Publication

Found 174 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is D  [Clear All Filters]
2023
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Dobs, K., Yuan, J., Martinez, J. & Kanwisher, N. Behavioral signatures of face perception emerge in deep neural networks optimized for face recognition. Proceedings of the National Academy of Sciences 120, (2023).
Zador, A. et al. Catalyzing next-generation Artificial Intelligence through NeuroAIAbstract. Nature Communications 14, (2023).
Kanwisher, N., Gupta, P. & Dobs, K. CNNs reveal the computational implausibility of the expertise hypothesis. iScience 26, 105976 (2023).
Lee, M. J. & DiCarlo, J. J. An empirical assay of view-invariant object learning in humans and comparison with baseline image-computable models. bioRxiv (2023). at <https://www.biorxiv.org/content/10.1101/2022.12.31.522402v1>
Srinivasan, R. Francesco et al. Forward learning with top-down feedback: empirical and analytical characterization. arXiv (2023). at <https://arxiv.org/abs/2302.05440>
Gaziv, G., Lee, M. J. & DiCarlo, J. J. Robustified ANNs Reveal Wormholes Between Human Category Percepts. arXiv (2023). at <https://arxiv.org/abs/2308.06887>
Bricken, T., Davies, X., Singh, D., Krotov, D. & Kreiman, G. Sparse distributed memory is a continual learner. International Conference on Learning Representations (2023). at <https://openreview.net/forum?id=JknGeelZJpHP>PDF icon 6086_sparse_distributed_memory_is_a.pdf (13.3 MB)
Gaziv, G., Lee, M. J. & DiCarlo, J. J. Strong and Precise Modulation of Human Percepts via Robustified ANNs. NeurIPS 2023 (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html>
Duan, A. et al. A structured prediction approach for robot imitation learning. The International Journal of Robotics Research 43, 113 - 133 (2023).
Kanwisher, N., Khosla, M. & Dobs, K. Using artificial neural networks to ask ‘why’ questions of minds and brains. Trends in Neurosciences 46, 240 - 254 (2023).

Pages