Export 82 results:
Filters: Author is Gabriel Kreiman  [Clear All Filters]
Armendariz, M., Xiao, W., Vinken, K. & Kreiman, G. Do computational models of vision need shape-based representations? Evidence from an individual with intriguing visual perceptions. Cognitive Neuropsychology 1 - 3 (2022). doi:10.1080/02643294.2022.2041588
Sikarwar, A. & Kreiman, G. On the Efficacy of Co-Attention Transformer Layers in Visual Question Answering. arXiv (2022). doi:10.48550/arXiv.2201.03965PDF icon On_the_Efficacy_of_Co-Attention_Transformer_Layers.pdf (35.54 MB)
Dellaferrera, G. & Kreiman, G. Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass. Proceedings of the 39th International Conference on Machine Learning, PMLR 162, 4937-4955 (2022).PDF icon dellaferrera22a.pdf (909.91 KB)
Bardon, A., Xiao, W., Ponce, C. R., Livingstone, M. S. & Kreiman, G. Face neurons encode nonsemantic features. Proceedings of the National Academy of Sciences 119, (2022).
Zheng, J. et al. Neurons detect cognitive boundaries to structure episodic memories in humans. Nature Neuroscience 25, 358 - 368 (2022).
Casper, S., Nadeau, M. & Kreiman, G. One thing to fool them all: generating interpretable, universal, and physically-realizable adversarial features. arXiv (2022). doi:10.48550/arXiv.2110.03605PDF icon 2110.03605.pdf (6.7 MB)
Shaham, N., Chandra, J., Kreiman, G. & Sompolinsky, H. Stochastic consolidation of lifelong memoryAbstract. Scientific Reports 12, (2022).PDF icon s41598-022-16407-9.pdf (2.54 MB)
Xiao, Y. et al. Task-specific neural processes underlying conflict resolution during cognitive control. BioRxiv (2022). doi:10.1101/2022.01.16.476535 PDF icon 2022.01.16.476535v1.full_.pdf (22.96 MB)
Zhang, M. & Kreiman, G. Beauty is in the eye of the machine. Nature Human Behaviour 5, 675 - 676 (2021).
Kreiman, G. Biological and Computer Vision. (Cambridge University Press, 2021). doi:10.1017/9781108649995
Zheng, J. et al. Cognitive boundary signals in the human medial temporal lobe shape episodic memory representation. bioRxiv (2021).
Casper, S. et al. Frivolous Units: Wider Networks Are Not Really That Wide. AAAI 2021 (2021). at <>PDF icon 1912.04783.pdf (6.69 MB)
Zhang, M., Badkundri, R., Talbot, M. B., Zawar, R. & Kreiman, G. Hypothesis-driven Online Video Stream Learning with Augmented Memory. arXiv (2021). doi:10.48550/arXiv.2104.02206PDF icon 2104.02206.pdf (2.25 MB)
Weisholtz, D. S. et al. Localized task-invariant emotional valence encoding revealed by intracranial recordingsAbstract. Social Cognitive and Affective Neuroscience (2021). doi:10.1093/scan/nsab134
Wang, J., Tao, A., Anderson, W. S., Madsen, J. R. & Kreiman, G. Mesoscopic physiological interactions in the human brain reveal small-world properties. Cell Reports 36, 109585 (2021).
Gupta, S. Kant, Zhang, M., WU, C. H. I. A. - C. H. I. E. N., Wolfe, J. & Kreiman, G. Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases. NeurIPS 2021 (2021). at <>PDF icon gk8091.pdf (2.47 MB)
Bomatter, P. et al. When Pigs Fly: Contextual Reasoning in Synthetic and Natural Scenes. International Conference on Computer Vision (ICCV) (2021). doi:10.1109/iccv48922.2021.00032PDF icon Bomatter_When_Pigs_Fly_Contextual_Reasoning_in_Synthetic_and_Natural_Scenes_ICCV_2021_paper.pdf (3.24 MB)
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Annals of the New York Academy of Sciences 1464, 222 - 241 (2020).
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Ann. N.Y. Acad. Sci. | Special Issue: The Year in Cognitive Neuroscience 1464, 222-241 (2020).PDF icon gk7812.pdf (1.93 MB)
Jacquot, V., Ying, J. & Kreiman, G. Can Deep Learning Recognize Subtle Human Activities?. CVPR 2020 (2020).
Vinken, K., Boix, X. & Kreiman, G. Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. Science Advances 6, eabd4205 (2020).PDF icon gk7967.pdf (3.07 MB)
Ben-Yosef, G., Kreiman, G. & Ullman, S. Minimal videos: Trade-off between spatial and temporal information in human and machine vision. Cognition (2020). doi:10.1016/j.cognition.2020.104263
Lotter, W., Kreiman, G. & Cox, D. A neural network trained for prediction mimics diverse features of biological neurons and perception. Nature Machine Intelligence 2, 210 - 219 (2020).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. Nature Machine Learning (2020).PDF icon 1805.10734.pdf (9.59 MB)
Zhang, M., Tseng, C. & Kreiman, G. Putting visual object recognition in context. CVPR 2020 (2020).PDF icon gk7876.pdf (3.12 MB)