tones. d Left: Population responses of pitch-selective units in
marmoset auditory cortex, human auditory cortex, and our model’s output layer, plotted as a function of lowest harmonic number. Marmoset single-unit
recordings were made from three animals and error bars indicate SEM across 50 neurons (re-plotted from28). Center: Human fMRI responses to harmonic
tones, as a function of their lowest harmonic number. Data were collected from 13 participants and error bars indicate within-subject SEM (re-plotted
from29). Responses were measured from a functional region of interest defined by a contrast between harmonic tones and frequency-matched noise.
Responses were measured in independent data (to avoid double dipping). Right: Network unit activations to harmonic tones as a function of lowest
harmonic number. Activations were averaged across all units in the final fully connected layer of our ten best network architectures (error bars indicate
95% confidence intervals bootstrapped across the ten best network architectures).
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results suggest that this match is critical to explaining many of the
well-known features of pitch perception.

A second influence of the natural environment was evident
when we eliminated background noise from the training set
(Fig. 8). Networks trained without background noise did not
extract F0 information from high-numbered harmonics, relying
entirely on the lowest-numbered harmonics. Such a strategy
evidently works well for idealized environments (where the lowest
harmonics are never masked by noise), but not for realistic
environments containing noise, and diverges from the strategy
employed by human listeners. This result suggests that pitch is
also in part a consequence of needing to hear in noise, and is
consistent with evidence that human pitch perception is highly
noise-robust57. Together, these two results suggest that explana-
tions of pitch perception cannot be separated from the natural
environment.

The approach we propose here contrasts with prior work that
derived optimal strategies for psychophysical tasks on synthetic
stimuli9,49,58,59. Although human listeners often improve on such
tasks with practice, there is not much reason to expect humans to
approach optimal behavior for arbitrary tasks and stimuli
(because these do not drive natural selection, or learning during
development). By contrast, it is plausible that humans are near-
optimal for important tasks in the natural environment, and that
the consequences of this optimization will be evident in patterns
of psychophysical performance, as we found here.

Debates over pitch mechanisms have historically been couched
in terms of the two axes of the cochlear representation: place and
time. Place models analyze the signature of harmonic frequency
spectra in the excitation pattern along the length of the
cochlea34,35, whereas temporal models quantify signatures of
periodicity in temporal patterns of spikes33,37. Our model makes
no distinction between place and time per se, using whatever
information in the cochlear representation is useful for the
training task. However, we were able to assess its dependence on
peripheral resolution in place and time by altering the simulated
cochlea. These manipulations provided evidence that fine-grained
peripheral timing is critical for normal pitch perception (Fig. 5c,
e), and that fine-grained place-based frequency tuning is less so
(Fig. 6). Some degree of cochlear frequency selectivity is likely
critical to enabling phase locking to low-numbered harmonics,
but such effects evidently do not depend sensitively on tuning
bandwidth. These conclusions were enabled by combining a
realistic model of the auditory periphery with task-optimized
neural networks.

Our model is consistent with most available pitch perception
data, but it is not perfect. For instance, the inflection point in the
graph of Fig. 2a occurs at a somewhat lower harmonic number in
the model than in humans. Given the evidence presented here
that pitch perception reflects the stimulus statistics a system is
optimized for, some discrepancies might be expected from the
training set, which (due to the limitations of available corpora)
consisted entirely of speech and musical instrument sounds, and
omitted other types of natural sounds that are periodic in time.
The range of F0s we trained on was similarly limited by available
audio datasets, and prevents us from making predictions about
the perception of very high frequencies60. The uniform dis-
tributions over sound level and SNR in our training dataset were
also not matched in a principled way to the natural world. Dis-
crepancies may also reflect shortcomings of our F0 estimation
task (which used only 50 ms clips) or peripheral model, which
although state-of-the-art and relatively well validated, is imperfect
(e.g., peripheral representations consisted of firing rates rather
than spikes).

We note that the ear itself is the product of evolution and thus
likely itself reflects properties of the natural environment61. We

chose to train models on a fixed representation of the ear in part
to address longstanding debates over the role of established fea-
tures of peripheral neural coding on pitch perception. We view
this approach as sensible on the grounds that the evolution of the
cochlea was plausibly influenced by many different natural
behaviors, such that it is more appropriately treated as a con-
straint on a model of pitch rather than a model stage to be
derived along with the rest of the model. Consistent with this
view, when we replaced the fixed peripheral model with a set of
learnable filters operating directly on sound waveforms, networks
exhibited less human-like pitch behavior (Fig. 4). This result
suggests it could be fruitful to incorporate additional stages of
peripheral physiology, which might similarly provide constraints
on pitch perception.

Our model shares many of the commonly-noted limitations of
DNNs as models of the brain62,63. Our optimization procedure is
not a model of biological learning and/or evolution, but rather
provides a way to obtain a system that is optimized for the
training conditions given a particular peripheral representation of
sound. Biological organisms are almost certainly not learning to
estimate F0 from thousands of explicitly labeled examples, and in
the case of pitch may leverage their vocal ability to produce
harmonic stimuli to hone their perceptual mechanisms. These
differences could cause the behavior of biological systems to
deviate from optimized neural networks in some ways.

The neural network architectures we used here are also far
from fully consistent with biology, being only a coarse approx-
imation to neural networks in the brain. Although similarities
have been documented between trained neural network repre-
sentations and brain representations16,18, and although we saw
some such similarities ourselves in the network’s activations (Fig.
9c), the inconsistencies with biology could lead to behavioral
differences compared to humans.

And although our approach is inspired by classical ideal
observer models, the model class and optimization methods likely
bias the solutions to some extent, and are not provably optimal
like classic ideal observer models. Nonetheless, the relatively good
match to available data suggests that the optimization is suffi-
ciently successful as to be useful for our purposes.

The model developed here performs a single task—that of
estimating the F0 of a short sound. Human pitch behavior is often
substantially more complex, in part because information is con-
veyed by how the F0 changes over time, as in prosody64 or
melody65. In some cases relative pitch involves comparisons of
the spectrum rather than the F020,55 and/or can be biased by
changes in the timbre of a sound66, for reasons that are not well
understood. The framework used here could help to develop
normative understanding of such effects, by incorporating more
complicated tasks (e.g., involving speech or music) and then
characterizing the pitch-related behavior that results. DNNs that
perform more complex pitch tasks might also exhibit multiple
stages of pitch representations that could provide insight into
putative hierarchical stages of auditory cortex18,27,67.

The approach we used here has natural extensions to under-
standing other aspects of hearing68, in which similar questions
about the roles of peripheral cues have remained unresolved. Our
methods could also be extended to investigate hearing impair-
ment, which can be simulated with alterations to standard models
of the cochlea69 and which often entails particular types of deficits
in pitch perception51. Prostheses such as cochlear implants are
another natural application of task-optimized modeling. Current
implants restore some aspects of hearing relatively well, but pitch
perception is not one of them70. Models optimized with different
types of simulated electrical stimulation could clarify the patterns
of behavior to expect. Models trained with either acoustically- or
electrically-stimulated peripheral auditory representations (or
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combinations thereof) and then tested with electrically-stimulated
input could yield insights into the variable outcomes of pediatric
cochlear implantation. Similar approaches could be applied to
study acclimatization to hearing aids in adults.

There is also growing evidence for species differences in pitch
perception71,72. Our approach could be used to relate species
differences in perception to species differences in the cochlea73 or
to differences in the acoustic environment and/or tasks a species
may be optimized for. While our results suggest that differences
in cochlear filters alone are unlikely to explain differences in pitch
perception abilities across species, they leave open the possibility
that human pitch abilities reflect the demands of speech and
music, which plausibly require humans to be more sensitive to
small F0 differences than other species. This issue could be
clarified by optimizing network representations for different
auditory tasks.

More generally, the results here illustrate how supervised
machine learning enables normative analysis in domains where
traditional ideal observers are intractable, an approach that is
broadly applicable outside of pitch and audition.

Methods
Natural sounds training dataset—overview. The main training set consisted of
50 ms excerpts of speech and musical instruments. This duration was chosen to
enable accurate pitch perception in human listeners74, but to be short enough that
the F0 would be relatively stable even in natural sounds such as speech that have
time-varying F0s. The F0 label for a training example was estimated from a “clean”
speech or music excerpt. These excerpts were then superimposed on natural
background noise. Overall stimulus presentation levels were drawn uniformly
between 30 dB SPL and 90 dB SPL. All training stimuli were sampled at 32 kHz.

Speech and music training excerpts. We used STRAIGHT75 to compute time-
varying F0 and periodicity traces for sounds in several large corpora of recorded
speech and instrumental music: Spoken Wikipedia Corpora (SWC)76, Wall Street
Journal (WSJ), CMU Kids Corpus, CSLU Kids Speech, NSynth77, and RWC Music
Database. STRAIGHT provides accurate estimates of the F0 provided the back-
ground noise is low, as it was in each of the corpora. Musical instrument recordings
were notes from the chromatic scale, and thus were spaced roughly in semitones.
To ensure that sounds would span a continuous range of F0s, we randomly pitch-
shifted each instrumental music recording by a small amount (up to ±3% F0, via
resampling).

Source libraries were constructed for each corpus by extracting all highly
periodic (time-averaged periodicity level > 0.8) and non-overlapping 50ms
segments from each recording. We then generated our natural sounds training
dataset by sampling segments with replacement from these source libraries to
uniformly populate 700 log-spaced F0 bins between 80 Hz and 1000 Hz (bin
width= 1/16 semitones= 0.36% F0). Segments were assigned to bins according to
their time-averaged F0. The resulting training dataset consisted of 3000 exemplars
per F0 bin for a total of 2.1 million exemplars. The relative contribution of each
corpus to the final dataset was constrained both by the number of segments per F0
bin available in each source library (the higher the F0, the harder it is to find speech
clips) and the goal of using audio from many different speakers, instruments, and
corpora. The composition we settled on is:

● F0 bins between 80 Hz and 320 Hz

50% instrumental music (1000 NSynth and 500 RWC clips per bin)
50% adult speech (1000 SWC and 500 WSJ clips per bin)

● F0 bins between 320 Hz and 450 Hz

50% instrumental music (1000 NSynth and 500 RWC clips per bin)
50% child speech (750 CSLU and 750 CMU clips per bin)

● F0 bins between 450 Hz and 1000 Hz

100% instrumental music (2500 NSynth and 500 RWC clips per bin)

Background noise for training data. To make the F0 estimation task more dif-
ficult and to simulate naturalistic listening conditions, each speech or instrument
excerpt in the training dataset was embedded in natural background noise. The
signal-to-noise ratio for each training example was drawn uniformly between
−10 dB and +10 dB. Noise source clips were taken from a subset of the AudioSet
corpus78, screened to remove nonstationary sounds (e.g., speech or music). The

screening procedure involved measuring auditory texture statistics (envelope
means, correlations, and modulation power in and across cochlear frequency
channels)79 from all recordings, and discarding segments over which these statistics
were not stable in time, as in previous studies80. To ensure the F0 estimation task
remained well defined for the noisy stimuli, background noise clips were also
screened for periodicity by computing their autocorrelation functions. Noise clips
with peaks greater than 0.8 at lags greater than 1 ms in their normalized auto-
correlation function were excluded.

Peripheral auditory model. The Bruce et al. (2018) auditory nerve model was used
to simulate the peripheral auditory representation of every stimulus. This model
was chosen because it captures many of the complex response properties of
auditory nerve fibers and has been extensively validated against electro-
physiological data from cats42,69. Stages of peripheral signal processing in the
model include: a fixed middle-ear filter, a nonlinear cochlear filter bank to simulate
level-dependent frequency tuning of the basilar membrane, inner and outer hair
cell transduction functions, and a synaptic vesicle release/re-docking model of the
synapse between inner hair cells and auditory nerve fibers. Although the model’s
responses have only been directly compared to recordings made in nonhuman
animals, some model parameters have been inferred for humans (such as the
bandwidths of cochlear filters) on the basis of behavioral and otoacoustic
measurements53.

Because the majority of auditory nerve fibers, especially those linked to
feedforward projections to higher auditory centers, have high spontaneous firing
rates81,82, we used exclusively high spontaneous rate fibers (70 spikes/s) as the
input to our model. To control for the possibility that spontaneous auditory nerve
fiber activity could influence pitch behavior (for instance, at conversational speech
levels, firing rates of high spontaneous rate fibers are typically saturated, which may
degrade excitation pattern cues to F0), we additionally trained and tested the ten
best-performing networks from the architecture search using exclusively low
spontaneous rate fibers (0.1 spikes/s). The average results for these networks are
shown in Supplementary Fig. 10. We found that psychophysical behavior was
qualitatively unaffected by nerve fiber spontaneous rate. These results suggested to
us that high spontaneous rate fibers were sufficient to yield human-like pitch
behavior, so we exclusively used high spontaneous rate fibers in all other
experiments.

In most cases, the input to the neural network models consisted of the
instantaneous firing rate responses of 100 auditory nerve fibers with characteristic
frequencies spaced uniformly on an ERB-number scale83 between 125 Hz and
14,000 Hz. Firing rates were used to approximate the information that would be
available in a moderate group of spiking nerve fibers receiving input from the same
inner hair cell. The use of 100 frequency channels primarily reflects computational
constraints (CPU time for simulating peripheral representations, storage costs, and
GPU memory for training), but we note that this number is similar to that used in
other auditory models with cochlear front-ends84. We confirmed that increasing
the number of channels by a factor of ten had little effect on the behavioral results
from our main natural sound training condition (Supplementary Figs. 4 and 5),
and given that 100 channels were sufficient to obtain model thresholds on par with
those of humans, it appears that there is little benefit to additional channels for the
task we studied.

To prevent the stimuli being dominated by sound onset/offset effects, each
stimulus was padded with 100 ms of the original waveform before being passed
through the nerve model. The resulting 150 ms auditory nerve responses were
resampled to 20 kHz. The middle 50 ms was then excerpted, leaving a 100-fiber by
1000-timestep array of instantaneous firing rates that constituted the input to the
neural networks.

Deep neural network models—overview. The 100-by-1000 simulated auditory
nerve representations were passed into deep convolutional neural networks, each
consisting of a series of feedforward layers. These layers were hierarchically
organized and instantiated one of a number of simple operations: linear con-
volution, pointwise nonlinear rectification, weighted average pooling, batch nor-
malization, linear transformation, dropout regularization, and softmax
classification.

The last layer of each network performed F0 classification. We opted to use
classification with narrow F0 bins rather than regression in order to soften the
assumption that output F0 distributions for a stimulus should be unimodal. For
example, an octave error would incur a very large penalty under standard
regression loss functions (e.g., L1 or L2), which measure the distance between the
predicted and target F0. Classification loss functions, such as the softmax cross-
entropy used here, penalize all misclassifications equally. In preliminary work, we
found classification networks were empirically easier to train than regression
networks and yielded smaller median F0 errors.

The precision of the network’s F0 estimate is limited by the bin width of the
output layer (and by the precision of the training set labels). We chose a bin width
of 1/16 semitones (0.36%). We found empirically that the median F0 estimation
error increased for bins wider than this value, and did not improve for narrower
bins (Supplementary Fig. 11A). This performance asymptote could reflect the limits
of the F0 labels the network was trained on. As it happened, with this bin width of
1/16 of a semitone it was possible to attain discrimination thresholds for synthetic
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tones that were on par with the best thresholds typically measured in human
listeners (~0.1–0.4%)43,48 for some model architectures and auditory nerve settings.
Discrimination thresholds were worse for wider classification bins (Supplementary
Fig. 11B). We otherwise observed no qualitative change in the pattern of
psychophysical results as the bin width was changed. The bin width might thus be
considered analogous to decision noise that is sometimes added to models to match
human performance (though our choice of bin width appears near-optimal for the
dataset we worked with). We note that discrimination thresholds for synthetic
tones were also plausibly limited by the similarity of the tones to the training data.

Definitions of constituent neural network operations
Convolutional layer. A convolutional layer implements the convolution of a bank of
Nk two-dimensional linear filter kernels with an input X. Convolution performs the
same operation at each point in the input, which for the 2D auditory nerve
representations we used entails convolving in both time and frequency. Con-
volution in time is a natural choice for models of sensory systems as their input has
translation-invariant temporal statistics. Because translation invariance does not
hold for the frequency dimension, convolution in frequency is less obviously a
natural model constraint. However, many types of sound signals are well described
by approximate translation invariance in local neighborhoods of the frequency
domain, and classical auditory models can often be described as imposing con-
volution in frequency84,85. Moreover, imposing convolution greatly reduces the
number of parameters to be learned. We have empirically found that auditory
neural network models often train more readily when convolution in frequency is
imposed, suggesting that it is a useful form of model regularization.

The input is a three-dimensional array with shape ½Mf ;Mt; ;Mk�. For the first
convolutional layer in our networks, the input shape was ½100; 1000; 1�,
corresponding to 100 frequency bins (nerve fibers), 1000 timesteps, and a
placeholder 1 in the filter kernel dimension.

A convolutional layer is defined by five parameters:

1. h: height of the convolutional filter kernels (number of filter taps in the
frequency dimension)

2. w: width of the convolutional filter kernels (number of filter taps in the time
dimension)

3. Nk : number of different convolutional filter kernels
4. W: Trainable weights for each of the Nk filter kernels; W has shape

½h;w;Mk;Nk�
5. B : Trainable bias vector with shape ½Nk�
The output of the convolutional layer Y has shape ½Nf ;Nt ;Nk� and is given by:

Y ½nf ; nt ; nk� ¼ B nk
� �þ ∑

h;w;Mk

i¼1;j¼1;mk¼1
W i; j;mknk
� �� X½nf þ i� h=2

� �
; nt þ j� w=2

� �
;mk�

where � denotes pointwise multiplication and �=�� �
denotes integer division.

Convolutional layers all used a stride of 1 (i.e., non-strided convolution) and
“valid” padding, meaning filters were only applied at positions where every element
of the kernel overlapped the input. Due to this boundary handling, the frequency
and time dimensions of the output were smaller than those of the input: Nf ¼
Mf � hþ 1 and Nt ¼ Mt � wþ 1.

Pointwise nonlinear rectification. To learn a nonlinear function, a neural network
must contain nonlinear operations. We incorporate nonlinearity via the rectified
linear unit (ReLU) activation function, which is applied pointwise to every element
x in some input X:

ReLU xð Þ ¼ x x > 0

0 x ≤ 0

�

Weighted average pooling. Pooling operations reduce the dimensionality of inputs
by aggregating information across adjacent frequency and time bins. To reduce
aliasing in our networks (which would otherwise occur from downsampling
without first lowpass-filtering), we used weighted average pooling with Hanning
windows62. This pooling operation was implemented as the strided convolution of
a two-dimensional (frequency-by-time) Hanning filter kernel H with an input X:

Y ¼ H�sf ;st X
where � denotes convolution and sf and st indicate the stride length in frequency
and time, respectively. The Hanning window H had a stride-dependent shape
½hf ; ht �, where

hf ¼
1 sf ¼ 1

4 � sf sf > 1

(

and ht ¼
1 st ¼ 1

4 � st st > 1

�

For an input X with shape Nf ;Nt ;Nk

h i
, the shape of the output Y is

½Nf =sf ;Nt=st ;Nk�. Note that when either sf or st is set to 1, there is no pooling
along the corresponding dimension.

Batch normalization. Batch normalization is an operation that normalizes its inputs
in a pointwise manner using running statistics computed from every batch of
training data. Normalizing activations between layers greatly improves DNN

training efficiency by reducing the risk of exploding and vanishing gradients: small
changes to network parameters in one layer are less likely to be amplified in
successive layers if they are separately normalized. For every batch of inputs B
during training, the pointwise batch mean (μB) and batch variance (σ2B) are
computed and then used to normalize each input Xb 2 B:

Xb;normalized ¼ γ
Xb � μBffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2B þ ϵ

p

 !

þ β

where all operations are applied pointwise, ϵ ¼ 0:001 to prevent division by zero,
and γ and β are learnable scale and offset parameters. Throughout training, single-
batch statistics are used to update the running mean (μtotal) and variance (σ2total).
During evaluation mode, Xb;normalized is computed using μtotal and σ2total in place of
μB and σ2B .

Fully connected layer. A fully connected (or dense) layer applies a linear trans-
formation to its input without any notion of localized frequency or time. An
input X with shape ½Nf ;Nt ;Nk�, is first reshaped to a vector Xflat with shape
½Nf � Nt � Nk�. Then, Xflat is linearly transformed to give an output Y with shape
½Nout �:

Yout nout
� � ¼ B nout

� �þ ∑
Nf �Nt �Nch

nin¼1
W nout ; nin
� ��Xflat ½nin�

where B is a bias vector with shape ½Nout � and W is a weight matrix with shape
½Nout ;Nin�. The values of B and W are learned during the optimization procedure.

Dropout regularization. The dropout operation receives as input a vector X with
shape ½Nin� and randomly selects a fraction (r) of its values to set to zero. The
remaining values are scaled by 1=ð1� rÞ, so that the expected sum over all outputs
is equal to the expected sum over all inputs. The r � Nin positions in X that get set
to zero are chosen at random for every new batch of data. Dropout is commonly
used to reduce overfitting in artificial neural networks. It can be thought of as a
form of model averaging across the exponentially many sub-networks generated by
zeroing-out different combinations of units. All of our networks contained exactly
one dropout operation immediately preceding the final fully connected layer. We
used a dropout rate of 50% during both training and evaluation.

Softmax classifier. The final operation of every network is a softmax activation
function, which receives as input a vector X of length Nclasses (equal to the number
of output classes; 700 in our case). The input vector is passed through a normalized
exponential function to produce a vector Y of the same length:

Y nout
� � ¼ expðX nout

� �Þ
∑Nclasses

nclasses¼1 exp X nclasses
� �� 	

The values of the output vector are all greater than zero and sum to one. Y can
be interpreted as a probability distribution over F0 classes for the given
input sound.

Model optimization—architecture search. All of our DNN architectures had the
general form of one to eight convolutional layers plus one to two fully connected
layers. Each convolutional layer was always immediately followed by three suc-
cessive operations: ReLU activation function, weighed average pooling, and batch
normalization. Fully connected layers were always situated at the end of the net-
work, after the last convolution-ReLU-pooling-normalization block. The final fully
connected layer was always immediately followed by the softmax classifier. For
architectures with two fully connected layers, the first fully connected layer was
followed by a ReLU activation function and a batch normalization operation. In
our analyses, we sometimes grouped networks by their number of convolutional
layers (e.g., single vs. multi-convolutional-layer networks; Supplementary Fig. 3)
regardless of the number of fully connected layers. When we refer to network
“activations” in a given convolutional layer (Fig. 9), we always mean the outputs of
the ReLU activation function immediately following that convolutional layer.

Within the family of models considered, we generated 400 distinct DNN
architectures by randomly sampling from a large space of hyperparameters. The
number of convolutional layers was first uniformly drawn from 1 to 8. Within each
layer, the number and dimensions of convolutional filter kernels were then
sampled based on the size of the layer’s input. The number of filter kernels in the
first layer was 16, 32, or 64 (each sampled with probability= 1/3). The number of
kernels in each successive layer could increase by a factor of 2 (probability= 1/2),
stay the same (probability= 1/3), or decrease by a factor of 2 (probability= 1/6)
relative to the previous layer. Frequency dimensions of the filter kernels were
integers sampled uniformly between 1 and Nf =2, where Nf is the frequency
dimension of the layer’s input. Time dimensions of the filter kernels were integers
sampled uniformly between Nt=20 and Nt=2, where Nt is the time dimension of
the layer’s input. These sampling ranges tended to produce rectangular filters
(longer in the time dimension than the frequency dimension), especially in the
early layers. We felt this was a reasonable design choice given the rectangular
dimensions of the input (100-by-1000, frequency-by-time). To limit the memory
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footprint of the generated DNNs, we imposed 16 and 1024 as lower and upper
bounds on the number of kernels in a single layer and capped the frequency ´ time
area of convolutional filter kernels at 256.

The stride lengths for the weighted average pooling operations after each
convolutional layer were also sampled from distributions. Pooling stride lengths
were drawn uniformly between 1 and 4 for the frequency dimension and 1 and 8
for the time dimension. The existence (probability= 1/2) and size (128, 256, 512,
or 1024 units) of a penultimate fully connected layer were also randomly sampled.
The final fully connected layer always contained 700 units to support classification
into the 700 F0 bins.

Model optimization—network training. All 400 network architectures were
trained to classify F0 of our natural sounds dataset via stochastic gradient descent
with gradients computed via back-propagation. We used a batch size of 64 and the
ADAM optimizer with a learning rate of 0.0001. Network weights were trained
using 80% of the dataset, and the remaining 20% was held-out as a validation set.
Performance on the validation set was measured every 5000 training steps and, to
reduce overfitting, training was stopped once classification accuracy stopped
increasing by at least 0.5% every 5000 training steps. Training was also stopped for
networks that failed to achieve 5% classification accuracy after 10,000 training
steps. Each network was able to reach these early-stopping criteria in less than 48 h
when trained on a single NVIDIA Tesla V100 GPU.

To ensure conclusions were not based on the idiosyncrasies of any single DNN
architecture, we selected the ten architectures that produced the highest validation
set accuracies to use as our model experimental “participants” (collectively referred
to as “the model”). We re-trained all ten architectures for each manipulation of the
peripheral auditory model (Figs. 4–6) and the training set sound statistics (Figs. 7
and 8). The ten different network architectures are described in Supplementary
Table 1.

Network psychophysics—overview. To investigate network pitch behavior, we
simulated a set of classic psychophysical experiments on all trained networks. The
general procedure was to (1) pass each experimental stimulus through a network,
(2) compute F0 discrimination thresholds or shifts in the “perceived” F0
(depending on the experiment) from network predictions, and (3) compare net-
work results to published data from human listeners tested on the same stimulus
manipulations. We selected five psychophysical experiments. These experiments
are denoted A through E in the following sections to align with Fig. 2 (which
contains schematics of the stimulus manipulations in each experiment). We
attempted to reproduce stimuli from these studies as closely as possible, though
some modifications were necessary (e.g., all stimuli were truncated to 50 ms to
accommodate the input length for the networks). Because the cost of running
experiments on networks is negligible, networks were tested on many more (by 1–3
orders of magnitude) stimuli than were human participants. Human data from the
original studies was obtained either directly from the original authors (Experiments
A, B) or by extracting data points from published figures (Experiments C–E) using
Engauge Digitizer (http://markummitchell.github.io/engauge-digitizer). In most
cases, individual subject data was not available (the original studies were performed
17–36 years prior to this work), so we report only across-subject means and do not
include error bars for human data.

Experiment A: effect of harmonic number and phase on pitch discrimination.
Experiment A reproduced the stimulus manipulation of Bernstein and Oxenham
(2005) to measure F0 discrimination thresholds as a function of lowest harmonic
number and phase.

Stimuli. Stimuli were harmonic complex tones, bandpass-filtered and embedded in
masking noise to control the lowest audible harmonic, and whose harmonics were
in sine or random phase. In the original study, the bandpass filter was kept fixed
while the F0 was roved to set the lowest harmonic number. Here, to measure
thresholds at many combinations of F0 and lowest harmonic number, we roved
both the F0 and the location of the filter. We took the 4th-order Butterworth filter
(2500–3500 Hz −3 dB passband) described in the original study and translated its
frequency response along the frequency axis to set the lowest audible harmonic for
a given stimulus. Before filtering, the level of each individual harmonic was set to
48.3 dB SPL, which corresponds to 15 dB above the masked thresholds of the
original study’s normal-hearing participants. After filtering, harmonic tones were
embedded in modified uniform masking noise48, which has a spectrum that is flat
(15 dB/Hz SPL) below 600 Hz and rolls off at 2 dB/octave above 600 Hz. This noise
was designed to ensure that only harmonics within the filter’s −15 dB passband
were audible.

Human experiment. The human F0 discrimination thresholds (previously pub-
lished by Bernstein and Oxenham) were measured from five normal-hearing
participants (three female) between the ages of 18 and 21 years old, all self-
described amateur musicians with at least 5 years of experience25. Each participant
completed four adaptive tracks per condition (where a condition had a particular
lowest harmonic number and either random or sine phase). Bernstein and
Oxenham (2005) reported very similar F0 discrimination thresholds for two

different spectral conditions (“low spectrum” with 2500–3500 Hz filter passband
and “high spectrum” with 5000–7000 Hz filter passband). To simplify presentation
and because our network experiment measured average thresholds across a wide
range of bandpass filter positions, here we report their human data averaged across
spectral condition.

Model experiment. The F0 discrimination experiment we ran on each network had
600 conditions corresponding to all combinations of two harmonic phases (sine or
random), 30 lowest harmonic numbers (nlow ¼ 1; 2; 3¼ 30), and ten reference F0s
(F0;ref ) spaced uniformly on a logarithmic scale between 100 and 300 Hz. Within
each condition, each network was evaluated on 121 stimuli with slightly different
F0s (within ±6% of F0;ref ) but the same bandpass filter. The filter was positioned
such that the low-frequency cutoff of its −15 dB passband was equal to the fre-
quency of the lowest harmonic for that condition and F0 (nlow ´ F0;ref ). On the
grounds that human listeners likely employ a strong prior that stimuli should have
fairly similar F0s within single trials of a pitch discrimination experiment, we
limited network F0 predictions to fall within a one-octave range (centered at F0;ref ).
We simulated a two-alternative forced choice paradigm by making all 7260 possible
pairwise comparisons between the 121 stimuli for a condition. In each trial, we
asked if the network predicted a higher F0 for the stimulus in the pair with the
higher F0 (i.e., if the network correctly identified which of two stimuli had a higher
F0). A small random noise term was used to break ties when the network predicted
the same F0 for both stimuli. We next constructed a psychometric function by
plotting the percentage of correct trials as a function of %F0 difference between two
stimuli. We then averaged psychometric functions across the ten reference F0s with
the same harmonic phase and lowest harmonic number. Network thresholds were
thus based on 1210 stimuli (72,600 pairwise F0 discriminations) per condition.
Normal cumulative distribution functions were fit to the 60 resulting psychometric
functions (2 phase conditions × 30 lowest harmonic numbers). To match human
F0 discrimination thresholds, which were measured with a 2-down-1-up adaptive
algorithm, we defined the network F0 discrimination threshold as the F0 difference
(in percent, capped at 100%) that yielded 70.7% of trials correct.

Human-model comparison. We quantified the similarity between human and
network F0 discrimination thresholds as the correlation between vectors of ana-
logous data points. The network vector contained 60 F0 discrimination thresholds,
one for each combination of phase and lowest harmonic number. To get a human
vector with 60 analogous F0 discrimination thresholds, we (a) linearly interpolated
the human data between lowest harmonic numbers and (b) assumed that F0 dis-
crimination thresholds were constant for lowest harmonic numbers between 1 and
5 (supported by other published data29,48). We then computed the Pearson cor-
relation coefficient between log-transformed vectors of human and network
thresholds.

Experiment B: pitch of alternating-phase harmonic complexes. Experiment B
reproduced the stimulus manipulation of Shackleton and Carlyon (1994) to test if
our networks exhibited pitch-doubling for alternating-phase harmonic stimuli.

Stimuli. Stimuli consisted of consecutive harmonics (each presented at 50 dB SPL)
summed together in alternating sine/cosine phase: odd-numbered harmonics in
sine phase (0° offset between frequency components) and even-numbered har-
monics in cosine phase (90° offset, such that components align at their peaks). As
in Experiment A, these harmonic tones were bandpass-filtered and embedded in
masking noise to control which harmonics were audible. The original study used
pink noise and analog filters. Here, we used modified uniform masking noise and
digital Butterworth filters (designed to approximate the original passbands). We
generated stimuli with three different 4th-order Butterworth filters specified by
their −3 dB passbands: 125–625 Hz (“low harmonics”), 1375–1875 Hz (“mid
harmonics”), and 3900–5400 Hz (“high harmonics”). The exact harmonic numbers
that are audible in each of these passbands depends on the F0. The original study
used stimuli with F0s near 62.5, 125, and 250 Hz (sometimes offset by ±4% from
the nominal F0 to avoid stereotyped responses). The 62.5 Hz condition was
excluded here because the lowest F0 our networks could report was 80 Hz. We
generated 354 stimuli with F0s near 125 Hz (120–130 Hz) and 250 Hz
(240–260 Hz), in both cases uniformly sampled on a logarithmic scale, for each
filter condition (2124 stimuli in total).

Human experiment. In the original experiment of Shackleton and Carlyon (1994),
participants adjusted the F0 of a sine-phase control tone to match the pitch of a
given alternating-phase test stimulus. The matched F0 provides a proxy for the
perceived F0 for the test stimulus. The previously published human data were
obtained from eight normal-hearing listeners who had a wide range of musical
experience. Each participant made 18 pitch matches per condition.

Model experiment. To simulate the human paradigm in our model, we simply took
the network’s F0 prediction (within a 3-octave range centered at the stimulus F0) as
the “perceived” F0 of the alternating-phase test stimulus. For each stimulus, we
computed the ratio of the predicted F0 to the stimulus F0. Histograms of these
frequency ratios (bin width= 2%) were generated for each of the six conditions (3
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filter conditions ´ 2 nominal F0s). To simplify presentation, histograms are only
shown for two conditions: “low harmonics” and “high harmonics”, both with F0s
near 125 Hz.

Human-model comparison. Shackleton and Carlyon (1994) constructed histograms
from their pitch matching data, pooling responses across participants (144 pitch
matches per histogram). We quantified the similarity between human and network
responses by measuring correlations between human and network histograms for
the same condition. Human histograms were first re-binned to have the same 2%
bin width as network histograms. Pearson correlation coefficients were computed
separately for each of the six conditions and then averaged across conditions to give
a single number quantifying human-network similarity.

Experiment C: pitch of frequency-shifted complexes. Experiment C reproduced
the stimulus manipulation of Moore and Moore (2003) to test if our networks
exhibited pitch shifts for frequency-shifted complexes.

Stimuli. Stimuli were modifications of harmonic complex tones with consecutive
harmonic frequencies in cosine phase. We imposed three different F0-dependent
spectral envelopes–as described by Moore and Moore (2003)–on the stimuli. The
first, which we termed the “low harmonics” spectral envelope, had a flat 3-
harmonic-wide passband centered at the 5th harmonic. The second (termed “mid
harmonics”) had a flat 5-harmonic-wide passband centered at the 11th harmonic.
The third (termed “high harmonics”) had a flat 5-harmonic-wide passband cen-
tered at the 16th harmonic. All three of these spectral envelopes had sloping regions
flanking the flat passband. Amplitudes (relative to the flat passband) at a given
frequency F in the sloping regions were always given by ð10x � 1Þ=9 where x ¼
1� jðF � FeÞ=1:5F0j and Fe is the edge of the flat region. The amplitude was set to
zero for x ≤ 0.

For a given F0 and (fixed) spectral envelope, we made stimuli inharmonic by
shifting every component frequency by a common offset in Hz specified as a
percentage of the F0. As a concrete example, consider a stimulus with F0= 100 Hz
and the “low harmonics” spectral envelope. This stimulus contains nonzero energy
at 200, 300, 400, 500, 600, and 700 Hz. Frequency-shifting this harmonic tone by
+8% of the F0 results in an inharmonic tone with energy at 208, 308, 408, 508, 608,
and 708 Hz. For each of the three spectral envelopes, we generated stimuli with
frequency component shifts of +0, +4, +8, +12, +16, +20, and +24 %F0. For
each combination of spectral envelope and frequency component shift, we
generated stimuli with 3917 nominal F0s spaced log-uniformly between 80 and
480 Hz (83,391 stimuli in total). These stimuli are a superset of those used in the
human experiment, which measured shifts for three F0s (100, 200, and 400 Hz) and
four component shifts (+0, +8, +16, +24 %F0). As in the original study, stimuli
were presented at overall levels of 70 dB SPL.

Human experiment. Moore and Moore (2003) used a pitch matching paradigm to
allow listeners to report the perceived F0s for frequency-shifted complex tones. Five
normal-hearing listeners (all musically trained) between the ages of 19 and 31 years
old participated in the study. Each participant made 108 pitch matches. Moore and
Moore (2003) reported quantitatively similar patterns of pitch shifts for the three
F0s tested (100, 200, and 400 Hz). To simplify presentation and because we used
many more F0s in the network experiment, here we present their human data
averaged across F0 conditions.

Model experiment. For the model experiment, we again took network F0 predic-
tions for the 83,391 frequency-shifted complexes as the “perceived” F0s. F0 pre-
dictions were restricted to a one-octave range centered at the target F0 (the F0 of
the stimulus before frequency-shifting). We summarize these values as shifts in the
predicted F0, which are given by ðF0predicted � F0target Þ=F0target . These shifts are
reported as the median across all tested F0s and plotted as a function of component
shift and spectral envelope. To simplify presentation, results are only shown for
two spectral envelopes, “low harmonics” and “high harmonics”.

Human-model comparison. We quantified the similarity between human and
network pitch shifts as the Pearson correlation coefficient between vectors of
analogous data points. The network vector contained 21 median shifts, one for each
combination of spectral envelope and component shift. To obtain a human vector
with 21 analogous pitch shifts, we linearly interpolated the human data between
component shifts.

Experiment D: pitch of complexes with individually mistuned harmonics.
Experiment D reproduced the stimulus manipulation of Moore et al. (1985) to test
if our networks exhibited pitch shifts for complexes with individually mistuned
harmonics.

Stimuli. Stimuli were modifications of harmonic complex tones containing 12
equal-amplitude harmonics (60 dB SPL per component) in sine phase. We gen-
erated such tones with F0s near 100 Hz, 200 Hz, and 400 Hz (178 F0s uniformly
spaced on a logarithmic scale within ±4% of each nominal F0). Stimuli were then

made inharmonic by shifting the frequency of a single component at a time. We
applied +0, +1, +2, +3, +4, +6, and +8 % frequency shifts to each of the
following harmonic numbers: 1, 2, 3, 4, 5, 6, and 12. In total there were 178 stimuli
in each of the 147 conditions (3 nominal F0s ´ 7 component shifts ´ 7 harmonic
numbers).

Human experiment. Moore et al. (1985) used a pitch matching paradigm in which
participants adjusted the F0 of a comparison tone to match the perceived pitch of
the complex with the mistuned harmonic. Three participants (all highly experi-
enced in psychoacoustic tasks) completed the experiment. Participants each made
ten pitch matches per condition tested. Humans were tested on 126 of the 147
conditions in the model experiment (3 nominal F0s × 7 component shifts × 6
harmonic numbers)—the conditions with a harmonic number of 12 were not
included.

Model experiment. For the model experiment, we used the procedure described for
Experiment C to measure shifts in the network’s predicted F0 for all 26,166 stimuli.
Shifts were averaged across similar F0s (within ±4% of the same nominal F0) and
reported as a function of component shift and harmonic number. To simplify
presentation, results are only shown for F0s near 200 Hz. Results were similar for
F0s near 100 and 400 Hz.

Human-model comparison. We compared the network’s pattern of pitch shifts to
those averaged across the three participants from Moore et al. (1985). Human-
model similarity was again quantified as the Pearson correlation coefficient
between vectors of analogous data points. The network vector contained 147 mean
shift values corresponding to the 147 conditions. Though Moore et al. (1985) did
not report pitch shifts for the 12th harmonic, they explicitly stated they were
unable to measure significant shifts when harmonics above the 6th were shifted.
We thus inferred pitch shifts were always equal to zero for the 12th harmonic when
compiling the vector of 147 analogous pitch shifts. We included this condition
because some networks exhibited pitch shifts for high-numbered harmonics and
we wanted our similarity metric to be sensitive to this deviation from human
behavior.

Experiment E: frequency discrimination with pure and transposed tones.
Experiment E measured network discrimination thresholds for pure tones and
transposed tones as described by Oxenham et al. (2004).

Stimuli. Transposed tones were generated by multiplying a half-wave rectified low-
frequency sinusoid (the “envelope”) with a high-frequency sinusoid (the “carrier”).
Before multiplication, the envelope was lowpass filtered (4th order Butterworth
filter) with a cutoff frequency equal to 20% of the carrier frequency. To match the
original study, we used carrier frequencies of 4000, 6350, and 10,080 Hz. For each
carrier frequency, we generated 6144 transposed tones with envelope frequencies
spaced uniformly on a logarithmic scale between 80 and 320 Hz. We also generated
6144 pure tones with frequencies spanning the same range. All stimuli were pre-
sented at 70 dB SPL and embedded in the same modified uniform masking noise as
Experiment A. The original study embedded only the transposed tones in lowpass-
filtered noise to mask distortion products. To ensure that the noise would not
produce differences in the model’s performance for the two types of stimuli, we
included it for pure tones as well.

Human experiment. Oxenham et al. (2004) reported discrimination thresholds for
these same four conditions (transposed tones with three different carrier fre-
quencies+ pure tones) at five reference frequencies between 55 and 320 Hz. Data
were collected from four young (<30 years old) adult participants who had at least
1 h of training on the frequency discrimination task. Discrimination thresholds
were based on three adaptive tracks per participant per condition.

Model experiment. The procedure for measuring network discrimination thresholds
for pure tones was analogous to the one used in Experiment A. We first took
network F0 predictions (within a one-octave range centered at the stimulus fre-
quency) for all 6144 stimuli. We then simulated a two-alternative forced choice
paradigm by making pairwise comparisons between predictions for stimuli with
similar frequencies (within 2.7 semitones of five “reference frequencies” spaced log-
uniformly between 80 and 320 Hz). For each pair of stimuli, we asked if the network
correctly predicted a higher F0 for the stimulus with the higher frequency. From all
trials at a given reference frequency, we constructed a psychometric function
plotting the percentage of correct trials as a function of percent frequency difference
between the two stimuli. Normal cumulative distribution functions were fit to each
psychometric function and thresholds were defined as the percent frequency dif-
ference (capped at 100%) that yielded 70.7% correct. Each threshold was based on
233,586 pairwise discriminations made between 684 stimuli. The procedure for
measuring thresholds with transposed tones was identical, except that the correct
answer was determined by the envelope frequency rather than the carrier frequency.
Thresholds were measured separately for transposed tones with different carrier
frequencies. To simplify presentation, we show transposed tone thresholds averaged
across carrier frequencies (results were similar for different carrier frequencies).
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Human-model comparison. We quantified human-network similarity as the Pear-
son correlation coefficient between vectors of analogous log-transformed dis-
crimination thresholds. Both vectors contained 20 discrimination thresholds
corresponding to five reference frequencies ´ 4 stimulus classes (transposed tones
with three different carrier frequencies+ pure tones). Human thresholds were
linearly interpolated to estimate thresholds at the same reference frequencies used
for networks. This step was necessary because our networks were not trained to
make F0 predictions below 80 Hz.

Effect of stimulus level on frequency discrimination. To investigate how phase
locking in the periphery contributes to the level-robustness of pitch perception, we
measured pure tone frequency discrimination thresholds from our networks as a
function of stimulus level (Fig. 5d).

Stimuli. We generated pure tones at 6,144 frequencies spaced uniformly on a
logarithmic scale between 200 and 800 Hz. Tones were embedded in the same
modified uniform masking noise as Experiment A. The signal-to-noise ratio was
fixed at 20 dB and the overall stimulus levels were varied between 10 and 100 dB
SPL in increments of 10 dB.

Human experiment. Wier et al. (1977) reported frequency discrimination thresh-
olds for pure tones in low-level broadband noise as a function of frequency and
sensation level (i.e., the amount by which the stimulus is above its detection
threshold). Thresholds were measured from four participants with at least 20 h of
training on the frequency discrimination task. Participants completed four or five
2-down-1-up adaptive tracks of 100 trials per condition. Stimuli were presented at
five different sensation levels: 5, 10, 20, 40, and 80 dB relative to masked thresholds
in 0 dB spectrum level noise (broadband, lowpass-filtered at 10,000 Hz). We
averaged the reported thresholds across four test frequencies (200, 400, 600, and
800 Hz) and re-plotted them as a function of sensation level in Fig. 5e.

Model experiment. We used the same procedure used in Experiments A and E to
measure frequency discrimination thresholds. The simulated frequency dis-
crimination experiment considered all possible pairings of stimuli with similar
frequencies (within 2.7 semitones). Reported discrimination thresholds were
pooled across all tested frequencies (200–800 Hz).

Human-model comparison. Because the human results were reported in terms of
sensation level rather than SPL, we did not compute a quantitative measure of the
match between model and human results, and instead plot the results side-by-side
for qualitative comparison.

Auditory nerve manipulations—overview. The general procedure for investi-
gating the dependence of network behavior on aspects of the auditory nerve
representation was to (1) modify the auditory nerve model, (2) retrain networks
(starting from a random initialization) on modified auditory nerve representations
of the same natural sounds dataset, and (3) simulate psychophysical experiments
on the trained networks using modified auditory nerve representations of the same
test stimuli. We used this approach to investigate whether a biologically-
constrained cochlea is necessary to obtain human-like pitch behavior and to
evaluate the dependence of network pitch behavior on both temporal and “place”
information in the auditory nerve representation. The only exception to this
general procedure was in the experiment that tested the effect of flattening the
excitation pattern, which was performed on networks that were trained on normal
auditory nerve representations (see below).

Replacing the hardwired cochlear model with learnable filters. We replaced the
hardwired auditory nerve model with a convolutional layer whose weights could be
optimized alongside the rest of the DNN (Fig. 4). The convolutional layer consisted
of 100 one-dimensional filter kernels (each with 801 taps) that operated directly on
32 kHz audio, applied using “valid” convolution. The audio input to the network
was 75 ms in duration such that the valid output of convolution was 50 ms, as in
the hardwired cochlear representation. Outputs from the 100 filters were stacked,
half-wave rectified, and then resampled to 20 kHz, resulting in a first-layer
representation with 100 “nerve fibers” and 1000 timesteps to match the size and
temporal resolution of the hardwired cochlear representations. We separately
trained the ten best network architectures from the original architecture search
with this learnable “cochlear” layer. The best frequency of a learned filter was
determined after training from the maximum value of its transfer function.

Manipulating fine timing information in the auditory nerve. We modified the
upper frequency limit of phase locking in the auditory nerve by adjusting the cutoff
frequency of the inner hair cell lowpass filter within the auditory nerve model. By
default, the lowpass characteristics of the inner hair cell’s membrane potential are
modeled as a 7th order filter with a cutoff frequency of 3000 Hz42. We trained and
tested networks with this cutoff frequency set to 50, 250, 1000, 3000, 6000, and
9000 Hz. In each of these cases, the sampling rate of the peripheral representation

used as input to the networks was 20 kHz so that spike-timing information would
not be limited by the Nyquist frequency.

When the inner hair cell cutoff frequency is set to 50 Hz, virtually all temporal
information in the short-duration stimuli we used was eliminated, leaving only
place information (Fig. 5a). To control for the possibility that the performance
characteristics of networks trained on such representations could be limited by the
number of model nerve fibers (set to 100 for most of our experiments), we repeated
this manipulation with 1000 auditory nerve fibers (characteristic frequencies again
spaced uniformly on an ERB-number scale between 125 Hz and 14,000 Hz). To
keep the network architecture constant, we reduced the sampling rate to 2 kHz
(which for the 50 Hz hair cell cutoff preserved all stimulus-related information),
yielding peripheral representations that were 1000-fiber by 100-timestep arrays of
instantaneous firing rates. We then simply transposed the nerve fiber and time
dimensions so that networks still operated on 100-by-1000 inputs, allowing us to
use the same network architectures as in all other training conditions. Note that by
transposing the input representation, we effectively changed the orientation of the
convolutional filter kernels. Kernels that were previously long in the time
dimension and short in the nerve fiber dimension became short in the time
dimension and long in the nerve fiber dimension. We saw this as desirable as it
allowed us to rule out the additional possibility that the performance characteristics
of networks with lower limits of phase locking were due to convolutional kernel
shapes that were optimized for input representations with high temporal fidelity
and thus perhaps less suited for extracting place information (which requires
pooling information across nerve fibers).

To more closely examine how the performance with degraded phase locking
(i.e., the 50 Hz inner hair cell cutoff frequency condition) might be limited by the
number of model nerve fibers, we also generated peripheral representations with
either 100, 250, or 500 nerve fibers (with characteristics frequencies uniformly
spaced on an ERB-number scale between 125 Hz and 14000 Hz in each case). To
keep the network’s input size fixed at 100-by-1000 (necessary to use the same
network architecture), we transposed the input array, again using 100 timesteps
instead of 1000 (sampled at 2 kHz), and upsampled the frequency (nerve fiber)
dimension to 1000 via linear interpolation. In this way the input dimensionality
was preserved across conditions even though the information was limited by the
original number of nerve fibers. Median %F0 error on the validation set and
discrimination thresholds and were measured for networks trained and tested with
each of these peripheral representations (Supplementary Fig. 4).

Eliminating place cues by flattening the excitation pattern. To test if our
trained networks made use of peaks and valleys in the time-averaged excitation
pattern (which provide “place” cues to F0), we tested networks on nerve repre-
sentations with artificially flattened excitation patterns. Nerve representations were
flattened by separately scaling each frequency channel of the nerve representation
to have the same time-averaged response. Each row (nerve fiber) of the nerve
representation was divided by its time-averaged firing rate and multiplied by the
mean firing rate across all rows, yielding an excitation-flattened nerve repre-
sentation with the same mean firing rate as the original. This manipulation was
separately applied to each psychophysical stimulus.

Manipulating cochlear filter bandwidths. Cochlear filter bandwidths in the
auditory nerve model were set based on estimates of human frequency tuning from
otoacoustic and behavioral experiments53. We modified the frequency tuning to be
two times narrower and two times broader than these human estimates by scaling
the filter bandwidths by 0.5 and 2.0, respectively.

To investigate the importance of the frequency scaling found in the cochlea, we
also generated a peripheral representation with linearly spaced cochlear filters. The
characteristic frequencies of 100 model nerve fibers were linearly spaced between
125 Hz and 8125 Hz and the 10-dB-down bandwidth of each cochlear filter was set
to 80 Hz. This bandwidth (which is approximately equal to that of a “human”
model fiber with 400 Hz characteristic frequency) was chosen to be as narrow as
possible without introducing frequency “gaps” between adjacent cochlear filters.

To verify that these manipulations had the anticipated effects, we measured
tuning curves (detection thresholds as a function of frequency) for simulated nerve
fibers with characteristic frequencies of 250, 500, 1000, 2000, 4000 Hz (Fig. 6a, b).
Mean firing rate responses were computed for each fiber to 50 ms pure tones with
frequencies between 125 Hz and 8000 Hz. Thresholds were defined as the
minimum sound level required to increase the fiber’s mean firing rate response
10% above its spontaneous rate (i.e., dB SPL required for 77 spike/s).

Sound statistics manipulations—overview. The general procedure for investi-
gating the dependence of network behavior on sound statistics was to (1) modify
the sounds in training dataset, (2) retrain networks (starting from a random
initialization) on auditory nerve representations of the modified training dataset,
and (3) simulate psychophysical experiments on trained networks, always using the
same test stimuli.

Training on filtered natural sounds. We generated lowpass and highpass versions
of our natural sounds training dataset by applying randomly-generated lowpass or
highpass Butterworth filters to every speech and instrument sound excerpt. For the
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lowpass-filtered dataset, 3-dB-down filter cutoff frequencies were drawn uniformly
on a logarithmic scale between 500 and 5000 Hz. For the highpass-filtered dataset,
cutoff frequencies were drawn uniformly from a logarithmic scale between 1000
and 10,000 Hz. The order of each filter was drawn uniformly from one to five and
all filters were applied twice, once forward and once backwards, to eliminate phase
shifts. Filtered speech and instrument sounds were then combined with the
unmodified background noise signals used in the original dataset (SNRs drawn
uniformly from −10 to +10 dB).

Training on spectrally matched and anti-matched synthetic tones. To inves-
tigate the extent to which network pitch behavior could be explained by low-order
spectral statistics of our natural sounds dataset, we generated a dataset of 2.1
million synthetic stimuli with spectral statistics matched to those measured from
our primary dataset. STRAIGHT75 was used to measure the spectral envelope (by
averaging the estimated filter spectrogram across time) of every speech and
instrument sound in our dataset. We then measured the mean and covariance of
the first 13 Mel-frequency cepstral coefficients (MFCCs), defining a multivariate
Gaussian. We sampled new spectral envelopes from this distribution by drawing
MFCC coefficients and inverting them to produce a spectral envelope. These
envelopes were imposed (via multiplication in the frequency domain) on harmonic
complex tones with F0s sampled to uniformly populate the 700 log-spaced F0 bins
in the network’s classification layer. Before envelope imposition, tones initially
contained all harmonics up to 16 kHz in cosine phase, with equal amplitudes.

To generate a synthetic dataset with spectral statistics that deviate considerably
from those measured from our primary dataset, we simply multiplied the mean of
the fitted multivariate Gaussian (a vector of 13 MFCCs) by negative one, which
inverts the mean spectral envelope. Spectral envelopes sampled from the
distribution defined by the negated mean (and unaltered covariance matrix) were
imposed on 2.1 million harmonic complex tones to generate an “anti-matched”
synthetic tones dataset.

Both the matched and anti-matched synthetic tones were embedded in
synthetic noise spectrally matched to the background noise in our primary natural
sounds dataset. The procedure for synthesizing spectrally-matched noise was
analogous to the one used to generate spectrally-matched tones, except that we
estimated the spectral envelope using the power spectrum. We measured the power
spectrum of every background noise clip in our primary dataset, computed the
mean and covariance of the first 13 MFCCs, and imposed spectral envelopes
sampled from the resulting multivariate Gaussian on white noise via multiplication
in the frequency domain. Synthetic tones and noise were combined with SNRs
drawn uniformly from −10 to +10 dB, and overall stimulus presentation levels
were drawn uniformly from 30 to 90 dB SPL.

Training on speech and music separately. We generated speech-only and music-
only training datasets by selectively sampling from the same source libraries used to
populate the combined dataset. Due to the lack of speech clips in our source
libraries with high F0s, we decided to limit both datasets to F0s between 80 and
450 Hz (spanning 480 of 700 F0 bins). This ensured that differences between
networks trained on speech or music would not be due to differences in the F0
range. The composition of the speech-only dataset was:

● F0 bins between 80 Hz and 320 Hz

100% adult speech (2000 SWC and 1000 WSJ clips per bin)

● F0 bins between 320 Hz and 450 Hz

100% child speech (1500 CSLU and 1500 CMU clips per bin)

The composition of our music-only dataset was:

● F0 bins between 80 Hz and 450 Hz

100% instrumental music (2000 NSynth and 1000 RWC clips per bin)

Stimuli in both datasets were added to background noise clips sampled from the
same sources used for the combined dataset (SNRs drawn uniformly from −10 to
+10 dB).

Training on natural sounds with reduced background noise. To train networks
in a low-noise environment, we regenerated our natural sounds training dataset
with SNRs drawn uniformly from +10 to +30 dB rather than −10 to +10 dB. For
the noiseless case, we entirely omitted the addition of background noise to the
speech and instruments sounds before training. To ensure F0 discrimination
thresholds measured from networks trained with reduced background noise would
not be limited by masking noise in the psychophysical stimuli, we evaluated these
networks on noiseless versions of the psychophysical stimuli (Experiments A and
E). The amplitudes of harmonics that were masked by noise in the original stimuli
(i.e., harmonics inaudible to human listeners in the original studies) were set to
zero in the noiseless stimuli. When these networks were evaluated on

psychophysical stimuli that did include masking noise, F0 discrimination behavior
was qualitatively similar, but absolute thresholds were elevated relative to networks
that were trained on the −10 to +10 dB SNR dataset.

Network neurophysiology. We simulated electrophysiological recordings and
functional imaging experiments on our trained networks by examining the internal
activations of networks in response to stimuli. We treated units in the network
layers as model “neurons” and looked at their tuning using their average activations
across time to different stimuli. We measured tuning properties using equal-
amplitude sine-phase harmonic complex tones (45 dB SPL per frequency compo-
nent) in threshold equalizing noise (10 dB SPL per ERB). We used a total of
11,520 stimuli: five unique harmonic compositions (pure tones or successive har-
monics 1–9, 2–10, 4–12, or 6–14) ´ 2304 unique F0s (logarithmically-spaced
between 80 and 640 Hz). For each unit, we constructed an F0 tuning curve for each
harmonic composition by averaging activations to stimuli within the same F0
classification bin (i.e., within 1/16 semitone bins). Tuning curves were normalized
separately for each unit by dividing by the unit’s maximum response across the full
stimulus set. Units that produced a response of zero to all of the test stimuli were
excluded from analysis (< 1% of units).

As a measure of the strength of F0 tuning in a single model unit, we computed
the mean Pearson correlation coefficient between the pure tone (frequency) tuning
curve and each of the complex tone tuning curves. A perfectly F0-tuned unit
should selectively respond to pure and complex tones of a preferred F0
independent of harmonic composition (Fig. 9a), yielding a high mean correlation
coefficient. We measured the F0 tuning correlation of each unit in each layer (all
ReLU activations following convolutional layers and fully connected layers) of the
ten best-performing network architectures. The F0 tuning strength of a network
layer was computed by averaging this metric across all units in the layer.

To test if the observed F0 tuning depended on the harmonicity of the stimuli,
we repeated this analysis with complex tones made inharmonic by randomly
shifting component frequencies with a fixed jitter pattern20. The jitter pattern
allowed for each individual component (after the F0 component) to be shifted by
up to ±50% of the F0. Jitter values for each component were drawn uniformly from
−50% to +50% with rejection sampling to ensure adjacent components were
separated by at least 30 Hz to minimize salient differences in beating. Each
component’s frequency was the original harmonic’s frequency plus the jitter value
multiplied by the nominal F0. Like harmonic tones, inharmonic tones generated in
this way have frequency components that increase in spacing as the nominal F0 is
increased, but unlike harmonic tones they lack a fundamental frequency in the
range of audible pitch (i.e., above ~30 Hz86). Empirically, human perceptual
signatures of F0-based pitch are disrupted by inharmonicity20,55,57, making it a way
to distinguish human-like representations of F0 from coarser representations of
frequency spacing. The same jitter pattern (i.e., the same mapping of nominal
harmonic numbers to jitter value) was applied to all stimuli regardless of F0 and
harmonic composition. As in the F0 tuning analysis with harmonic tones, we
measured the average strength of nominal F0 tuning for each layer in the ten
networks. To ensure results were not unduly biased by a single random jitter
pattern, the analysis was repeated five times with different random seeds. F0 tuning
summary metrics reported in Fig. 9c are averaged across these five random seeds.

We measured population responses as a function of lowest harmonic number
(Fig. 9d) using a superset of the harmonic complex tones used to measure F0
tuning. The dataset was expanded to include all complexes containing 9 successive
harmonics, with lowest harmonic numbers 1–15 (e.g., 1–9, 2–10, 3–11, … 15–26).
We first identified the best F0 (i.e., the F0 producing the largest normalized mean
response across all lowest harmonic numbers) for each of the 700 units in each
network’s final fully connected layer. We then constructed lowest-harmonic-
number tuning curves by taking responses to stimuli at the best F0 with lowest
harmonic numbers 1–15. These tuning curves were averaged across units to give
the population response.

We qualitatively compared the network’s population response to those of pitch-
selective neurons in marmoset auditory cortex28 and pitch-selective voxels in
human auditory cortex29. Bendor and Wang used single-unit electrophysiology to
measure the spiking rates of 50 pitch-selective neurons (from three marmosets) in
response to complexes containing 3–9 consecutive harmonics in either cosine or
Schroeder phase. Recordings were repeated a minimum of ten times per stimulus
condition. Norman-Haignere and colleagues measured fMRI responses to
bandpass-filtered sine-phase harmonic complex tones and frequency-matched
noise. The 12 participants (four male, eight female, ages 21–28) were non-
musicians with normal hearing. Pitch-selective voxels were defined as those whose
responses were larger for complex tones than for frequency-matched noise. We re-
plotted data extracted from figures in both published studies.

Statistics—analysis of human data. Human data were scanned from original
figures or provided by the authors of the original papers. We did not have access to
data from individual human participants, and so did not plot error bars on the
graphs of human results.

Statistics—analysis of human-model comparison metrics. Human-model
comparison metrics were computed separately for each psychophysical experiment
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(as described in the above sections on each experiment and its analysis) and for
each of the 400 networks trained in our architecture search. To test if networks
with better performance on the F0 estimation training task produce better matches
to human psychophysical behavior, we computed the Pearson correlation between
validation set accuracies and human-model comparison metrics for each experi-
ment (Fig. 3, right-most column).

To test if “deep” networks (defined here as networks with more than one
convolutional layer) tended to produce better performance on the training task
than the networks with just one convolutional layer (Supplementary Fig. 3), we
performed a Wilcoxon rank-sum test comparing the validation set accuracies of the
54 single-convolutional-layer networks to those of the other 346 networks. To test
if the “deep” networks tended to produce better matches to human behavior we
performed a Wilcoxon rank-sum test comparing the human-model similarity
metrics of the 54 single-convolutional-layer networks to those of the other 346
networks. To obtain a single human-model similarity score per network for this
test, we pooled metrics across the five main psychophysical experiments. This was
accomplished by first rank ordering the human-model similarity metrics of all
networks within experiments and then averaging ranks across experiments.

These human-model similarity metrics were used to analyze two other
experiments (in all others we used more fine-grained analysis of best thresholds
and transition points, described below). To assess the statistical significance of
changes in human-model similarity when networks were optimized with a learned
“cochlea” (Fig. 4) or in the absence of background noise, we compared metrics
measured from ten networks trained per condition. The networks had ten different
architectures, corresponding to the ten best-performing architectures identified in
our search (Supplementary Table 1). We performed two-sample t-tests (each
sample containing results from the ten independently trained networks) to
compare human-model comparison metrics between training conditions. Effect
sizes were quantified as Cohen’s d and reported for all such tests that indicated
statistically significant differences. Because human-model similarity metrics were
bounded between −1 and 1, we passed the metrics through an inverse normal
cumulative distribution function before performing t-tests. All t-tests and rank-
sum tests were two-sided.

Statistics—analysis of best thresholds and transition points. One of the key
signatures of human pitch perception is that listeners are very good at making
fine F0 discriminations (thresholds typically below 1%) if and only if stimuli
contain low-numbered harmonics. F0 discrimination thresholds increase
by an order of magnitude for stimuli containing only higher-numbered
harmonics43,48. To assess the effect of altered cochlear input or training sound
statistics (Figs. 5–7), we thus focused on two measures: first, the absolute F0
discrimination acuity of our model when all low-numbered harmonics were
present (“best threshold”), and second, the harmonic number at which dis-
crimination ability transitioned from good to poor (“transition point”). In each
case, we used two-sample t-tests, comparing either the F0 discrimination
thresholds (log-transformed) for tones containing the first harmonic, or the
lowest harmonic number where thresholds first exceeded 1%. In each case we
compared results for networks with different auditory nerve models or training
sets. To quantify effect sizes, Cohen’s d is reported for all two-sample t-tests that
indicated statistically significant differences.

Statistics—ANOVAs on discrimination thresholds. We performed analyses of
variance (ANOVAs) on log-transformed F0 discrimination thresholds to help
satisfy the assumptions of equal variance and normality (normality was evaluated
by eye). Mixed model ANOVAs were performed with training conditions (per-
ipheral model and training set manipulations) as between-subject factors and
psychophysical stimulus parameters (lowest harmonic number and stimulus pre-
sentation level) as within-subject factors. The specific pairings of these different
factors were: stimulus presentation level vs. auditory nerve phase locking cutoff
(Fig. 5e), lowest harmonic number vs. training set spectral statistics (Fig. 7c), and
lowest harmonic number vs. training set noise level (Fig. 8). We also performed a
repeated-measures ANOVA to test for a main effect of lowest harmonic number on
population responses in the network’s last layer (Fig. 9c). F-statistics, p-values, and
η2partial are reported for main effects and interactions of interest. Greenhouse-
Geisser corrections were applied in all cases where Mauchly’s test indicated the
assumption of sphericity had been violated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Wall Street Journal (LDC93S6A), CMU Kids Corpus (LDC97S63), and CSLU Kids
Speech (LDC2007S18) audio datasets used in this study are available from the Linguistic
Data Consortium (https://www.ldc.upenn.edu). The Spoken Wikipedia Corpora audio
dataset is available at https://nats.gitlab.io/swc/. The RWC Music Database is available at
https://staff.aist.go.jp/m.goto/RWC-MDB/. The pitch datasets we compiled from these
publicly available corpora, along with the psychophysical test stimulus sets, are available
at: https://github.com/msaddler/pitchnet. Source data are provided with this paper.

Code availability
Source code for the Bruce et al. (2018) auditory nerve model is available at https://
www.ece.mcmaster.ca/~ibruce/zbcANmodel/zbcANmodel.htm. We developed a Python
wrapper around the model, which supports flexible manipulation of cochlear filter
bandwidths and the upper limit of phase locking. This wrapper is available at https://
github.com/msaddler/bez2018model. Code to implement and analyze our deep neural
network pitch models (including trained network weights) is available at https://
github.com/msaddler/pitchnet.
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