Publication

Found 332 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is M  [Clear All Filters]
2017
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Auditory Codes from Natural Sound Statistics. (2017).PDF icon MlynarskiMcDermott_Memo060.pdf (7.11 MB)
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Auditory Codes from Natural Sound Statistics. (2017).PDF icon MlynarskiMcDermott_Memo060.pdf (7.11 MB)
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Codes for Natural Sounds. Association for Otolaryngology Mid-Winter Meeting (2017).
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Codes for Natural Sounds. Association for Otolaryngology Mid-Winter Meeting (2017).
Traer, J. & McDermott, J. H. A library of real-world reverberation and a toolbox for its analysis and measurement. Annual Meeting of Acoustical Society of America (2017).
Spokes, A. C., Howard, R., Mehr, S. A. & Krasnow, M. M. Like Adults, children make consistent welfare tradeoff allocations. Budapest CEU Conference on Cognitive Development (2017).
Spokes, A. C., Howard, R., Mehr, S. A. & Krasnow, M. M. Like adults, children make consistent welfare tradeoff allocations. Society for Research in Child Development Biennial Meeting (2017).
Mlynarski, W. & McDermott, J. H. Lossy Compression of Uninformative Stimuli in the Auditory System. Association for Otolaryngology Mid-Winter Meeting (2017).
Mlynarski, W. & McDermott, J. H. Lossy Compression of Uninformative Stimuli in the Auditory System. Association for Otolaryngology Mid-Winter Meeting (2017).
Magid, R. & Schulz, L. Moral alchemy: How love changes norms. Cognition 167, 135 -150 (2017).PDF icon Moral Alchemy_Magid&Schulz.pdf (627.46 KB)
Zhang, C. et al. Musings on Deep Learning: Properties of SGD. (2017).PDF icon CBMM Memo 067 v2 (revised 7/19/2017) (5.88 MB)PDF icon CBMM Memo 067 v3 (revised 9/15/2017) (5.89 MB)PDF icon CBMM Memo 067 v4 (revised 12/26/2017) (5.57 MB)
Mendoza-Halliday, D. & Martinez-Trujillo, J. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nature Communications 8, (2017).
Mendoza-Halliday, D. & Martinez-Trujillo, J. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nature Communications 8, (2017).
Wu, Y., Muentener, P. & Schulz, L. One- to Four-year-olds’ Ability to Connect Diverse Positive Emotional Expressions to Their Probable Causes . Society for Research in Child Development (2017).
Manek, G. et al. Pruning Convolutional Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1707.05455>PDF icon 1707.05455.pdf (143.46 KB)
N. Murty, A. Ratan & Arun, S. P. Seeing a straight line on a curved surface: decoupling of patterns from surfaces by single IT neurons. Journal of Neurophysiology 11773, 104 - 116 (2017).
Leavitt, M. L., Mendoza-Halliday, D. & J.C., M. - T. Sustained Activity Encoding Working Memories: Not Fully Distributed. Trends in Neurosciences 40 , 328-346 (2017).
Zhang, C. et al. Theory of Deep Learning IIb: Optimization Properties of SGD. (2017).PDF icon CBMM-Memo-072.pdf (3.66 MB)
Poggio, T. et al. Theory of Deep Learning III: explaining the non-overfitting puzzle. (2017).PDF icon CBMM-Memo-073.pdf (2.65 MB)PDF icon CBMM Memo 073 v2 (revised 1/15/2018) (2.81 MB)PDF icon CBMM Memo 073 v3 (revised 1/30/2018) (2.72 MB)PDF icon CBMM Memo 073 v4 (revised 12/30/2018) (575.72 KB)
Poggio, T. et al. Theory of Deep Learning III: explaining the non-overfitting puzzle. (2017).PDF icon CBMM-Memo-073.pdf (2.65 MB)PDF icon CBMM Memo 073 v2 (revised 1/15/2018) (2.81 MB)PDF icon CBMM Memo 073 v3 (revised 1/30/2018) (2.72 MB)PDF icon CBMM Memo 073 v4 (revised 12/30/2018) (575.72 KB)
Isik, L., Singer, J., Madsen, J., Kanwisher, N. & Kreiman, G. What is changing when: Decoding visual information in movies from human intracranial recordings. Neuroimage (2017). doi:https://doi.org/10.1016/j.neuroimage.2017.08.027
Mhaskar, H., Liao, Q. & Poggio, T. When and Why Are Deep Networks Better Than Shallow Ones?. AAAI-17: Thirty-First AAAI Conference on Artificial Intelligence (2017).
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing 1-17 (2017). doi:10.1007/s11633-017-1054-2PDF icon art%3A10.1007%2Fs11633-017-1054-2.pdf (1.68 MB)
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing 1-17 (2017). doi:10.1007/s11633-017-1054-2PDF icon art%3A10.1007%2Fs11633-017-1054-2.pdf (1.68 MB)

Pages