Export 78 results:
Filters: Author is Gabriel Kreiman  [Clear All Filters]
Zhang, M. & Kreiman, G. Beauty is in the eye of the machine. Nature Human Behaviour 5, 675 - 676 (2021).
Kreiman, G. Biological and Computer Vision. (Cambridge University Press, 2021). doi:10.1017/9781108649995
Zheng, J. et al. Cognitive boundary signals in the human medial temporal lobe shape episodic memory representation. bioRxiv (2021).
Casper, S. et al. Frivolous Units: Wider Networks Are Not Really That Wide. AAAI 2021 (2021). at <>PDF icon 1912.04783.pdf (6.69 MB)
Zhang, M., Badkundri, R., Talbot, M. B., Zawar, R. & Kreiman, G. Hypothesis-driven Online Video Stream Learning with Augmented Memory. arXiv (2021). doi:10.48550/arXiv.2104.02206PDF icon 2104.02206.pdf (2.25 MB)
Weisholtz, D. S. et al. Localized task-invariant emotional valence encoding revealed by intracranial recordingsAbstract. Social Cognitive and Affective Neuroscience (2021). doi:10.1093/scan/nsab134
Wang, J., Tao, A., Anderson, W. S., Madsen, J. R. & Kreiman, G. Mesoscopic physiological interactions in the human brain reveal small-world properties. Cell Reports 36, 109585 (2021).
Gupta, S. Kant, Zhang, M., WU, C. H. I. A. - C. H. I. E. N., Wolfe, J. & Kreiman, G. Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases. NeurIPS 2021 (2021). at <>PDF icon gk8091.pdf (2.47 MB)
Bomatter, P. et al. When Pigs Fly: Contextual Reasoning in Synthetic and Natural Scenes. International Conference on Computer Vision (ICCV) (2021). doi:10.1109/iccv48922.2021.00032PDF icon Bomatter_When_Pigs_Fly_Contextual_Reasoning_in_Synthetic_and_Natural_Scenes_ICCV_2021_paper.pdf (3.24 MB)
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Annals of the New York Academy of Sciences 1464, 222 - 241 (2020).
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Ann. N.Y. Acad. Sci. | Special Issue: The Year in Cognitive Neuroscience 1464, 222-241 (2020).PDF icon gk7812.pdf (1.93 MB)
Jacquot, V., Ying, J. & Kreiman, G. Can Deep Learning Recognize Subtle Human Activities?. CVPR 2020 (2020).
Vinken, K., Boix, X. & Kreiman, G. Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. Science Advances 6, eabd4205 (2020).PDF icon gk7967.pdf (3.07 MB)
Ben-Yosef, G., Kreiman, G. & Ullman, S. Minimal videos: Trade-off between spatial and temporal information in human and machine vision. Cognition (2020). doi:10.1016/j.cognition.2020.104263
Lotter, W., Kreiman, G. & Cox, D. A neural network trained for prediction mimics diverse features of biological neurons and perception. Nature Machine Intelligence 2, 210 - 219 (2020).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. Nature Machine Learning (2020).PDF icon 1805.10734.pdf (9.59 MB)
Zhang, M., Tseng, C. & Kreiman, G. Putting visual object recognition in context. CVPR 2020 (2020).PDF icon gk7876.pdf (3.12 MB)
Ben-Yosef, G., Kreiman, G. & Ullman, S. What can human minimal videos tell us about dynamic recognition models?. International Conference on Learning Representations (ICLR 2020) (2020). at <>PDF icon Authors' final version (516.09 KB)
Xiao, W. & Kreiman, G. XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization. PLOS Computational Biology 16, e1007973 (2020).PDF icon gk7791.pdf (2.39 MB)