Publication

Found 262 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is B  [Clear All Filters]
2023
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
O'Connell, T. P. et al. Approaching human 3D shape perception with neurally mappable models. arXiv (2023). at <https://arxiv.org/abs/2308.11300>
Wang, C. et al. BrainBERT: Self-supervised representation learning for Intracranial Electrodes. International Conference on Learning Representations (2023). at <https://openreview.net/forum?id=xmcYx_reUn6>PDF icon 985_brainbert_self_supervised_repr.pdf (9.71 MB)
Zador, A. et al. Catalyzing next-generation Artificial Intelligence through NeuroAIAbstract. Nature Communications 14, (2023).
Zador, A. et al. Catalyzing next-generation Artificial Intelligence through NeuroAIAbstract. Nature Communications 14, (2023).
Zador, A. et al. Catalyzing next-generation Artificial Intelligence through NeuroAIAbstract. Nature Communications 14, (2023).
Bricken, T., Schaeffer, R., Olshausen, B. & Kreiman, G. Emergence of Sparse Representations from Noise. ICML 2023 (2023). at <https://openreview.net/pdf?id=cxYaBAXVKg>
Allen, K. R. et al. Lifelong learning of cognitive styles for physical problem-solving: The effect of embodied experienceAbstract. Psychonomic Bulletin & Review (2023). doi:10.3758/s13423-023-02400-4
Tuckute, G., Feather, J., Boebinger, D. & McDermott, J. H. Many but not all deep neural network audio models capture brain responses and exhibit correspondence between model stages and brain regions. PLOS Biology 21, e3002366 (2023).
Schiatti, L. et al. Modeling Visual Impairments with Artificial Neural Networks: a Review. International Conference on Computer Vision 2023 (2023). at <https://openaccess.thecvf.com/content/ICCV2023W/ACVR/html/Schiatti_Modeling_Visual_Impairments_with_Artificial_Neural_Networks_a_Review_ICCVW_2023_paper.html>
Bigelow, E. J., McCoy, J. P. & Ullman, T. D. Non-commitment in mental imagery. Cognition 238, 105498 (2023).
Bricken, T., Davies, X., Singh, D., Krotov, D. & Kreiman, G. Sparse distributed memory is a continual learner. International Conference on Learning Representations (2023). at <https://openreview.net/forum?id=JknGeelZJpHP>PDF icon 6086_sparse_distributed_memory_is_a.pdf (13.3 MB)
Duan, A. et al. A structured prediction approach for robot imitation learning. The International Journal of Robotics Research 43, 113 - 133 (2023).

Pages