Deep-learning tomography

TitleDeep-learning tomography
Publication TypeJournal Article
Year of Publication2018
AuthorsAraya-Polo, M, Jennings, J, Adler, A, Dahlke, T
JournalThe Leading Edge
Volume37
Issue1
Pagination58 - 66
Date Published01/2018
ISSN1070-485X
Keywordsalgorithm, full waveform inversion, Neural Networks, NMO, tomography Read More: https://library.seg.org/doi/abs/10.1190/tle37010058.1
Abstract

Velocity model building (VMB) is a key step in hydrocarbon exploration; The VMB main product is an initial model of the subsurface that is subsequently used in seismic imaging and interpretation workflows. Reflection or refraction Tomography and full waveform inversion (FWI) are the most commonly used techniques in VMB. On one hand, Tomography is a time-consuming activity that relies on successive updates of highly human-curated analysis of gathers. On the other hand, FWI is very computationally demanding with no guarantees of global convergence.

We propose and implement a novel concept that bypasses these demanding steps, directly producing an accurate gridding or layered velocity model from shot gathers. Our approach relies on training deep neural networks; the resulting predictive model maps relationships between the data space and the final output (particularly, the presence of high velocity segments that might indicate salt formations). In term of time, the training task takes a few hours for 2D data, but the inference step (predicting a model from previously unseen data) takes only seconds.

The promising results shown here for synthetic 2D data demonstrate a new way of using seismic data and suggests fast turnaround of workflows that now make use of machine learning approaches to identify key structures in the subsurface.

URLhttps://library.seg.org/doi/10.1190/tle37010058.1
DOI10.1190/tle37010058.1
Download:  PDF icon TLE2018.pdf

Research Area: 

CBMM Relationship: 

  • CBMM Funded